水解酶预处理对城市有机生活垃圾厌氧消化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市有机生活垃圾厌氧消化处理是利用厌氧消化技术处理其中的有机成分,即易腐生物质。相对于填埋、焚烧和堆肥等处理方式,该技术在处理垃圾治理环境的同时,获得清洁能源,具有显著的能源效益、经济效益、环境和生态效益、以及社会效益,而被认为是资源化利用最合理、最有效的途径。然而,由于城市有机生活垃圾复杂多变,加大了厌氧消化处理的难度,致使该技术的实际应用受到了限制。
     为此,本文依据目前国内外的一些相关报道,针对城市有机生活垃圾富含淀粉、纤维素、半纤维素、脂肪和蛋白质的特点,研究水解酶预处理对城市生活垃圾厌氧消化的影响。其目的是通过水解酶预处理促进城市有机生活垃圾水解,降低底物的复杂性、增强底物厌氧消化的适应性,提高底物厌氧消化的产气效率。从而为水解酶预处理技术应用于城市有机生活垃圾厌氧消化探索一条可行的技术路线。
     在研究中,本文首先建立以水解度为指标函数的水解酶动力学分析法和厌氧消化Modified Gomperts Model拟合分析法。其次采用水解酶动力学分析法,研究了淀粉酶、纤维素酶、木聚糖酶、脂肪酶、蛋白酶以及混合水解酶对城市有机生活垃圾水解度的影响。最后采用Modified Gomperts Model拟合分析法,研究水解酶预处理对城市生活垃圾厌氧消化的影响。具体研究结果如下:
     (1)建立的以水解度为指标函数的水解酶动力学分析方法,可应用于分析评价各种水解酶用量、底物浓度、水解时间和温度对城市有机生活垃圾水解度的影响。
     (2)根据厌氧消化Modified Gomperts Model拟合分析法,获得了相关厌氧消化动力学参数指标,并以此参数指标,分析和评价了水解酶预处理对城市有机生活垃圾厌氧消化影响,为厌氧消化的研究和数据的深入分析提供一种新方法。
     (3)料种比和消化浓度对城市有机生活垃圾厌氧消化影响的研究结果表明,当料种比在1.5:1-2.5:1和VS浓度为4%-8%时,较为适合城市有机生活垃圾厌氧消化。
     (4)城市有机生活垃圾厌氧消化水解酶变化的研究结果表明,厌氧消化产气过程与水解酶密切相关。各种水解酶的酶活增加日产气量也增加、酶活降低日产气量降低,且酶活的高峰期也正是日产气量的高峰期。
     (5)α-淀粉酶预处理对城市有机生活垃圾厌氧消化的影响的研究结果表明,城市有机生活垃圾α-淀粉酶水解的最佳条件为:在pH值中性下,酶用量80U/gVS、底物VS浓度8%、水解时间60min和水解温度80℃,此条件下的水解度为9.15%。当利用α-淀粉酶对城市有机生活垃圾厌氧消化进行预处理时,得出α-淀粉酶预处理的最佳条件为:在pH值中性下,酶用量100U/gVS、底物浓度8%、处理时间60min和处理温度70℃,此条件下的最大累积产气量和VS产气量比未经处理的提高了17.0%,最大产气速率和VS产气速率提高了21.4%。
     (6)纤维素酶预处理对城市有机生活垃圾厌氧消化的影响的研究表明,城市有机生活垃圾纤维素酶水解的最佳条件为:酶用量120U/gVS、底物VS浓度8%、水解时间24h、水解温度60℃和水解pH5.6,此条件下的水解度为23.8%。当利用纤维素酶对城市有机生活垃圾厌氧消化进行预处理时,得出纤维素酶预处理的最佳条件为:酶用量140U/gVS、底物浓度10%、处理时间24h、处理温度50℃和pH值为5.6,此条件下的最大累积产气量和VS产气量比未经处理的提高了29.0%,最大产气速率和VS产气速率提高了25.7%。
     (7)木聚糖酶预处理对城市有机生活垃圾厌氧消化的影响的研究结果表明,城市有机生活垃圾木聚糖酶水解的最佳条件为:酶用量20万U/gVS、底物VS浓度10%、水解时间12h、水解温度50℃和水解pH7.0,此条件下的水解度为32.2%。当利用木聚糖酶对城市有机生活垃圾厌氧消化进行预处理时,得出木聚糖酶预处理的最佳条件为:在pH值中性下,酶用量15万U/gVS、底物浓度12%、处理时间16h、处理温度50℃,此条件下的城市有机生活垃圾厌氧消化的最大累积产气量和VS产气量比未经处理的提高了15.4%,最大产气速率和VS产气速率提高了19.2%。
     (8)脂肪酶预处理对城市有机生活垃圾厌氧消化的影响的研究结果表明,城市有机生活垃圾脂肪酶水解的最佳条件为:在pH7.5下,酶用量60U/gVS、底物VS浓度8%、水解时间12h和水解温度50。C,此条件下的水解度为34.8%。当利用脂肪酶对城市有机生活垃圾厌氧消化进行预处理时,得出脂肪酶预处理的最佳条件为:在pH中性条件下,酶用量80U/gVS、底物浓度10%、处理时间16h、处理温度50℃,此条件下的城市有机生活垃圾厌氧消化的最大累积产气量和VS产气量比未经处理的提高了14.6%,最大产气速率和VS产气速率提高了13.9%。
     (9)蛋白酶预处理对城市有机生活垃圾厌氧消化的影响的研究结果表明,城市有机生活垃圾蛋白酶水解的最佳条件为:在pH7.5下,酶用量12.5×103U/gVS、底物VS浓度8%、水解时间12h和水解温度50。C,此条件下的水解度为14.3%。当利用蛋白酶对城市有机生活垃圾厌氧消化进行预处理时,得出蛋白酶预处理的最佳条件为:在pH值中性下,酶用量10×103U/gVS、底物浓度10%%、水解时间12h、水解温度40℃,此条件下的城市有机生活垃圾厌氧消化的最大累积产气量和VS产气量比未经处理的提高了16.8%,最大产气速率和VS产气速率提高了18.7%。
     (10)混合水解酶预处理对城市有机生活垃圾厌氧消化的影响的研究结果表明,木聚糖酶对水解度的贡献最大为61.7%,其次是α-淀粉酶为17.2%,最小的纤维素酶仅有1.33%。当利用混合水解酶对城市有机生活垃圾厌氧消化进行预处理时,最大累积产气量和VS产气量、以及最大产气速率和VS产气速率所有指标参数受α-淀粉酶的影响最大,木聚糖酶次之,脂肪酶最小,因此在混合水解酶配方中,应优先考虑α-淀粉酶和木聚糖酶。
     以上研究在城市有机生活垃圾厌氧消化水解酶预处理技术的方面取得了一定的成果,但仍然存在许多问题有待进一步的探讨和完善。
Compared with landfill, incineration and compost, anaerobic digestion of organic fraction of municipal solid waste (OFMSW) could recover clean energy in the process of treating waste, resulted in remarkable energy benefit, economy benefit, eco-environment benefit and social benefit, so that it was considered as the most reasonable and efficient way of resource utilization. However, when this technology was used to treat OFMSW, due to the complexity and variability of OFMSW, there was a lot of difficulty and limitation to need to overcome.
     It was well-known that the OFMSW was a complex waste, rich in starch, cellulose, xylan, fat and protein, and if any constituent of them was pre-degraded, there would be good for anaerobic digestion (AD). So based on some reports related at home and abroad, in this dissertation, the influence of hydrolase pretreatment on anaerobic digestion was investigated to promote OFMSW pre-hydrolysis, so that the complexity of OFMSW was minimized, and the efficency of AD was increased. More impotant was to develop an approach to hydrolase pretreatment applied to AD.
     In carrying out this research, firstly, a hydrolase kinetic analysis method with the degree of hydrolysis (DH) as index function and a Modified Gomperts Model (MGM) for anaerobic digestion were set up. And then, by using hydrolase kinetic analysis method, amylase, cellulase, hemicelluase, lipase, protease and mixed hydrolytic enzyme were respectively used to estimate the influence of them on DH of OFMSW. Finally, by means of MGM, the influence of hydrolase pretreatment on anaerobic digestion of OFMSW was investigated. Some research results as follows:
     (1) The hydrolase kinetic analysis method with the degree of hydrolysis as index function could be used to analyze and estimate the influence of hydrolase dosage, substrate concentration, hydrolytic time, and hydrolytic temperature on DH of OFMSW.
     (2) Based on anaerobic digestion Modified Gomperts Model, the kinetic parameters of OFMSW digestion was obtained that could be used to analyze and estimate the influence of hydrolase pretreatment on anaerobic digestion of OFMSW. This attempt would provide a new method for AD research and data analysis.
     (3) The experiment results from influence of feedstock to inoculum ratio (FIR) and the digestive concentration (DC) on anaerobic digestion of OFMSW, showed that the FIR from 1.5:1 to 2.5:1 and the DC from 4% to 8% were very good for OFMSW digestion.
     (4) The experiment results from change of hydrolase activities in OFMSW digestion, indicated that various hydrolytic enzyme activities had a closely relationship with biogas rate. With the increase and decrease of enzyme activity, biogas rate would correspondingly increase and decrease, the peak values of enzyme activity and biogas rate almost occured at the time.
     (5) The experiment results from a-amylase pretreatment applied to OFMSW digestion, demonstrated that under neutral pH value, the optimum hydrolytic condition for a-amylase was:enzyme dosage 100U/gVS, substrate VS concentration 10%, hydrolytic time 60min and temperature 80℃, and at this conditions, the DH was 9.15%. When using a-amylase pretreatment to OFMSW for anaerobic digestion, the optimum pretreatment condition for a-amylase was:under neutral pH value, enzyme dosage 100U/gVS, substrate VS concentration 8%, pretreatment time 60min and temperature 70℃, and at this conditions, compared with without any pretreatment group, the maximal accumulative biogas yield and VS biogas potential were increased by 17.0%, and the maximal biogas rate and VS biogas rate were increased by 21.4%.
     (6) The experiment results from cellulose pretreatment applied to OFMSW digestion showed that the optimum hydrolytic condition for cellulase was:enzyme dosage 120U/gVS, substrate VS concentration 8%, hydrolytic time 24h, temperature 60℃and pH value 5.6, and at this conditions, the DH was 23.8%. When using cellulase pretreatment to OFMSW for anaerobic digestion, the optimum pretreatment condition for cellulase was:enzyme dosage 140U/gVS, substrate VS concentration 10%, pretreatment time 24h, temperature 50℃, and pH value 5.6, and at this conditions, compared with without any pretreatment group, the maximal accumulative biogas yield and VS biogas potential were increased by 29.0%, and the maximal biogas rate and VS biogas rate were increased by25.7%.
     (7) The experiment results from xylan pretreatment applied to OFMSW digestion, showed that the optimum hydrolytic condition for hemi-cellulase was:enzyme dosage 200 thousand U/gVS, substrate VS concentration 10%, hydrolytic time 12h, temperature 50℃and pH value 7.0, and at this conditions, the DH was 32.2%. When using hemi-cellulase pretreatment to OFMSW for anaerobic digestion, the optimum pretreatment condition for hemi-cellulase was: under neutral pH value, enzyme dosage 150 thousand U/gVS, substrate VS concentration 12%, pretreatment time 16h, temperature 50℃, and at this conditions, compared with without any pretreatment group, the maximal accumulative biogas yield and VS biogas potential were increased by 15.4%, and the maximal biogas rate and VS biogas rate were increased by19.2%.
     (8) The experiment results from lipase pretreatment applied to OFMSW digestion, showed that the optimum hydrolytic condition for lipase was:under neutral pH value, enzyme dosage 60U/gVS, substrate VS concentration 8%, hydrolytic time 12h and temperature 50℃, and at this conditions, the DH was 34.8%. When using lipase pretreatment to OFMSW for anaerobic digestion, the optimum pretreatment condition for lipase was:under neutral pH value, enzyme dosage 80U/gVS, substrate VS concentration 10%, pretreatment time 16h and temperature 50℃, and at this conditions, compared with without any pretreatment group, the maximal accumulative biogas yield and VS biogas potential were increased by 14.6%, and the maximal biogas rate and VS biogas rate were increased by13.9%.
     (9) The experiment results from protease pretreatment applied to OFMSW digestion, showed that the optimum hydrolytic condition for lipase was:under neutral pH value, enzyme dosage 12.5×103U/gVS, substrate VS concentration 8%, hydrolytic time 12h and temperature 50℃, and at this conditions, the DH was 14.3%. When using protease pretreatment to OFMSW for anaerobic digestion, the optimum pretreatment condition for lipase was:under neutral pH value, enzyme dosage 10x103 U/gVS, substrate VS concentration 10%, pretreatment time 12h and temperature 40℃, and at this conditions, compared with without any pretreatment group, the maximal accumulative biogas yield and VS biogas potential were increased by 16.8%, and the maximal biogas rate and VS biogas rate were increased by18.8%.
     (10) The experiment results from mixed hydrolase pretreatment applied to OFMSW digestion, showed that hemi-cellulase had a maximum contribution of 61.7%to the degree of hydrolysis, followed by a-amylase 17.2%, cellulase smallest only 1.33%. When using mixed hydrolase pretreatment to OFMSW for anaerobic digestion, with regard to the extent of influence of different hydrolases on accumulative biogas yield, VS biogas potential, biogas rate and VS biogas rate, a-amylase was the largest one of them, next hemi-cellulase or y-amylase, and lipase was the smallest one. Hence, ingredients in mixed hydrolases should take into consideration a-amylase, hemi-cellulase or y-amylase firstly.
     These results above were only a little bit achievements being made in this experimental research, but there still were many problems to further explore and perfect for hydrolase pretreatment technology if it would was applied to OFMSW anaerobic digestion.
引文
[1]李华友,肖学智,德国城市生活垃圾管理政策分析,环境保护,2003,(5):58-61.
    [2]C. Visvanathan and J. Trankler. Municipal Solid Waste Management in Asia:A Comparative Analysis. 2004, cited; Available from:http://www.swlf.ait.ac.th/data/....../MSWM%20in%20Asia-final.pdf.
    [3]United States Environmental Protection Agency, Municipal Solid Waste in the United States:2007 Facts and Figures.2008.
    [4]周兴宋,美国城市生活垃圾减量化管理及其启示,特区理论与实践,2008,(5):66-70.
    [5]M. Olgica and T. Katica. The European policy framework for municipal solid waste management, cited; Available from:www.logincee.org/file/19614/library.
    [6]Federal Statistical Office of Germany, Half a ton of municipal waste generated per person in the EU27 in 2007, in Eurostat New Release.2009.
    [7]The International Bank for Reconstruction and Development. What a Waste:Solid Waste Management in Asia. cited; Available from: http://web.mit.edu/urbanupgrading/urbanenvironment/resources/references/pdfs/WhatAWasteAsia.pdf.
    [8]UNEP. Municipal Waste-Municipal waste on the rise, cited; Available from: http://www.grida.no/publications/vg/waste/page/2861.aspx.
    [9]张记市.城市生活垃圾厌氧消化的关键生态因子强化研究[博士学位论文].昆明:昆明理工大学,2007.
    [10]国家环保总局污染控制司,城市固体废物管理与处理处置技术.北京:中国石化出版社,2000.
    [11]王欢,王伟,城市生活垃圾产生量及组分的预测方法研究,环境卫生工程,2006,14(4):6-8.
    [12]杜吴鹏,高庆先,张恩深等,中国城市生活垃圾排放现状及成分分析,环境科学研究,2006,5(19):85-90.
    [13]席北斗,魏自民,刘洪亮等,有机固体废弃物管理与资源化技术.北京:国防工业出版社,2006.
    [14]刘会友,王俊辉,赵定国,厌氧消化餐厨垃圾的工艺研究,能源技术,2005,26(4):150-154.
    [15]段丽杰,盛连喜,王志平,长春市生活垃圾处理现状分析与对策探讨,环境卫生工程,2004,12(3):168-170.
    [16]张记市,苏存荣,谢刚,昆明城市生活垃圾处理研究,云南环境科学,2004,23(1):3-5.
    [17]张于峰,邓娜,李新禹等,城市生活垃圾的处理方法及效益评价,自然科学进展,2004,14(8):863-869.
    [18]张记市,王华,谢刚等,垃圾焚烧二恶英污染物的控制技术,环境保护,2003,(1):20-21.
    [19]李亚新,董春娟,徐明德,厌氧消化过程中Fe、Co、Ni对NH3-N拮抗作用,城市环境与城市生态,2000,13(4):11-12.
    [20]莫测辉,吴启堂,李桂荣,广东省城市污泥农用资源化的思考,农业环境与发展,1998,56(2):8-12.
    [21]谭启玲,胡承孝,赵斌等,城市污泥的特性及其农业利用现状,华中农业大学学报,2002,21(6):587-592.
    [22]杨玉楠,熊运实,杨军等编,固体废弃物的处理工程与管理.北京:科学出版社,2004.
    [23]张相锋,肖学智,何毅等,垃圾填埋场的甲烷释放及其减排,中国沼气,2006,24(1):3-5,14.
    [24]R.M. Maier, L. L.Pepper, C. P.Gerba编著,张甲耀等译,环境微生物学.北京:科学出版社,2004.
    [25]H.J.J. Theunissen, L. DenToom, A. Burggraaf, et al. Influence of temperature and relative humidity on the survival of Chlamydia Pneumoniacin aerosols. Applied and Environmental Microbiology,1993.56: 2589-2593.
    [26]S.E. Dowd, K.W. Widmer, and S.D. Pillai. Thermotolerant clostridia as an airborne pathogen indicator during land application of biosolids. Journal of Environmental Quality,1997.26:194-199.
    [27]RiehardsK.M. Landfill gas-the sweet smell of success.Landfill Gas Production Engineering Aspects. In:IChemE Meeting. University of Sheffield,11 March 1987.
    [28]李国刚,国城市生活垃圾处理处置的现状与问题,环境保护,2002,(4):20-26.
    [29]李海红,城市生活垃圾的处理及存在的问题,西北轻工业学院学报,2002,10(20):86-89.
    [30]郭燕,戴文灿,浅析城市生活垃圾综合处理与再生利用,再生资源研究,2000,(5):30-32.
    [31]曹学新,黄庆顺我国城市生活垃圾堆肥处理展望,有色冶金设计与研究,2001,22(1):52-56.
    [32]赵文峰,城市生活垃圾综合处理探索与研究,农业装备与车辆工程,2006,(2):48-50.
    [33]张新亚,城市生活垃圾资源化处理与可持续发展,苏州城建环保学院学报,1999,12(3):73-77.
    [34]梅其岳,刘汉龙,高玉峰,城市固体废物处置技术研究,南京理工大学学报,2006,30(2):248-251.
    [35]解强,边炳鑫,赵由才,城市固体废弃物能源化利用技术.北京:化学工业出版社,2004.
    [36]何品晶,邵立明编著,固体废物管理.北京:高等教育出版社,2004.
    [37]国家环保总局污染控制司,城市固体废物管理与处置技术.北京:中国石化出版社,2000.
    [38]张越,城市生活垃圾减量化管理经济学.北京:化学工业出版社,2004.
    [39]H.A. Barker and A. Buswell. Biological Formation of Methane. Industrial and Engineering Chemistry, 1956,48(9):1438-1443.
    [40]R.E.McKinney and R. Erwin. Microbiology for Sanitary Engineers. McGraw-Hill,1962.
    [41]D.F. Toerien, M.L. Siebert, and W.H.J. Hattingh. The bacterial nature of the acid-forming phase of anaerobic digestion. Water Research,1967,1(7):497-507.
    [42]D.F. Toerien and W.H.J. Hattingh. Anaerobic digestion I. The microbiology of anaerobic digestion. Water Research,1969,3(6):385-416.
    [43]M.P. Bryant, E.A. Wolin, M.J. Wolin, et al. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Microbiology,1967,59(1):20-31.
    [44]M.P. Bryant, L.L. Campbell, C.A. Reddy, et al. Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Applied and Environmental Microbiology,1977,33(5):1162-9.
    [45]M.P. Bryant. The microbiology of anaerobic degradation and methanogenesis. In:H.GSchlegel (Ed.) Seminar on Microbial Energy Conversion. E. Goltze KG, Gottingen,1976.
    [46]R. A.Mah, D.M. Ward, L. Baresi, et al. Biogenesis of methane. Ann. Rev.Microbiology,31,1977: 309-341.
    [47]A.W. Lawrence and P.L. McCarty, Kinetics of Methane Fermentation in Anaerobic Treatment. Water Pollution Control Federation,1967,41(2):1-17.
    [48]M.P.Bryant, Microbial Methane Production—heoretical Aspects. J.Anim Sci.,1979,48:193-201.
    [49]C.W. Kemp, M.A. Curtis, S.A. Robrish, et al. Biogenesis of methane in primate dental plaque. EFBS Letters,1983,155(1):61-64.
    [50]J.G. Ferry and R.S.Wolfe. Anaerobic degradation of benzoate to methane by a microbial consortium. Arch Microbiology,1976,107(1):33-40.
    [51]R. E.Hungate, W. Smith, T. Bauchop, et al. Formate as an intermediate in the bovine rumen fermentation. J. Bacteriol.,1970,102(2):389-397.
    [52]张无敌,宋洪川,尹芳等,沼气发酵与综合利用.昆明:云南科技出版社,2004.
    [53]J.H. Thiele and J.G. Zeikus, Control of Interspecies Electron Flow during Anaerobic Digestion:The Role of Floc Formation in Syntrophic Methanogenesis. Applied and Enironmental Microbology,1998, 54:10-19.
    [54]李建昌,张无敌,氢分压对种间氢转移的影响,云南师范大学学报(自然科学版),2005,25(5):21-25.
    [55]J.G Zeikus. Microbial populations in digestors. In:First International Symposium on Anaerobic Digestion. University College, Cardiff, Wales, September 1979.
    [56]P.J. Weimer and J.G. Zeikus. Acetate assimilation pathway of Methanosarcina barkeri. J Bacteriol,1979. 137(1):332-9.
    [57]M.R. Winfrey and J.G. Zeikus. Microbial methanogenesis and acetate metabolism in a meromictic lake. Applied Environmental Microbiology,1979,37(2):213-21.
    [58]A.M. Buswell and E.W.S. Jr. The Mechanism of the Methane Fermentation. J. Am. Chem. Soc., 1948,70(5):1778-1780.
    [59]A.M. Buswell and H.F. Mueller. Mechanism of Methane Fermentation. Ind. Eng. Chem.,1952,44(3): 550-552.
    [60]R. E.Hungate. The Rumen and Its Microbes. New York:Academic Press,1966.
    [61]张无敌,刘士清,厌氧消化过程的多功能性,天津微生物,1995,(3):24-26.
    [62]刘克鑫,徐洁泉,廖多群等,沼气池中产氢菌的研究,微生物学报,1980,20(4):385-389.
    [63]达来,古细菌与真核生物的早期进化,内蒙古大学学报,1995,26(2):209-214.
    [64]张无敌,产甲烷细菌的生物学特性探讨,云南师范大学学报,1996,16:77-83.
    [65]解涛and丁达夫,生命的三界-三界学说的新进展,生命科学,1997,9(5):233-235.
    [66]沈雪松,刘义,屈松生,生命三界学说与生命第三形式,广西科学,2001,8(1):54-56.
    [67]C.R. Woese, O. Kandler, and M.L. Wheelis. Towards a natural system of organisms:proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA,1990,87(12):4576-4579.
    [68]李建吕,刘十清,张无敌等,发酵产氢面临的问题及对策,可再生能源,2006,(4):50-53.
    [69]A.M. Buswell and W.D. Hatfield. Anaerobic Fermentation. In:1936, Dept. of Registration and Education, Div. of the State Water Survey, Urbana, IL,BuIletin. No.32:State of Illinois, p.1-193.
    [70]C.H.Burton and C.Turner. Manure Management:Treatment Strategies for Sustainable Argriculture (2n edit). Bedford, UK,2003.
    [71]M. Kim and R.E. Speece. Aerobic waste activiated sludge for start-up seed of mesophilic and thennophilic anaerobic digestion. Water Res.,2002,36(15):3860-3866.
    [72]M. Wiegant and G. Lettinga. Thennophilic anaerobic digestion of sugars in UASB reactors. Biotechnology and Bioengineering,1985,27:1603-1607.
    [73]J.B. VanLier, E. Brumeler, and G. Lettinga. Thermo-tolerant anaerobic digestion of VFA by digested organic fraction of municipal solid waste. J.Ferment.Bioeng.,1993,76(2):140-144.
    [74]W.S. Lopes, V. Duarte, and L.S. Prasad. Influence of inonulum on performance of anaerobic reactors for treating municipal solid waste. Bioresource Technology,2004,94(3):261-266.
    [75]李俊涛,钱小青,赵由才,潜脚的厌氧消化处理可行性研究,上海环境科学,2003,22(9):646-648.
    [76]潘云霞,李文哲,接种物浓度对厌氧发酵产气特性影响研究,农机化研究,2004,(1):187-189.
    [77]吴满昌,孙可伟,李如燕等,温度对城市生活垃圾厌氧消化的影响,生态环境,2005,14(5):683-385.
    [78]C.G. Golueke, Book review. Waste Management and Research,2000,18(5):508-508.
    [79]S.Ghosh. Pilot-scale gasification of municipal solid waste by high-rate and two-phase anaerobic digestion(TPAD). Water Science and Technology,2000,41(3):101-110.
    [80]P.A. Sosnowski and W.S. Ledakowiez. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid waste. Advance in Environmental Researeh,2003,7:609-616.
    [81]陈世和,陈建华,王士芬编著,微生物生理学原理.上海:同济大学出版社,1992.
    [82]周孟津,张榕林,蔺金印编著,沼气实用技术.北京:化学工业出版社,2004.
    [83]贺延龄,废水的厌氧生物处理.北京:中国轻工业出版社,1998.
    [84]李强,曲浩丽,承磊等,沼气干发酵技术研究进展,中国沼气,2010,28(5):12-15.
    [85]何品晶,潘修疆,吕凡等,pH值对有机垃圾厌氧水解和酸化速率的影响,中国环境科学,2006,26(1):57-61.
    [86]金杰,吴克,蔡敬民等,BMW厌氧消化过程中产气性能影响因素研究,包装与食品机械,2006,24(5):8-12.
    [87]沈伯雄,梁材,周元驰等,生活垃圾厌氧发酵制沼气研究,环境卫生工程,2006,4(3):24-27.
    [88]乔玮,曾光明,袁兴中,厌氧消化技术在城市垃圾处理应用中的制约因素,江苏环境科技,2002,15(4):28-30.
    [89]J.J. Lay, Y.Y. Li, T. Noike, et al. Analysis of environmental factors affecting methane production from high-solids organic waste. Water Science and Technology,1997,36(6-7):493-500.
    [90]I.S. Kim, D.H. Kim, and S.H. Hyun. Effect of particle size and sodium ion concentration on anaerobic thermophilic food waste digestion. Water.Sci.Technol.,2000,41(3):67-73.
    [91]M. Kayhanian. Ammonia Inhibition in High-Solids Biogasification:A Comprehensive Overview and Practical Solutions. Environmental Technology,1999,20(4):355-366.
    [92]陈朝猛,曾光明,张碧波等,城市有机垃圾厌氧消化痕量激活剂的促进作用及产能研究,南华大学学报(理工版),2004,18(2):12-16.
    [93]P.G Stroot, K.D. McMahon, R.I. Mackie, et al. Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions--I. digester performance. Water Research,2001,35(7): 1804-1816.
    [94]M. Kim, Y.-H. Ahn, and R.E. Speece. Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Research,2002,36(17):4369-4385.
    [95]L.T.Angenent, S.Sung, and L. Raskin. Mixing intensity in anaerobic sequencing batch reactors affects reactor performance and microbial community structure. In:Proceedings of the 9th world congress of Anaerobic digestion (2001). Antwerpen, Belgium:Beigium Technological Institute,2001.
    [96]V.A.Vavilin and I. Angelidaki. Anaerobic degradation of solid material:importance of initiation centers for methanogenesis, mixing intensity, and 2D distributed model. Biotechnology and Bioengineering, 2005,89(1):113-122.
    [97]李金花,纤维素酶降解纤维素的热动力学研究[硕十学位论文].曲阜:曲阜师范大学,2005.
    [98]N. Mosier, C. Wyman, B. Dale, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology,2005,96(6):673-686.
    [99]涂启梁,付时雨,詹怀宇,纤维素酶和半纤维素酶在制浆造纸工业中的应用,西南造纸,2006,(3):18-21.
    [100]杨建,玉米芯木聚糖的提取及纤维素酶酶解去半纤维素玉米芯的研究[硕士学位论文].北京:北京化工大学,2005.
    [101]江正强,李里特,李颖,耐热木聚糖酶研究进展,中国生物工程杂志,2003,23(8):47-51.
    [102]K.Poutanen, M.Tenkanen, H.Korte, et al. Accessory enzymes involved in the hydrolysis of xylans. Enzymes in Biomass Conversion. ACS Symp.Ser.460, Washington,1991.
    [103]王海燕,高秀华,脂肪酶的研究进展及其在饲料中的应用,新饲料,2007,(4):16-18.
    [104]A. Pandey, S. Benjamin, C.R. Soccol, et al. The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry,1999,29(2):119-131.
    [105]R.D. Schmid and R. Verger, Lipases:Interfacial Enzymes with Attractive Applications. Angewandte Chemie International Edition,1998,37(12):1608-1633.
    [106]R.J. Kazlauskas and U.T. Bornscheuer, Biotransformations with Lipases. Biotechnology.2008, Wiley-VCH Verlag GmbH.36-191.
    [107]任南琪,王爱杰,马放,产酸发酵微生物生理生态学.北京:科学出版社,2005.
    [108]S.K. Han and H.S.Shin. Performance of aninnovative two-stage proeess converting food waste to hydrogen and methane. Air and Waste Management Assoeiation,2004,54(4):242-249.
    [109]Q.H. Wang, M. Kuninobu, H.I. Ogawa, et al. Degradation of volatile fatty acids in highly efficient anaerobic digestion. Biomass and Bioenergy,1999,16(6):407-416.
    [110]R. Voolapalli and D. Stuckey. Relative inportance of trophic group concentrations during anaerobc degradation of volatile fatty acids. Applied and Environmental Microbiology,1999,65(11):5009-5016.
    [111]赵一章,产甲烷细菌及研究方法(第二版).成都:成都科技大学出版社,1999.
    [112]B.L. Jules, C.F. Katja, T.M. Carl, et al. Effeets of acetate,propionate and butyrate on the thermophilic anaerobic degradation of propionate by methanogenic sludge and defined cultures. Applied and Environmental Mierobiology,1993,59(4):1003-1011.
    [113]郑平,脂肪酸联合氧化的力能学特性,中国沼气,1996,14(4):3-7.
    [114]P.L.McCarty and D.P.Smith. Anaerobicwastewatertreatment. Environmental Science and Technology, 1986,20(12):1200-1206.
    [115]I. Angelidaki. Comprehensive model of anaerobic bio-conversion of substrates to biogas. Biotechnology and Bioengineering,1999,63(3):363-372.
    [116]L.M. Palmowski and J.A.Mtiller. Influence of the size reduction of organic waste on their anaerobic digestion. Water Science and Technology,2000,41(3):155-162.
    [117]I. Angelidakil, L. Ellegaard, and B.K.Ahring. A mathematical model for dynamic simulation of anaerobic digestion of complex substrates:focusing on ammonia inhibition. Biotechnology and Bioengineering,1993,4(2):159-166.
    [118]M.S. Rao and S.P. Singh. Bioenergy conversion studies of organic fraction of MSW:kinetic studies and gas yield-organic loading relationships for proeess optimization. Bioresource Technology,2004, 95(2):173-185.
    [119]H.Siegrist, D.Renggli, and W.Gujer. Mathematical modeling of anaerobic mesophilic sewage sludge treatment. Water Science and Technology,1993,27(2):25-36.
    [120]J.k. Cho, S.C. Park, and H.N. Chang. Biochemical methane potential and solid state anaerobic digestion of Korea food wastes. Bioresource Technology,1995,52(3):245-253.
    [121]O. Christ, P.A. Wilderer, R.A. R, et al. Mathematical modeling of the hydrolysis of anaerobic processes. Water Science and Technology,2000,41(3):61-65.
    [122]G. Zeeman, A.R. Palenzuela, W. Sanders, et al. Anaerobic hydrolysis and acidification of lipids,proteins and carbohydrates under methanogenic and acidogenic conditions. In:Proceedings of the second international symposium on anaerobic digestion of solid wastes. Barcelona,1999.
    [123]M.A. Barlaz, D.M. Schaefer, and R.K. Ham. Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Applied and Environmental Microbiology,1989,55(1):55-65.
    [124]V.A. Vavilin, S.V. Rytov, L.Y. Lokshinaa, et al. Description of hydrolysis and acetoclastic methanogenensis as the rate-limiting steps during conversion of solid waste into methane. In: Proceedings of the second international symposium on anaerobic digestion of solid wastes. Barcelona, 1999.
    [125]S. Kalyuzhnyi, A. Veeken, and B. Hamelers. Two-particle model of anaerobic solid state fermentation. Water Science and Technology,2000,41(3):43-50.
    [126]A. Lagerkvist and H. Chen. Control of anaerobic degradation of MSW by enzyme addition. In: proceeding of the international symposium on anaerobic digestion of solid waste. Venice, Italy,1992.
    [127]J.P.Y. Jokela, R.H. Kettunen, K.M. Sormunen, et al. Methane production from landfilled municipal solid waste:Effects of source-segregation, moisture control,and landfill operation. In:Proceeding of the ninth world congress anaerobic digestion of solid waste. Antwerp, Belgium,2001.
    [128]A. Veeken and B. Hamelers. Effect of temperature on hydrolysis rate of selected biowaste components. Bioresource Technology,1999,69(3):249-254.
    [129]J. Mata-Alvarez, S. Mace, and P. Labres. Anaerobic digestion of organic solid wastes:an overview of research achievements and perspectives. Bioresource Technology,2000,74(1):3-6.
    [130]A. Paramsothy, R.M. Wimalaweera, B.F.A. Basnayake, et al. Optimizing hydrolysis/acidogenesis anaerobic reactor with the application of microbial reaction kinetics. Tropical Agricultural Research, 2004,16:327-338.
    [131]V.A. Vavilin, L.Y. Lokshina, J.P.Y. Jokela, et al. Modeling solid waste decomposition. Bioresource Technology,2004,94(1):69-81.
    [132]V.A. Vavilin, S.V. Rytov, and L.Y. Lokshina. A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresource Technology,1996.56(2):p.229-237.
    [133]A.R. Andara and J.M.Lomas-Esteban, Kinetic study of the anaerobic digestion of the solid fraction of piggery slurries. Biomass and Bioenergy,1999.17(5):p.435-443.
    [134]G. Kiely, G. Tayfur, C. Dolan, et al. Physical and mathematical-modelling of anaerobic digestion of organic wastes. Water Resource,1997,31(3):534-540.
    [135]G. Lissens, P. Vandevivere, L. De-Baere, et al. Solid waste digestors:process performance and practice for municipal solid waste digestion. Water Science and Technology,2001,44(8):91-102.
    [136]余昆明,城市生活垃圾厌氧消化技术进展,环境卫生工程,2003,11(1):16-20.
    [137]P. Pavan. Performance of thermophilic semi-dry anaerobic digestion process changing the feed biodegradability. Water Science and Technology,2000,41(3):75-81.
    [138]J.Y. Wang, H.L. Xu, and J.H. Tay. A hybrid two-phase system for anaerobic digestion of food waste. Water Science and Technology,2002,45(12):159-165.
    [139]P. Pavan, P. Battistoni, F. Cecchi, et al. Two-phase anaerobic digestion of source-sorted OFMSW (organic fraction of municipal solid waste):performance and kinetic study. Water Science and Technology,2000,41(3):111-118.
    [140]H.W. Yu, Z. Samani, A. Hanson, et al. Energy recovery from grass using two-phase anaerobic digestion. Waste management and Research,2002,22(1):1-5.
    [141]B.K. Ahring, Z. Mladenovska, R. Iranpour, et al. State of the art and future perspectives of thermophilic anaerobic digestion. Water Science and Technology,2002,45(10):293-298.
    [142]E.Ten and B. Meler. Full scale experience with the BIOCELL process. Water Science and Technology, 2000,41(3):299-304.
    [143]W.W. Clarkson and W. Xiao. Bench-scale anaerobic digestion bioconversion of newsprint and office paper. Water Science and Technology,2000,43(3):93-100.
    [144]I. Angelidaki and B.K. Ahring. Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Science and Technology,2000,41(3):189-194.
    [145]A. Teihm, K. Nickwl, N. Zellhorn, et al. Ultrasonic waste activated sludge disintegration for improving anaerobic digestion. Water Resource,2001,3(8):2003-2009.
    [146]张爱军,陈洪章,李佐虎,有机固体废物厌氧消化处理的研究现状与进展,环境科学研究,2002,15(5):52-54.
    [147]M. Hiraoka, N. Takeda, S. Sakai, et al. Highly efficient anaerobic digestion with thermal pretreatment. Water Science and Technology,1985,17(4):529-539.
    [148]A.S. Schmidt and A.B. Thomsen. Optimization of wet oxidization pretreatment of wheat straw. Bioresource Technology,1998,64(2):139-151.
    [149]G. Lissens, A.B. Thomsen, L. De-Baere, et al. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste. Environmental Science and Technology,2004.38(12):p. 3418-3424.
    [150]M. Weemaes, H. Grootaerd, and F. Simoens, Anaerobic digestion of ozonized biosolids. Water Resource,2003.34(8):2330-2336.
    [151]J.A. Pascual, M. Ayuso, C. Garcia, et al. Characterization of urban wastes according to fertility and phytotoxicity parameters. Waste Management and Research,1997,15(1):103-112.
    [152]V. Gellens, J. Boelens, and W. Verstraete. Source separation selective collection and in reactor digestion of biowaste. Antonie van Leeuwenhoek,1995,67:79-89.
    [153]高白茹,常志州,叶小梅等,堆肥预处理对稻秸厌氧发酵产气量的影响,农业工程学报,2010,26(5):251-256.
    [154]张无敌,宋洪川,尹芳等,牛粪在沼气发酵过程中的水解酶酶活变化研究,能源工程,2003,(6):21-23.
    [155]周岭,祖鹏飞,沼气发酵中纤维素酶降解牛粪的试验研究,新疆农垦科技,2006,(4):12-13.
    [156]李建昌,孙可伟,淀粉酶前处理应用于猪粪沼气发酵的研究,环境科学与技术,2010,33(4):117-12.
    [157]邹成鸿,李如燕,李建昌等,应用α-淀粉酶水解城市生活垃圾的研究,安徽农业科学,2010,38(3):1399-1400,1410.
    [158]何娟,孙可伟,邹成鸿等,α-淀粉酶预处理对城市生活垃圾厌氧消化的影响研究,安徽农业科学,2010,38(27):15166-15168.
    [159]何娟,孙可伟,李建昌等,城市生活垃圾厌氧消化中纤维素酶预处理的应用研究,上海环境科学,2011(6).
    [160]吕淑霞,陈祖洁,纤维素酶应用于酒糟废水厌氧消化中的研究,中国沼气,1994,12(1):1-5.
    [161]A.B.G. Valladao, D.M.G. Freire, and M.C. Cammarota. Enzymatic pre-hydrolysis applied to the anaerobic treatment of effluents from poultry slaughterhouses. International Biodeterioration & Biodegradation,2007,60:219-225.
    [162]刘福源,沼气消化常规分析.北京:北京科学技术出版社,1984.
    [163]熊素敏,左秀凤,朱永义,稻壳中纤维素、半纤维素和木质素的测定,粮食与饲料工业,2005,(8):4041.
    [164]张强,马齐,徐升运等,木聚糖酶降解玉米秸秆的工艺研究,安徽农业科学,2008,36(34):14848-14850.
    [165]刘玉兰,李珊,刘坤,食品中蛋白质含量测定方法的改进和应用,青岛医学院学报,1999,35(2):123-124.
    [166]杨洁,阿里木,李福成等,饲用纤维素酶活力测定方法的改进,新疆大学学报(自然科学版)2005,22(3):322-324.
    [167]袁斌,吕桂善,刘小玲,蛋白质水解度的简易测定方法,广西农业生物科学,2002,21(2):113-115.
    [168]周家华,黄立新,周俊侠,α-淀粉酶和葡萄糖淀粉酶协同水解淀粉的动力学研究,中国调味品,1997,(7):10-12,33.
    [169]周桂,何子平,邓光辉等,纤维素酶与淀粉酶降解壳聚糖的动力学研,海洋科学,2003,27(11):59-62,67.
    [170]沈勇,王黎明,孙恺,纤维素酶对纤维素纤维酶解动力学的研究,东华大学学报(自然科学版),2001,27:14-19.
    [171]陶学明,王泽南,余顺火等,碱性蛋白酶酶解梭子蟹蛋白动力学模型研究,食品科学,2009,30(23):252-254.
    [172]马如,黄明智,脂肪酶降解壳聚糖的反应动力学研究,化学世界,2002,(9):272-275.
    [173]M.H. Zwietering, I. Jongenburger, F.M. Rombouts, et al. Modeling of the Bacterial Growth Curve. Applied and Environmental Microbiology,1990,56(6):1875-1881.
    [174]J.-J. Lay. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnology and Bioengineering,2000,68(3):269-278.
    [175]Y. Mu, X.-J. Zheng, H.-Q. Yu, et al. Biological hydrogen production by anaerobic sludge at various temperatures. International Journal of Hydrogen Energy,2006,31(6):780-785.
    [176]Z.-H. Hu and H.-Q. Yu. Anaerobic digestion of cattail by rumen cultures. Waste Management and Research,2006,26(11):1222-1228.
    [177]刘社际,谭辉玲,玉米淀粉酶催化糖化的反应动力学模型,重庆大学学报(自然科学版),1997,20(1):109-111.
    [178]李建昌,孙可伟,何娟等,应用Modified Gompertz模型对城市生活垃圾沼气发酵的拟合研究.环境科学,2011.32(6).
    [179]朱珉仁, Gompertz模型和 Logistic 模型的拟合,数学的实践与认识 ,2002,32(5):705-709.
    [180]T. Forster-Carneiro, M. Perez, and L.I. Romero. Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresource Technology,2008,99(15): 6994-7002.
    [181]F. Raposo, C.J. Banks, I.S. I, et al. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochemistry,2006,41(6):1444-1450.
    [182]J. Fernandez, M. Perez, and L. Romero. Kinetics of mesophilic anaerobic digestion of the organic fraction of municipal solid waste:Influence of initial total solid concentration. Bioresource Technology, 2010,101(16):6922-6328.
    [183]刘德江,张富年,邱桃玉等,牛粪不同发酵浓度对沼气中甲烷及硫化氢含量的影响,中国沼气,2008,26(5):18-20.
    [184]於林中,何晶晶,张冬青等,产物接种对生活垃圾水解/好氧复合生物预处理的影响——微生物及水解酶活性变化,环境科学学报,2008,28(12):2534-2539.
    [185]张无敌,刘志华,宋洪川,沼气发酵过程中几种水解酶活性的变化规律研究,新能源,1999,21(2):21-24.
    [186]张无敌,宋洪川,李建昌等,鸡粪厌氧消化过程中水解酶与沼气产量的关系研究,能源工程,2001,(4):16-18.
    [187]张无敌,宋洪川,李建昌等,水解酶提高猪粪沼气发酵产气率,太阳能学报,2002,23(5):674-677.
    [188]W. Parawira, M. Murto, J.S. Read, et al. Profile of hydrolases and biogas production during two-stage mesophilic anaerobic digestion of solid potato waste. Process Biochemistry,2005,40(9):2945-2952.
    [189]张记市,孙可伟,徐静,城市有机生活垃圾溶胞处理对其厌氧消化的影响机理,生态环境,2006,15(4):862-865.
    [190]R.T. Romano, R. Zhang, S. Teter, et al. The effect of enzyme addition on anaerobic digestion of Jose Tall Wheat Grass. Bioresource Technology,2009,100(20):4564-4571.
    [191]王玉高,赵炜,贡士瑞等,纤维素水解的研究进展,化工时刊,2009,23(5):70-73.
    [192]鲁杰,石淑兰,杨汝男等,纤维素酶水解纤维素类废弃物的研究,纤维素科学与技术,2004,12(4):7-12.
    [193]V. Sonakya, N. Raizada, and V. Kalia. Microbial and enzymatic improvement of anaerobic digestion of waste biomass. Biotechnology Letters,2001,23:1463-1466.
    [194]G. Higgins and J. Swartzbaugh. Enzyme addition to the anaerobic digestion of municipal wastewater primary sludge.1986, USEPA Water Engineering Research Laboratory, Office of Research and Development, EPA/600/2-86/084, Cincinnati, OH.
    [195]M.C. Cammarota and D.M.G. Freire. A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. Bioresource Technology,2006,97(17):2195-2210.
    [196]伍世文,天然纤维素类物质的糖化及转化为酒精的研究,西部粮油科技,2000,25(3):46-49.
    [197]朱静,严自正,微生物产生的木聚糖酶的功能和应用,生物工程学报,1996,12(4):375-378.
    [198]邵佩兰,徐明,李海峰等,碱法提取玉米芯木聚糖的研究,宁夏农学院学报,2000,21(4):4749.
    [199]范鹏程,田静,黄静美等,花生壳中纤维素和木质素的测定方法,重庆科技学院学报(自然科学版),2008,10(5):64-65.
    [200]L. Masse, K.J. Kennedy, and S. Chou. Testing of alkaline and enzymatic pretreatment for fat particles in slaughterhouses wastewater. Bioresource Technology,2001,77:145-155.
    [201]A.H. Mouneimne, H. Carrere, N. Bernet, et al. Effect of saponification on the anaerobic digestion of solid fatty residues. Bioresource Technology,2003,90:89-94.
    [202]A.A. Mendes, H.F. Castro, E.B. Pereira, et al. Application of lipases for wastewater treatment containing high levels of lipids. Quim 2005, Nova 28:296-305.
    [203]A.A. Mendes, E.B. Pereira, and H.F. de-Castro. Effect of the enzymatic hydrolysis pretreatment of lipids-rich wastewater on the anaerobic biodigestion. Biochemical Engineering Journal,2006,32: 185-190.
    [204]M.C. Cammarota and D.M.G. Freire. A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. Bioresource Technology,2006,97:2195-2210.
    [205]M.C.M.R. Leal, D.M.G. Freire, M.C. Cammarota, et al. Effect of enzymatic hydrolysis on anaerobic treatment of dairy wastewater. Process Biochemistry,2006,41:1173-1178.
    [206]肖安风,倪辉,杨远帆等,中性蛋白酶水解蓝圆鲹条件的优化,中国酿造,2009,210(9):114-117.
    [207]陈申如,倪辉,杨远帆等,碱性蛋白酶水解罗非鱼工艺条件的优化,食品科学,2009,30(15):152-155.
    [208]张谦益,Protamex复合蛋白酶水解牛肉的研究,肉类工业,2006,(6):18-22.
    [209]钟倩霞,段杉,李远志,复合酶法水解蟹肉的研究,食品科技,2007,(11):119-123.
    [210]H.-y. Pei, W.-r. Hu, and Q.-h. Liu. Effect of protease and cellulase on the characteristic of activated sludge. Journal of Hazardous Materials,2010,178(1-3):397-403.
    [211]C. Park, J.T. Novak, R.F. Helm, et al. Evaluation of the extracellular proteins in full-scale activated sludges. Water Research,2008,42(14):3879-3889.
    [212]P. Mallick, J.C. Akunna, and G.M. Walker. Anaerobic digestion of distillery spent wash:Influence of enzymatic pre-treatment of intact yeast cells. Bioresource Technology,2009,101(6):1681-1685.
    [213]金杰,刘斌,俞志敏,乳品废水中蛋白质降解的最佳工艺条件研究,生物学杂志,2005,22(1):24-26.
    [214]程时军,付大波,张伟,纤维素酶协同作用研究,饲料博览,2010,(8):10-11.
    [215]吕巧玲,张兴,谢逸萍等,不同酶对淀粉的协同作用动力学研究,生物工程,2009,30(6):156-158,163.
    [216]余兴莲,王丽,徐伟民,纤维素酶降解纤维素机理的研究进展,宁波大学学(理工版),2007,20(1):78-82.
    [217]X. Meng, B.A.Slominski, C.M. Nyachotic, et al. Degradation of cell wall polysaccharides by combinations of carbohydrase enzymes and their effect on nutrient utilization and broiler chicken performance. Poultry Science,2005,84(1):37-47.
    [218]M. Tahir, F. Saleh, A. Ohtsuka, et al. An effective combination of carbohydrase that enables reduction of dietary protein in broilers:importance of hemiceluase. Poultry Science,2008,87:713-718.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700