污泥重金属生物沥滤和电动去除的技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着当今世界人口快速增长和经济的迅速发展,环境污染问题日益严重。各城市污水处理厂的大量兴建,缓解了城市生活污水和工业废水对环境的污染。但是污水处理过程中产生的大量污泥很容易对环境造成二次污染,由于污泥中含有丰富的氮、磷、钾等营养元素,其资源化土地利用已经成为当今研究的热点,但城市污泥中重金属元素却成为制约污泥资源化农业利用的关键因素。同时电镀工业由于使用了大量强酸、强碱、重金属溶液,甚至包括镉、氰化物、铬酐等有毒有害化学品,产生大量有害环境和人类健康的电镀废水,电镀废水处理基本上采用过量碱中和、絮凝沉淀法等工艺,由此产生的电镀污泥含有大量Cu、Pb、Zn、Cr、Ni等有毒重金属,如处理不当在雨水淋溶作用下,可能引起地表水、土壤、地下水的次生污染,甚至危及生物链,造成严重的重金属危害。近年来许多学者针对如何减少和去除污泥中重金属毒害作用开展了广泛的研究。目前去除污泥中重金属常用的有化学方法和生物沥滤处理。电动技术处理污泥能够同时去除不同的重金属,去除率高,反应周期较短;且到达电极室的重金属能集中去除或通过吸附、泵出、沉淀、离子交换膜等回收利用。本文以杭州污水处理厂污泥和杭州临平某电镀厂电镀污泥为研究对象,分别采用生物沥滤和电动修复法进行处理,通过不同的重金属活化措施来提高重金属的去除率,以期寻求经济高效去除或降低污泥中有毒有害重金属元素的途径。
     1.采用氧化亚铁硫细菌进行污泥生物沥滤,综合考虑同时减少污泥的实际处理量以及实现污泥重金属的高效去除等因素,选用10%接种量和10g.L-1底物FeSO4.7H2O为最佳反应参数。
     2.初始pH对污泥重金属生物沥滤效果有较大影响,其中Zn所受的影响程度大于Cu;污泥固体浓度越高,重金属去除率就越低且其溶解启动时间就越长,其中Zn快于Cu,但随着沥滤时间的延长,污泥浓度对沥滤效果的影响不大,在实际运行中可以提高处理污泥的固体浓度以降低处理成本;添加不同的有机物对重金属的沥出有较大的差异,其影响程度Cu大于Zn,醇类化合物和二羧基酸影响不大,而对于结构相似的单羧基有机酸来说,碳链越长,影响越小,分子量较高的芳香族有机酸对于重金属的去除也有明显抑制作用,其影响程度随着羧基数目的增加而加剧,但不及小分子有机酸显著;厌氧水解预酸化处理由于抑制了pH的降低和Eh的升高,降低了Cu的沥出,而对Zn几乎影响不大。
     3.生物沥滤后,污泥中重金属含量大大减少,且残留在污泥中的重金属大多以稳定形态存在,生物有效性低;污泥经生物沥滤后,流失的氮、磷和钾分别为27.3%、70%、5.4%,损失的有机质为41.3%,虽然有一定的流失,但仍能满足土地利用的需要;生物沥滤后污泥中高含量的Fe3+是植物生长的必需元素,很少造成毒性,且淋滤后的脱水污泥能制成生物有机铁肥等;因此生物沥滤后的污泥土地利用是非常安全的。
     4.生物沥滤-电动修复技术可以很好去除污泥中的铜和锌含量,反应结束后,在先生物沥滤后电动修复后,污泥泥相中的Cu、Zn的浓度为63.4mg.kg-1、33.3mg.kg-1,而同时生物沥滤和电动修复后,污泥泥相中的Cu、Zn的浓度为135.21mg.kg-1、82.34mg.kg-1,均达到我国污泥土地利用的重金属控制标准;且污泥泥相中的铜由以有机硫化物结合态为主转化为残渣态和碳酸盐结合态为主,而锌则由以碳酸盐结合态和有机硫化物结合态为主转化为以残渣态为主;同步生物沥滤和电动修复反应过程中,前期加入的FeSO4.7H2O中的Fe2+离子也随之电迁移至电极室,导致后期能源不足而影响有机硫化物结合态的转化,本研究认为先生物沥滤后电动修复较为经济。
     5.污泥硝酸酸化同时加阴极pH值控制处理能使电镀污泥中Zn、Ni、Cu和Pb交换态、碳酸盐结合态和有机硫化物态转化为可溶离子态,从而提高了去除率;而其虽能使污泥中的Cr有机硫化物态和碳酸盐结合态转化为可溶离子态,却不利于Cr的迁移,降低了Cr的去除率;反应后污泥中Zn、Ni、Cu、Pb和Cr的去除率分别为:74.02%、68.38%、39.22%、21.37%和12.80%。
     6.阴阳室采用TW(自来水),SDS和CA(柠檬酸)处理液处理后,三处理重金属去除率分别为20%-51%,26%-65%,34%-69%,其中EK-CA处理的污泥重金属去除率最高;电动修复后污泥重金属去除率为Cr>Zn>Ni>Cu>Pb;连续提取方法表明电动修复后重金属的结合形态与电极处理液密切相关,由最难提取的形态残渣态向易于提取形态可溶态,交换态,吸附态,有机结合态和碳酸盐结合态转化;且三个处理的总成本估算分别为0.14,0.19,0.57元每mol重金属,EK-TW处理成本最低,但其最低重金属去除率限制了其应用,综合考虑,EK-SDS处理最合算。
     7.不同pH的阴极缓冲液控制处理,电镀污泥重金属初始形态不同,重金属电动修复的效果也不同;阴极缓冲液pH控制为3时,Ni、Cu、Zn和Cr的去除效果较好,去除率分别达到70%、59%、30%和29%,而Pb的去除率以pH控制5的条件下最好,达46%;另外,各处理截面重金属浓度较实验前都有不同程度的降低,其中Cu、Pb和Ni在不同污泥截面分布较均匀,而Cr和Zn在各截面分布波动较大;重金属形态中可交换态和铁锰氧化物态的去除效果较差,而碳酸盐结合态和残渣态有显著去除,有机硫化物态去除效果一般。
As the world population increasing quickly and economy growing fast, the problem of environmental pollution has become increasingly worse. In recent years, many municipal sewage treatment plants have been built, which effectively alleviate the pollution of water environment caused by the discharge of municipal sewage and industrial wastewater. At the same time, a large amount of sewage sludge produced during the process of sewage treatment may result in second pollution to the environment. Since there are high quality of nutrition elements such as nitrogen, phosphorus and kalium, the agricultural utilization of sewage sludge is become an important topics in nowadays research. However, the heavy metals in sewage sludge are the key factor which will restrict the utilization of sewage sludge in agriculture. At the same time, in the last decades, large amounts of polluted wastes associated with industrial, mining, agricultural, and chemical activities have been produced. Electroplating sludge is a heavy metals-bearing byproduct that comes from the electroplating industry's activities. Some of it consists of multiple metals such as Cu, Ni, Zn, Cr, and Pb, etc. It is a discharged residue after chemical precipitation of heavy metals from acidic or alkaline solutions as well as rinse waters generated by the electroplating processes. The sludge is categorized as hazardous waste. If disposed improperly, these metals may:1) cause serious environmental damages polluting surface and ground water, and soil; 2) be transferred into human body via the food chain. In China alone, every year more than 100,000 tons of valuable heavy metals in the form of electroplating sludge is wasted. In order to have both sound environment protection and sustainable development that highly emphasizes resources reuse, it is of great importance to maximize the recovery and recycling of heavy metals economically from electroplating sludge. Many studies have been made to decrease and reduce the poisonous effect of the heavy metals in sewage sludge. At the present time, to remove heavy metals from sewage sludge, chemical extraction and bioleaching treatment were proposed. Electrokinetic (EK) technology is considered as one of the most promising methods to remove heavy metals from the matter with low hydraulic permeability including contaminated soils and sludges. The advantages of electrokinetic technology used for treatment of sewage sludge are the simultaneous removal of different heavy metals, high efficiency of removal and short time of the process. Heavy metals approaching electrodes could be removed or reclaimed by different methods, e.g., by adsorption, pumping out, precipitation or ion-selective membrane. In this research, the sewage sludge from the sewage treatment plant, Hangzhou and the electroplating sludge from an electroplate factory in Hangzhou city were taken and studied. The research's aim is to find an economical and effective method to reduce or remove the poisonous heavy metals from sewage sludge and electroplating sludge by bioleaching and electrokinetic removal technology respectively, adding several activated reagents as processing fluids in the electrode chambers.
     1. In view of reducing the total treatment volume of sludge and achieving high removal efficency of heavy metals, when we bioleaching heavy metals from sludge by thiobacillus ferrooxidans,10% inoculums and 10g.L-1(w/v) ferrous sulfate as energy substrate is tested as the best reaction parameter.
     2. The initial sludge pH affected bioleaching efficency largely, and the effects on removal of heavy metals followed as Zn>Cu; The bioleaching efficency showed decreasing trend with the increase of sludge solid concentration, and the startup time of heavy metals dissolved from sludge increased with the solid concentration of sludge, and the startup time followed as Cu>Zn, However, the effects of solid concentration on removal of heavy metals is very small when the bioleaching time was prolonged, so in the practical run, we can enhance the solid concentration of sludge to reduce the cost; There was much discrepancy in effect of different organic compound addition on bioleaching, where the effect extent followed as Cu>Zn. The effect of the alcohol compound and the two carboxyl acid on bioleaching was low. The negative influence on bioleaching was decreased with the increase of carbon chain length of single carboxyl organic acid. The negative influence on bioleaching was increased with the increase of carboxyl number of aroma organic acid, and the negative effect was lower than that of organic acid with low molecular weight; The sludge treated with anaerobic hydrolyzed acidification declined the removal efficency of Cu, but the effect was small to that of Zn, due to neutralize the decrease of pH and the increase of Eh.
     3. After bioleaching, the content of heavy metals in sludge decrease sharply, the fractions of the residue metals in sludge mostly exist as stable fractions, so the bioavailability of heavy metals is very low; The losses of nitrogen,phosphorus, kalium and organic matter are 27.3%、70%、5.4% and 41.3% respectively,despite there have some losses, it can also meet the requirement of land utilization; The high content o ferric ions in the sludge after bioleaching is the essential element of plant growing, so it does not lead to the toxicity of land, and the dehydration sludge after bioleaching can produce organic ferric fertilizer; Consequently, the land utilization of this treated sludge is very secure.
     4. The combination of bioleaching and electrokinetic remediation has been proved to be an effective method to remove heavy metals from municipal sewage sludge. The results showed that using electrokinetic remediation for six days after bioleaching for four days, the contents of Cu and Zn in sewage sludge were 63.4 mg.kg-1 and 33.3 mg.kg-1, respectively, while using electrokinetic remediation and bioleaching simultaneity, the contents were 135.21mg.kg-1 and 82.34mg.kg-1 respectively, which both could meet the Chinese standard for land application of the heavy metals in sewage sludge. During the reaction process, both the organic sulfide fraction of Cu and the carbonate-bound and organic sulfide fractions of Zn in sludge mainly transformed to dissociative metals which could easily migrated to the cathode zone with the process of electrokinetic remediation. During the reaction process by using electrokinetic remediation and bioleaching simultaneity, ferrous ions of the FeSO4.7H2O migrated to the electrode chamber which would lead to the shortage of energy sources at the back stage and then influence the transform of organic sulfide fractions. Therefore, this study proved that using electrokinetic remediation for six days after bioleaching for four days is the better economical and feasible treatment.
     5. After the experiment with acidified electroplating sludge and pH adjustment at cathode chamber, the exchangeable, carbonate and organic sulfate fractions of heavy metals in initial electroplating sludge were converted to soluble fraction which improved the efficiency of heavy metals, the removal efficiencies of heavy metals were attained:74.02% for Zn,68.38% for Ni,39.22% for Cu,21.37% for Pb. However, even the carbonate and sulfate fractions of Cr in initial electroplating sludge were converted to soluble fractionation, this treatment is not beneficial to improve the removal efficiency of Cr. The removal efficiency of Cr decreased from 77.83% of control treatment to 40.65% of electroplating sludge acidified treatment, and furthermore, decreased to 12.80% of pH adjusted in cathode chamber of acidified electroplating sludge treatment.
     6. The removal efficiency of metals were in the range of 20-51%,26-65%,34-69% for EK experiments with tap water, SDS,and citric acid as electrode processing fluid respectively. It was shown that a best performance was found in EK-CA experiment; Results were also showed that the metal removal efficiency by EK process was:Cr>Zn>Ni>Cu>Pb; The results of sequential extraction analysis revealed that the binding form of metals with sludge after EK experiment was changed from the residual form, the most difficult extraction type, to the soluble, exchangeable, sorbed and sulfate forms, the easier extraction types; The overall cost of these treatments can be estimated to 0.14,0.19 and 0.57 Yuan per mol of metals removed for EK experiments with tap water, SDS, and citric acid as processing fluid respectively; Although the lowest cost was found in EK-TW experiment, but the lowest removal efficiency was a limit for this experiment, it was found that the EK-SDS experiment was the most cost-effective.
     7. We investigated the effect of pH value of cathode buffer solution on electrokinetic remediation efficiency of heavy metals in the electroplating sludge. After EK remediation, all experiment systems had different remediation efficiency, and the best remediation effect of Ni、Cu、Zn and Cr was observed at pH 3.0 of cathode buffer solution, and the removal rates of Ni、Cu、Zn and Cr was 70%、59%、30% and 29% respectively, but the best remediation effect of Pb was observed at pH 5.0, and the removal rates of it was 46%. In addition, the concentrations of Zn, Cu, Cr, Pb and Ni in the five sections decreased in different degree, and the distribution of Cu、Pb and Ni was homogeneous in sections, but the distribution of Cr and Zn was fluctuated severely. We also found that all forms of heavy metals were removed partly, and among which the decrease of carbonate bound fraction and residual fraction heavy metal was most significant, but the decrease of exchangeable fraction and Fe-Mn oxide fraction heavy metal was not distinct, and the decrease of organic sulfate fraction was moderate.
引文
1. Abrego J. Removal of heavy metals from sample of residue sludge. Intern J Environ & Pollut,1996,6 (223):295-299.
    2. Acar Y B, Alshawabkeh A N. Principles of electrokinetic remediation. Environ Sci Technol,1993,27 (13):2638-2647.
    3. Acar Y. B., Hamed J., Alshawabkeh A. N. Removal of Cd (Ⅱ) from saturated kaolinite by application of an electrical current. Geotechnique,1994,44(2): 239-254.
    4. Alshawabkeh A. N., Yeung A. T., Bricka M. R. Pracitical aspects of in-situ electrokinetic extration. Environ. Eng,1999,125(1):27-35.
    5. Alshawabkeh A.N., Acar Y. B. Electrokinetic remediation Ⅱ:Theoretical model. Geotech. Energ,1996,122(3):186-196.
    6. Apostolos G, Evangelos G., Antigoni S., Application of sodium dodecyl sulfate and humic acid as surfactants on electrokinetic remediation of cadmium contaminated soil, Desalination,2007,211:249-260.
    7. Apostolos G., Aris N., Despina P.,Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils, Environ. Pollut.,2009,157:3379-3386.
    8. Apostolos G., Evangelos G, Washing enhanced electrokinetic remediation for removal cadmium from real contaminated soil, J. Hazard. Mater.,2005, B123: 165-175.
    9. Baraud F., Tellier S., Astuc M.Temperature effect of ionic transport during electrokinetic treatment at constant pH. J Hazardous Mater,1999,64:263-281.
    10. Bassi R., Prasher S.O., Simpson B.K., Extraction of metals from a contaminated sandy soil using citric acid, Environ. Prog.,2000,19:275-282.
    11. Benmoussa H, Tyagi R D. Simultaneous sewage sludge digestion and metal leaching using an internal loop reactor:Effect of suspended solids concentration. Water Research,1998,32 (8):2373-2390.
    12. Benmoussa H,Tragi R D,Campbell G C.Simultaneous sewage sludge digestion and metal leaching using an internal loop reactor.Water Res,1997,31(10): 2638-2654.
    13. Bewtra J. K. et al. Recent advances in treatment of selected hazardous wastes. Water Pollution Research J.of Canada,1995,30(1):115-125.
    14. Black H. Absorbing possibilities:phytoremedition. Environmental Health Perspectives,1995,103 (12):1106-1108.
    15. Blais J F, Tyagi R D, Auclair J C. Bioleaching of metals from sewage sludge: microorganism and growth kinetics. Water Research,1993,27(1):101-110.
    16. Blais J F, Tyagi R D, Auclair J C. Bioleaching of metals from sewage sludge: effect of temperature. Water Research,1993,27(1):111-120.
    17. Blais J. F., et al. Cooperation between two thiobacillus strains for heavy metals removal from municipal sludge. Can J Microbiol,1992,38:181-187.
    18. Chaney R L, Malik M, Li Y M, et al, Phytoremediation of soil metal, Curr, Opin, Biotechnol.,1997,8(3):279-284.
    19. Chaudry M.A., Ahmad S., Malik M.T., Supported liquid membrane technique applicability for removal of chromium from tannery wastes. Waste Manag., 1997,17:211-218.
    20. Chu W., Kwan C.Y., Remediation of contaminated soil by solvent/surfactant system. Chemosphere,2003,53:9-15.
    21. Couillard D, Zhu S. Bacterial leaching of heavy metals from sewage sludge for application agricultural application.Wat Air and Soil Pollut,1992,63(1-2): 67-80.
    22. Couillard, D., Chartier, M., Mercier, G. Major factors influencing bacterial leaching of heavy metals (Cu and Zn) from anaerobic sludge. Environ. Pollut., 1994,85:175-184.
    23. Deng J. C., Feng X., Qiu X.H. Extraction of heavy metal from sewage sludge using ultrasound-assisted nitric acid. Chemical Engineering Journal,2009,152: 177-182.
    24. Dominica Del, Mundo Dacera, Sandhya Babel. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes. Bioresource Technology,2008,99:1682-1689.
    25. Eykholt G R. Development of pore pressure by nonuniform electroosmosis in clays. J Hazardous.Mater,1997,55:171-186.
    26. Filaili Meknassi Y, Tyagi R D, Narasiah K S. Simultaneous sewage sludge digestion and metal leaching effect of aeration.Process Biochem,2000,36(3): 263-273.
    27. Fournier D, Lemieux R, Couilard D.Essential interactions between Thiobacillus ferrooxidans and heterotropic microorganisms during a wasterwater sludge bioleaching process.Environ Pollut,1998,101 (2):303-309.
    28. Garcia Nogueira M., Pazos M., Sanroman M.A. Improving on electrokinetic remediation in spiked Mn kaolinite by addition of complexing agents. Electrochim. Acta,2007,52:3349-3354.
    29. Gehrke T,Telegdi J,Thieery D, et al. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl. Environ Microbiol.,1998,64:2743-2747.
    30. Goi D, Tubaro F, Dolcetti G.Analysis of metals and EOX in sludge from municipal wastewater treatment plants:A case study.Waste Management,2006, 26(2):167-175.
    31. Grundl T, Reese C. Laboratory study of electrokinetic effects in complex natural sediments. J Hazardous Mater,1997,55:187-201.
    32. Hamed J, Acar, Y B, Gale R J. Pb(Ⅱ) removal from kaolinite by electrokinetics. Geotech. Eng,1991,117(2):241-271.
    33. Hansen H K, Ottosen L M, Kliem B K et al. Electrodialytic remediation of soils polluted with Cu, Cr, Hg, Pb and Zn. Chem Technol Biotechnol,1996, 70:67-73
    34. Haran B S, Popov B N, White R E. Development of a new electrochemical technique for decontamination of hexavalent chromium from low surface charged soils. Environ. Prog,1996,15(3):166-172.
    35. Harrison E.Z., Oakes S.R., Hysell M. Organic chemicals in sewage sludges. Science of The Total Environment,2006,367:481-497
    36. Hicks R E, Tondorf S. Electroremediation of metal contaminated soils. Environ. Sci.Technol,1994,28(12):2203-2210.
    37. Hills C.D. Early heat of hydration during the solidification of a metal plating sludge. Cement and Concrete Research,1992,22(5):822-832.
    38. Ho S V, Athmer C J, Sheridan P W. Scale-up aspects of the LasagnaTM process for in situ soil decontamination. J Hazardous Mater,1997,55:39-60
    39. Ho S V, Athmer C J, Sheridan P W. The Lasagna technology for in situ soil remediation.1. small field test. Environ Sci. Technol,1999,33(7):1086-1091
    40. Holuigue L, Herrera L, Phillips O M.CO2 fixation by mineral leaching bacteria.Biotechnology and Applied Biochemistry,1987,(9):497-505.
    41. Jensen A B, Webb C.Ferrous sulfate oxidation using Thiobacillus ferrooxidans: a review. Process Biochem,1995,30:225-236.
    42. Jing Yuan Wang, Di Song Zhang, Olena Stabnikova, Joo Hwa Tay. Evaluation of electrokinetic removal of heavy metals from sewage sludge. Journal of Hazardous Materials,2005,124:139-146
    43. Kim D.H., Ryu B.G., Park S. W. Baek, Electrokinetic remediation of Zn and Ni-contaminated soil. J. Hazard. Mater.,2009,165:501-505.
    44. Kim S O, Moon S H, Kim K W. Pilot scale study on the ex situ electrokinetic removal of heavy metals from municipal wastewater sludges. Water Research, 2002,36:4765-4774.
    45. Kim S.O, Kim K.W. and Stuben D., Evaluation of electrokinetic removal of heavy metals from tailing soils. J. Environ. Eng.,2002,128:705-715.
    46. Kim S.O., Kim K.W., Monitoring of electrokinetic removal of heavy metals in tailing soils using sequential extraction analysis. J. Hazard. Mater.,2001,85(3): 195-211.
    47. Kim S.O., Kim W.S., Kim K.W., Evaluation of electrokinetic remediation of arsenic contaminated soils. Environ. Geochem. Heal.,2005,27:443-453.
    48. Kim S.O., Moon S.H.,Kim K.W.,Yun S.T., Pilot scale study on the ex situ electrokinetic removal of heavy metals from municipal wastewater sludges. Water Res.,2002,36:4765-4774.
    49. Kim W S, Kim S O, Kim K W. Enhanced electrokinetic extraction of heavy metals from soils associated by ion exchange membranes. J. Hazard. Mater., 2005,118:93-102.
    50. Laursen S. Laboratory investigation of electroosmosis in bentonites and natural clays. Can. Geotech,1997,34:664-671.
    51. Lee H H, Yang J W. A new method to control electrolytes pH by circulation system in electrokinetic soil remediation. J. Hazard. Mater.,2000,77:227-240.
    52. Li C.C., Xie F.C., Ma Y., Cai T.T., Li H.Y., Huang Z.Y.,Yuan G.Q., Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching.J. Hazard. Mater., 2010,178:823-833.
    53. Li Z M,Yu J W,Nertnieks I. Removal of Pb(Ⅱ), Cd(Ⅱ)and Cr(Ⅲ)from sand by electromigration.J Hazardous Mater,1997,55:295-304
    54. Li Z.M., Yu J.W., Neretnieks I., Electroremediation:removal of heavy metals from soils by using cation selective membranes. Environ. Sci. Technol.,1998, 32:394-397.
    55. Liao Y H, Zhou L X, Bai S Y. Occurrence of biogenic schwertmannite in sludge bioleaching environments and its adverse effect on solubilization of sludge borne metals. Applied Geochemistry,2009,24:1739-1746.
    56. Lombardi A T, Oswaldo Garcia Jr. Biological leaching of Mn, Al, Zn, Cu and Ti in anaerobic sewage sludge effectuated by Thiobacillus ferrooxidans and its effect on metal partitioning. Wat. Res.,2002,36(12):3193-3202.
    57. Magalhaes J M, Silva J E, Castro F P. Role of the mixing conditions and composition of galvanic sludges on the inertization process in clay-based ceramics. J. Hazard.Mater,2004,106 (2-3):169-176.
    58. Maini G, Sharman A K, Sunderland G. An Integrated method incorporating sulfur-oxidizing bacteria and electrokinetics to enhance removal of copper from contaminated soil. Environ Sci Technol,2000,34(6):1081-1087.
    59. Marchioretto M M, Bruning H, Loan N T P. Heavy metals extraction from anaerobic digested sludge. Water Sci Technol,2002,46(10):1-8.
    60. Marks R E, Acar Y B, Gale R J. In situ remediation of contaminated soils containing hazardous mixed wastes by bioelectrokinetic remediation and other competitive technologies In:remediation of hazardous waste contaminated soils. New York:Marcel Dekker,1994:405-427
    61. Matsumoto Norio, Uemoto Hiroaki, Saiki Hiroshi. Case study of electrochemical metal removal from actual sediment, sludge sewage and scallop organs and subsequent pH adjustment of sediment for agricultural use. Water Research,2007,41 (12):2541-2550.
    62. Mossop K.F., Davidson C. M.. Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments.Anal. Chim. Acta,2003,478:111-118.
    63. Mulligan C.N., Yong R.N., Gibbs B.F.. Heavy metal removal from sediments by biosurfactants. J. Hazard. Mater.,2001,85:111-125.
    64. Murillo-Rivera B., Gonzalez I..Oropeza-Guzman M.T.Evaluation of lead removal from sandy soils using different electrolytes in electrokinetic experiments:prospective for remediation of a real site contaminated with mining wastes.2010, J. Appl. Electrochem.40:1145-1152.
    65. Nagpa L S, Dahlsrom D. Effect of carbon dioxide concentration on the Bioleaching of pyrite ore concentrate.Biotechnol.Bioeng,1993, (41):459-464.
    66. Nystrom G.M..Investigations of soil solution during enhanced electrodialytic soil remediation, Report no. BYG-DTU R009, Denmark Technical University,2001, p.21.
    67. Oake R.J., Booker C.S., Davis R.D..Fractionation of heavy metals in sewage sludges. Water Sci. Technol.1984,17:587-598.
    68. Ottosen L M, Pedersen A J, Ribeiro A B. Case study on the strategy and application of enhancement solutions to improve remediation of soils contaminated with Cu, Pb and Zn by means of electrodialysis. Engineering Geology,2005,77:317-329.
    69. Ozge H., Halil H., Nilufer N.K.. Effect of EDTA as washing solution on removing of heavy metals from sewage sludge by electrokinetic. J. Hazard. Mater.,2009,169:703-710.
    70. Paipa C, Mateo M, Godoy I. Comparative study of alternative methods for the simultaneous determination of Fe in leaching solutions and in acid mine drainages. Mineral Engineering,2005,18:1116-1119.
    71. Pazos M., Alcantara M.T.. Cameselle C. and Sanroman M. A., Evaluation of Electrokinetic Technique for Industrial Waste Decontamination, sep. sci. technol.,2009,44(10):2304-2321.
    72. PhilipLigy V. C., Iyengar L..Immobilized microbial reactor for the biotransformation of hexavalent chromium international. Journal of Environment and Pollution,1999,11(2):202-210.
    73. Probstein R E, Hicks R E. Removal of contaminants from soils by electric fields.Science,1993,260:503-506.
    74. Puranic P R, Pakinikar K M. Influence of co-cations on biosorption of lead and zin comparative evaluation in binary and multimetal systems. Bioresource Technol,1999,70:269-276.
    75. Ract P. G., Espinosa D.C.R, Tenorio J.A.S. Determination of Cu and Ni incorporation ratios in Portland cement clinker. Waste Manage,2003,23 (3): 281-285.
    76. Raskin I, Kumer N P, Dushenkov S. Bioconcentration of heavy metal by plants.Curr.Opin. in Biotechnol.,1994,5(3):285-290.
    77. Reddy K R, Chinthamreddy S. Effects of initial form of chromium on electrokinetic remediation in clays. Advances in Environmental Research,2003, 7:353-365.
    78. Reddy K R, Parupudi U S. Removal of chromium, nikel and cadmium from clays by in-situ electrokinetic remediation. Soil Contaminant,1997,6(4):391-407.
    79. Reddy K.R., Chintham reddy S. Effect of initial form of chromium on electrokinetic remediation in clays. Adv. Environ. Res.,2003,7:353-365.
    80. Renous A Y, Tyagi R D, Samson R. Assessment of toxicity reduction afer metal removal in bioleaching sewage sludge.Water Res,2001,35(16):1415-1424.
    81. Ribeiro Alexandra B, Mexia Joao T. A dynamic model for the electrokinetic removal of copper from a polluted soil. J. Hazard. Mater.,1997,56(3):257-271.
    82. Ross G, Bernardes A M. Galvanic sludge metals recovery by pyrometallurgical and hydrometallurgical treatment. J. Hazard. Mater.,2006,131(1-3):210-216.
    83. Roulier M, Kemper M. Feasibility of electrokinetic soil remediation inhorizontal LasagnaTM cells. J. Hazardous Mater,2000,77:161-176.
    84. Ryu H.W., Moon H.S., Lee E.Y., Cho K.S.,Choi H.. Leaching characteristics of heavy metals from sewage sludge by Acidithiobacillus thiooxidans MET. J. Environ. Qual.,2003,32:751-759.
    85. Sawada A., Tanaka S., Fukushima M., Tatsumi K. Electrokinetic remediation of clayed soils containing cooper (Ⅱ)-oxinate using humic acid as a surfactant. J. Hazard. Mater.2003,96:145-154.
    86. Schafer perry L.Biosolids management moves forward. Pollution Engineering, 1995,27, (13):28-30.
    87. Shanableh A, Ginige P. Acidic bioleaching of nitrogen and phosphorus from sewage sludge.Environ Technol,1999,20(5):459-468.
    88. Shen Z M, Chen X J, Jia J P. Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes. Environmental Pollution,2007,150:193-199.
    89. Silva P.T.S., Mello N.T., Duarte M.M.M., Montenegro M.B., Araujo A.N., Neto B.B., Silva V.L.. Extraction and recovery of chromium from electroplating sludge. J. Hazard. Mater.,2006,128:39-43.
    90. Sreekrishnan J N, Tyagi R D, Blais J F. Kinetics of heavy metal bioleaching from sewage sludge:Effect of process parameters. Wat Res,1993,(27):641-651.
    91. Tessler A, Campbell P G C. Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem.,1979,51(7):844-851.
    92. Torma A E. Thiobacillus ferrooxidans applied into biohydrometallurgy. Applied Microbiology (in Chinese),1977, (5):25-40.
    93. Tyagi R D, Blais J F, Auclair J C, Meunier N. Bacterial leaching of toxic metals from municipal sludge:Influence of sludge characteristics.Water Environment Research,1993,65(3):196-204.
    94. Tyagi R D, Blais J F, Deschenes L, Lafrance P, Villeneuve J P. Comparison of microbial sulfuric acid production in sewage sludge from added sulfur and thiosulfate. J Environ Qual,1994,23(5):1065-1069.
    95. Tyagi R D, Blais J F, Meunier N. Simultaneous Sewage Sludge Digestion and Metal Leaching:Effects of Sludge Solids Concentration. Water Research,1997, 31(1):105-118.
    96. Tyagi R D, Couillard D, Tran F. Heavy metals removal from anaerobically digested sludge by chemical and microbiological methods. Environ Pollut, 1988,50(4):295-316.
    97. Tyagi R D, Meunier N, Blais J F. Simultaneous sewage sludge digestion and metal leaching:effect of temperature. Appl Microbial Biotechnol,1996,46: 423-431.
    98. Tyagi R D, Sreekrishnan T R, Blais J F, Surampalli R Y, Campbell P G C. Effect of dissolved oxygen on sludge acidification during the SSDML-process. Wat. Air Pollut.,1998,102(1-2):139-155.
    99. Tyagi R D, Sreekrishnan T R, Blais J F. Kinetics of heavy metal bioleaching from sewage sludge:temperature effects. Wat. Res.,1994,28:2367-2375.
    100.Tyagi R D, Tran F T. Bacterial leaching of metal from digested sewage sludge by indigenous iron-oxidizing bacteria.Environ Pollut,1993, (82):9-12.
    101.Udom B E, Mbagwu J S C, Adesodun J K. Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge. Environment International,2004,30(4):467-470.
    102.US EPA Common Sense Initiative, Metal Finishing Sector, Workgroup Report: F006 Benchmarking Study, September,1998.
    103.Varela P, Levican G, Rivera F. An immunological strategy to monitor in situ the phosphate starvation state in Thiobacillus ferrooxidans. Applied and environmental microbiology,1998,64 (12):4990-4993.
    104.Veglio F., Quaresima R., Fornari P., Ubaldini S.. Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning. Waste Manag.,2003,23:245-252.
    105.Vereda A C, Heras L C, Gomez L C. Ammonia enhanced two-dimensional electrokinetic remediation of copper spiked kaolin. Electrochimica Acta,2007, 52:3366-3371.
    106.Villiers P.G.R. de, Van Deventer J.S.J., Lorenzen L.. The extraction of species from slurries of insoluble solids with ion-exchange resins.Miner. Eng.,1995,8: 1309-1316.
    107.Violetta F., Sergio F., Carlos A.M., Achille D.B.. Electrokinetic extraction of surfactants and heavy metals from sewage sludge. Electrochim. Acta,2009,54: 2108-2118.
    108.Virkutyte J., Sillanpaa M., Latostenmaa P. Electrokinetic soil remediation-critical overview. Sci. Total Environ.,2002,289:97-121.
    109.Wang J.Y., Zhang D.S., Stabnikova O., Tay J.H. Evaluation of electrokinetic removal of heavy metals from sewage sludge. J. Hazard. Mater.,2005,124: 139-146.
    110.Wang M J. Land application of sewage sludge in China. Sci Total Environ, 1997,197(1-3):149-160.
    111.Wang Q. Y., Zhou D. M., Cang L., Sun T. R.Application of bioassays to evaluate a copper contaminated soil before and after a pilot scale electrokinetic remediation. Environ. Pollut.,2009,157:410-416.
    112. Wang Q. Industrial Solid Waste Disposal and Recycling. China Environmental Science Press, Peking,2006.
    113. Wang Y S, Pan Z Y, Lang J M. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans. J. Hazard. Mater.,2007,147:319-324.
    114.Wei Lin. Electronics and metal finishing and processing.Water Environmental Rasearch,1997,69(4):626.
    115.Weng C H, Taiyama L R, Huang C P. Electroosmosis for the in-situ treatment of chromium-contaminated soil. Hazardous Industrial Wastes,1994,26:496-505
    116. Wong J W C, Xiang L, Chan L C. pH requirement for the bioleaching of heavy Metals from anaerobically digested sewage sludge.Water, Air, and Soil Pollution,2002,138:25-35.
    117. Wong J W C, Xiang L, Gu X Y, Zhou L X. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source. Chemosphere,2004,55:101-107.
    118.Wu Q.T., Nyirandege P. Removal of heavy metal from sewage sludge by low costing method and recycling in agriculture. J. of Environ Sci.1998,10(1): 122-128.
    119.Xiang Y G, Jonathan W.C. Wong. Degradation of inhibitory substances by heterotrophic microorganisms during bioleaching of heavy metals from anaerobically digested sewage sludge.Chemosphere,2007,69:311-318.
    120.Yang C., Weng C.H. Remediating ethylbenzene-contaminated clayey soil by a surfactant-aided electrokinetic (SAEK) process.Chemosphere,2004,57:225-232.
    121. Yang G.C.C., Lin S.L. Removal of lead from a silt loam soil by electrokinetic remediation. J. Hazard. Mater.1998,58:285-299.
    122.Yang Y, Ratte D., Smets B.F.,Pignatello J.J., Grasso D.Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption. Chemosphere,2001,43:10-13.
    123.Yeung A., Hsu C., Menon R. M. Physicochemical soil-contaminant interactions during electrokinetic extraction. J. Hazard. Mater.,1997,55:221-237.
    124.Yuan C., Chiang T.S. Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents. J. Hazard. Mater.,2008,152:309-315.
    125. Yuan C., Weng C.H. Electrokinetic enhancement removal of heavy metals from industrial wastewater sludge. Chemosphere,2006,65:88-96.
    126.Yuan S.H.,Xi Z.M.Jiang Y.,WanJ.Z. Desorption of copper and cadmium from soils enhanced by organic acids.Chemosphere,2007,68:1289-1297.
    127.Zagury G J, Dartiguenave Y, Setier J. Ex situ electro-reclamation of heavy metals contaminated sludge:pilot scale study. J. Environ. Eng.,1999.125 (10): 972-978.
    128.Zhang P Y, Zhu Y, Zhang G M. Sewage sludge bioleaching by indigenous sulfur-oxidizing bacteria:Effects of ratio of substrate dosage to solid content. Bioresource Technology,2009,100:1394-1398.
    129.Zhang Z.M., Shi X.S. Formation and treatment of electroplating sludge. Sci/Tech information development & economy,2003,13:91-92.
    130.Zhou D M, Deng C F, Cang L.Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. Chemosphere,2004,56:265-273.
    131.Zhou D M, Deng C F, Cang L. Electrokinetic remediation of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH. Chemosphere,2005,61:519-527.
    132.安成强.电镀三废治理技术.北京:国防工业出版社,2002.10-18.
    133.安淼,周琪,李永秋.重金属形态分布和处理方法的研究.农业环境科学学报,2003,22(2):199-202.
    134.蔡刚波,朱慈勉.污泥在绿化中的应用.苏州城建环保学院学报,2002,15(1):29-32.
    135.蔡全英,莫测辉,吴启堂等.化学方法降低城市污泥的重金属含量及其前景分析.土壤与环境,1999,8(4):309-313.
    136.陈坚,金桂英,唐龙飞.红萍在植物治污方面的应用研究进展.环境污染治理技术与设备,2002,3(4):51-74.
    137.陈剑峰.电镀企业水污染控制与环境管理浅析.引进与咨询,2003,(9):20-22
    138.陈素华,孙铁珩,周启星,吴国平.微生物与重金属间的相互作用及其应用研究.应用生态学报,2002,13(2):239-242.
    139.陈同斌,黄启飞,高定,郑玉琪,吴吉夫.中国城市污泥的重金属含量及其变化趋势.环境科学学报,2003,23(5):561-569.
    140.方迪,周顺桂.固体浓度对生物淋滤法去除制革污泥中铬的影响.中国环境科学,2004,24(2):163-165.
    141.冯绍彬.电镀清洁生产工艺.北京:化学工业出版社,2005.
    142.冯玉杰,李晓岩,尤宏等.电化学技术在环境工程中的应用.北京:化学工业出版社.2002.
    143.国家环境保护局.水和废水标准检验法.第四版北京:中国环境科学出版社,2004.
    144.国家科技标准司编.电镀污泥及铬渣资源化实用技术指南.北京:中国环境科学出版社,1997.
    145.何进锋,陆国安,陆欢.电镀污泥的资源化利用.环境,2006,(S2):69-70.
    146.贾金平,申哲民,周红.电化学方法治理废水的研究与进展.上海环境科学,1999,18(1):29-32.
    147.贾金平等.电镀废水处理技术及工程实例.北京:化学工业出版社,2003.
    148.贾金平等.电镀重金属污泥的固化/稳定化处理.上海环境科学,1999,18(5):229-232.
    149.贾金平等.富铁电镀污泥合成磁性探伤粉的研究.上海环境科学,1996,15(4):31-33.
    150.蒋成爱,黄国锋,吴启堂.城市污泥的重金属生物活性及其控制.环境污染治理技术与设备,2003,4(7):60-64.
    151.解清杰,何佳,黄卫红等.六氯苯污染底泥的电动力学修复.华中科技大学学报(自然科学版),2006,34(6):111-114.
    152.李贵宝,尹澄清,林永标等.城市污泥对退化森林生态系统土坡的人工熟化研究.应用生态学报,2002,13(2):159-162.
    153.李红艺,刘伟京,陈勇.电镀污泥中铜和镍的回收和资源化技术.中国资源综合利用,2005,23(12):7-10.
    154.李季,吴为中.国内外污水处理厂污泥产生、处理及处置分析/污泥处理处置技术与装备国际研讨会文集.深圳,2003:1-11.
    155.李健,张惠源,尔丽珠.电镀重金属废水治理技术的发展现状(Ⅲ).电镀与精饰,2003.25(5):31-34.
    156.李健,张惠源,尔丽珠.电镀重金属废水治理技术的发展现状(Ⅰ).电镀与精饰,2003,25(3):36-39.
    157.李健,张惠源,尔丽珠.电镀重金属废水治理技术的发展现状(Ⅱ).电镀与精饰,2003.25(4):30-32.
    158.李艳霞,陈同斌,罗维等.中国城市污泥有机质及养分含量与土地利用.生态学报,2003,23(11):2464-2474.
    159.梁俊兰译.从电镀污泥中回收镍.有色冶金,1999,28(6):46-48.
    160.廖畅华.焚烧温度对电镀污泥后续处理影响的研究.再生资源,2002,(5):34-36.
    161.刘善江,徐建铭,李国学.高碑店污泥农用肥效及重金属污染防治.华北农学报,1999,14(1):118-122.
    162.刘善江.污泥在番茄上的应用.北京农业科学,1996,12(1):43-44.
    163.龙军等.电镀污泥与粘土混合制砖重金属浸出毒性实验.石油化工环境保护,1995,(3):43-46.
    164.莫测辉,蔡全英,王江海.城市污泥在矿山废弃地复垦的应用探讨.生态学杂志,2001,20(2):44-47.
    165.莫测辉,蔡全英,吴启堂,李桂荣.微生物方法降低城市污泥的重金属研究进展.应用与环境生物学报,2001,7(5):511-515.
    166.莫测辉,蔡全英,吴启堂.城市污泥中有机污染物的研究进展.农业环境保护,2001,20(4):273-276
    167.莫测辉,吴启堂,李桂荣.广东省城市污泥农用资源化的思考.农业环境与发展,1998,56(2):8-12.
    168.莫争,王春霞,陈琴,王子健.重金属Cu、Pb、Zn、Cr、Cd在土壤中的形态分布和转化.农业环境保护,2002,21(1):9-12.
    169.乔显亮,骆永明.我国部分城市污泥化学组成及其农用标准初探.土壤,2001,(4):205-209.
    170.申荣艳.长三角地区污泥有机污染特征、毒性评价及复合污染土壤修复研究.博士学位论文,南京:中国科学院南京土壤研究所,2006.
    171.沈镭,张太平,贾晓珊.利用氧化亚铁硫杆菌和氧化硫硫杆菌去除污泥中重金属的研究.东华大学学报,2005,44(2):111-115.
    172.谭启玲,胡承孝,赵斌等.城市污泥的特性及其农业利用现状.华中农业大学学报,2002,21(6):587-592.
    173.唐建国,马远东,李波.污水处理厂污泥处理处置技术介绍:污泥处理处置技术与装备国际研讨会文集.深圳,2003.
    174.王世梅,周立祥,黄峰源,方迪.耐酸性异养菌的分离及其在制革污泥重金属生物沥滤中的作用.环境科学,2004,25(5):153-157
    175.王伟,林均民.应用细菌采矿的现状与前景.微生物学通报,1997,24(6):357-369.
    176.王伟等.我国的固体废物处理处置现状与发展.环境科学,1997,18(2):87-90.
    177.王新,周启星,陈涛等.污泥土地利用对草坪草及土壤的影响.环境科学,200324(2):50-53.
    178.王业耀,孟凡生.铬(Ⅵ)污染高岭土电动修复实验研究.生态环境,2005,14(6):855-859.
    179.王业耀,孟凡生,陈锋.阴极pH控制对污染土壤电动修复效率的影响.环境科学研究,2007,20(2):36-40.
    180.王志,杨艺渊.城市绿化用土的有效利用与管理.新疆林业,2002,4:27
    181.吴新民.生活污泥的性质和农业利用可行性研究.安徽师范大学学报(自然科学版),1999,22(4):359-360.
    182.吴忠艳,田宏君,王丽影等.生化剩余活性污泥中重金属脱除技术的研究.石油化工环境保护,2002,25(2):43-46.
    183.武冬梅,张建红,吕珊兰等.山西矿区矸石山复垦种植施肥策略.自然资源学报,1998,13(4):333-336
    184.夏立江,王宏康主编.土壤污染及其防治.上海:华东理工大学出版社,2001
    185.徐强,张春敏,赵丽君.污泥处理处置技术及装置.北京:化学工业出版社,2003.
    186.许世梁,陈季华,郑景文,赵利娜.剩余污泥减量化的初步研究.东华大学学报,2003,29(6):86-89.
    187.许晓路,申秀英.污泥中重金属的生物沥滤处理.中国给水排水,2000,16(3):54-56.
    188.薛澄泽,张增强,孟昭福等.复合污泥堆肥施用于高速公路绿化带效果的研究.农业环境保护,2000,19(5):263-266.
    189.严捍东.电镀污泥与海滩淤泥复合烧制陶粒重金属固化效果的试验分析.化工进展,2005,24(4):383-386.
    190.杨长明,李建华,仓龙.城市污泥重金属电动修复技术与应用研究进展,净水技术,2008,27(4):1-4.
    191.袁华山,刘云国,李欣.电动力修复技术去除城市污泥中的重金属研究.中国给水排水,2006,22(3):101-104.
    192.曾春,杜茂平.化学法处理含铬电镀废水的研究进展.涂料涂装与电镀,2005,3(4):42-45
    193.张冠东等.从氨浸电镀污泥产物中氢还原分离铜、镍、锌的研究.化工冶金,1996,17(3):214-219.
    194.张清敏,陈卫平,胡国臣,等.污泥有效利用研究进展.农业环境保护,2000,19(1):58-61.
    195.张文娟,刘玲,厉成梅.我国电镀工业污染及处置.工业安全与环保,2006,32(10):35-37.
    196.张学洪,解庆林.污泥农用的重金属安全性试验研究.中国给水排水,2000,16(12):18-21.
    197.张忠民,石雪松.电镀污泥的形成及处置.科技情报开发与经济,2003,13(5):91-92.
    198.赵晓红,张敏.SRV菌去除电镀废水中铜的研究.中国环境科学,1996,16(4):288-292.
    199.赵由才等.危险废物处理技术.北京:化学工业出版社,2003
    200.周东美,郝秀珍,薛艳等.污染土壤的修复技术研究进展.生态环境,2004,13(2):234-242.
    201.周立祥,方迪,周顺桂,王电站,王世梅.利用嗜酸性硫杆菌去除制革污泥中铬的研究.环境科学,2004,25(1):62-66.
    202.周立祥,胡霭堂,戈乃玢等.城市污泥土地利用研究.生态学报,1999,19(2):185-193.
    203.周立祥,胡霭堂,胡忠明.厌氧消化污泥化学组成及其环境化学性质.植物营养与肥料学报,1997,3(2):176-181.
    204.周立祥,胡霭堂.城市污泥土地利用研究.生态学报,1999,19(2):185-193.
    205.周立祥,胡霭堂.苏州市生活污泥成分性质及其对蔬菜和菜地土壤的影响.南京农业大学学报,1994,17(2):54-59.
    206.周立祥,沈其荣,陈同斌等.重金属及养分元素中城市污泥主要组分中的分配及其化学形态.环境科学学报,2000,20(3):269-274.
    207.周立祥,王艮梅.污泥重金属的生物沥滤.环境科学学报,2001,21(4):502-504.
    208.周立祥,王艮梅.污水污泥中重金属的细菌沥滤效果研究.环境科学学报,2001,21(4):504-506.
    209.周全法,尚通明.电镀废弃物与材料的回收利用.北京:化学工业出版社,2004:1-2.
    210.周顺桂,王世梅,余素萍,周立祥.污泥中氧化亚铁硫杆菌的分离及其应用效果.环境科学,2003,24(3):56-60.
    211.周顺桂,周立祥,黄焕忠.生物沥滤技术在去除污泥中重金属的应用.生态学报,2002,22(1):125-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700