用户名: 密码: 验证码:
剩余污泥为燃料的微生物燃料电池产电特性及污泥减量化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物燃料电池(MFC)是一种利用附着在阳极电极表面微生物的代谢过程,将蕴含在有机物中的化学能转化成电能的装置。由于其可在处理废水的同时产生电能,已成为环境科学与工程领域的一个重要研究方向。剩余活性污泥主要由悬浮的污泥絮体构成,而絮体是由大量的分散微生物细菌通过胞外聚合物(EPS)、阳离子和其他细颗粒架桥而组成,其中有机物占污泥总量的60%以上。这些均可作为MFC的潜在基质。采用剩余污泥为燃料,通过MFC技术实现在污泥厌氧消化处理的同时实现电能回收,将成为一种新颖的剩余污泥处理技术。剩余污泥中有机物大部分为细胞物质,产电微生物要利用这些物质,首先必须进行破胞,将胞内物质释放出来,使之转化为溶解性物质。而对于MFC体系内的污泥水解过程和产电规律的关系目前未有研究,同时污泥强化水解作用和产电特性的关系仍有待探讨。据此,本研究采用城市污水处理厂剩余污泥作为燃料,结合污泥水解方法(厌氧水解、微波强化水解和外加酶强化水解)和MFC技术进行产电特性和污泥减量化研究。
     剩余污泥为燃料MFC (SMFC)获得了成功的启动。SMFC最大功率输出为294.5mW/m2,内阻为247.85Ω,库仑效率(CE)为4.7%。经处理后,污泥中TCOD去除率为26.2%,TSS去除率为24.7%,VSS去除率为32.5%。随着氯化钠投加量的增加,SMFC内阻逐步降低,功率密度则逐步增加。当污泥稀释比增加时,SMFC内阻降低,但功率密度为先上升后下降,功率密度输出下降主要是由于稀释比例过大,导致基质浓度过低,影响了阳极微生物的生长。搅拌有利于改善SMFC内物质的传递,从而增加功率输出。温度对SMFC的产电特性影响较明显,但在一定区间内(如20℃和25℃;30℃和40℃;45℃和50℃)变化不明显,说明产电微生物有一定的温度适应范围,这也可能是在不同温度下产电微生物也不同导致。污泥中的微生物竞争作用是影响SMFC产电效率的主要因素。SMFC运行过程中阴极氧向溶液中的传递并没有对功率输出产生明显影响,主要是由于系统中非产电微生物的作用和阳极附着物的保护作用。研究表明,SMFC中污泥厌氧消化主要控制在水解阶段。SMFC内阻组成主要由阳极电阻、阴极电阻和电解液电阻组成。
     微波强化剩余污泥为燃料MFC (MSMFC)电压输出先上升后缓慢下降,产电周期为666h。MSMFC最大功率输出为343.41mW/m2,内阻为146.80Ω。微波时间和微波功率的延长均促进了污泥中SCOD增加,MSMFC功率密度随着微波时间的延长而增加,但随着微波功率的增加先增加后下降。CE随着微波时间或微波功率的增加而减小。在微波时间为300s,功率为720W,微波对污泥的破解能力最强(SCOD为1194mg/L),产生的功率密度最大(163.33mW/m2),且其CE居中(76.7%)。MSMFC系统内阳极表面微生物和电解液微生物均以球状细菌为主。MSMFC中阳极内阻占主要部分,其次为阴极内阻,电解液电阻最小。MSMFC内微量的溶解氧水平将有利于有机物的分解(发酵分解和好氧氧化),抑制产甲烷化过程,提高功率密度和CE。
     研究外加酶强化污水为燃料MFC (ESMFC)产电特性时,外加酶(蛋白酶、淀粉酶)的投加促进了污泥水解,提高了MFC产电特性,投加蛋白酶、淀粉酶时ESMFC能量密度增加分别在52%、8%以上。而在酶投加10mg/g的情况下,相对于参照组ESMFC最大功率密度输出增加最大,投加蛋白酶、淀粉酶时分别增加174%、36%。运行温度对ESMFC产电性能的提高也较明显,但相对于酶的促进作用来说,40℃时投加淀粉酶和蛋白酶对ESMFC功率密度输出的促进作用最为明显,投加蛋白酶、淀粉酶时分别增加174%、66%。在外加酶强化作用下,污泥水解效果明显,TCOD去除率均在60%以上,VSS去除率在70%以上,处理后的污泥中VSS/TSS值均明显降低。当蛋白酶:淀粉酶比例为2:3时,ESMFC最大功率密度输出最大,为775.21mW/m2,CE也最大,为10.58%。
     在研究三种不同处理方式污泥为燃料MFC产电特性对比分析时发现,ESMFC产电周期最长,为41d,功率密度最大,为775.21mW/m2。 MSMFC库仑效率最大,为84.6%。SMFC中TCOD去除率为26.2%,VSS去除率为32.5%,采用污泥预处理手段有利于促进污泥的减量化,MSMFC中TCOD去除率增加到58.5%,VSS去除率增加到73.9%;MSMFC中TCOD去除率增加到63.2%,VSS去除率增加到77.1%。ESMFC能源效率最高,MSMFC次之,SMFC最小。
Microbial fuel cell (MFC) can transform the chemical energy of the organic matter to electrical energy during microorganism in the anode electrode surface metabolic reaction. MFC has become one of the important research directions in environment science and engineering because it can treat wastewater and generate electricity synchronously. The surplus sludge is made of the suspended floc that includes the microbial cell, extracellular polymeric substances (EPS), cation and other fine particles. The content of organic mater in sludge is above60%and it can be used as potential fuel of MFC. MFC using surplus sludge, which achieves the sludge disposal of anaerobic digestion and the recycling of electrical power, would become a new technique of sludge disposal. Most of the organic matters in sludge are microbial cell, and the microbial cell walls must be hydrolyzed before those organics can be used by exoelectrogenic bacteria. However, so far there is no study reported in MFC on the relationship between sludge hydrolysis and produce electricity. Moreover, the relationship between sludge strengthening hydrolysis and electrical characteristics is not clear. Therefore, in this paper, the surplus sludge from the urban sewage treatment plants was selected as the studied material. The electrogenesis property and the decrement of sludge were investigated based on the MFC techniques and different sludge hydrolysis methods (Anaerobic hydrolysis, microwave strengthening hydrolysis and enzyme strengthening hydrolysis).
     MFC using surplus sludge (SMFC) was successfully started up. In SMFC, the maximum power density, internal resistance and coulombic efficiency (CE) were294.5mW/m2,247.85Ω,4.7%, respectively. The TCOD, TSS and VSS in the sludge were removed by26.2%,24.7%and32.5%, respectively.(Here should provide the full names for TCOD, TSS and VSS.) With the increasing NaCl addition, the internal resistance decreased and the maximum power density increased. When the sludge dilution ratio increased, the internal resistance decreased. But the maximum power density firstly arose and then dropped with the increasing sludge dilution ratio. The decrease of the power density may be attributed to the lack of nutrients in MFCs, which affected the anode microbial growth when the sludge dilution ratio is too high. The churning increased the power output because it improved the material transmission in SMFC. The influence of temperature on the produce electrical characteristics of SMFC was generally obvious. However, the power output did not change significantly in the certain temperature interval (such as20℃~25℃,30℃~40℃, and45℃~50℃). This indicates that exoelectrogenic bacteria have appropriate temperature range. It may be attributed to the production of different exoelectrogenic bacteria at different temperatures. The microbial competition in the sludge was the major factor in MFC electric efficiency. In SMFC, the transmission of cathodic oxgen had no obvious influences on the power output, which is due to the consumption of inelectrogenic bacteria and the protection of anode attachments. This study suggests that the hydrolyzing stage is dominating in sludge anaerobic digestion of SMFC. The internal resistance of SMFC consists of anode resistance, cathode resistance and electrolyte resistance.
     In MFC using surplus sludge with microwave treatment (MSMFC), the voltage output firstly arose, then dropped slowly. And the cycle was666h. The maximum power density and internal resistance of MSMFC were343.41mW/m2and146.80Ω, respectively. With the increasing microwave power and treatment time, SCOD (provide the full name) of sludge increased. The maximum power density of MSMFC increased with the microwave treatment time. But it firstly arose and then dropped with the microwave power. CE decreased with the increasing microwave treatment time or power. When the microwave time and power were300s and720W, respectively, the cracking capacity of sludge was strongest by microwave (SCOD was1194mg/L), the power density of MSMFC was biggest (163.33mW/m2), and CE was better (76.7%). The dominant microorganism of anode surface and electrolyte were the globular bacteria in MSMFC. The anode resistance in MSMFC was the main part, the cathode resistance was second, and the electrolyte resistance was lowest. This study suggests that the trace dissolved oxygen is conducive to decompose the organic matter (fermentation and aerobic oxidation), restrain methanogenesis process, and improve the power density and CE.
     Production of electricity in MFC using surplus sludge by enzymes (ESMFC) was investigated. With the addition of enzymes (protease and amylase), the sludge hydrolysis was promoted and MFC electrogenesis characteristics were improved. The energy density with addition of protease and amylase was increased by52%and8%, respectively. When the enzyme addition was10mg/g, the maximum power density increased maximally. The power density with addition of protease and amylase was increased by174%and36%, respectively. Temperature has significant effects on the electrogenesis characteristics. The effect of addition of protease and amylase at40℃ was the most significant to improve power density if only considering the enzyme action. The power density with addition of protease and amylase was increased by174%and66%, respectively. The hydrolyzing effect of sludge with addition of enzyme was obvious. TCOD and VSS removal efficiencies were above60%and70%, respectively. VSS/TSS in sludge was reduced significantly. When the mixture ratio of protease and amylase was2:3, the largest maximum power density and CE were obtained (775.21mW/m2and10.58%).
     Production of electricity in MFC using surplus sludge by three different treatments was investigated. The longest electricity cycle (41d) and the largest power density (775.21mW/m2) were achieved by ESMFC. The largest CE (84.6%) was obtained by MSMFC. TCOD and VSS removal efficiencies by SMFC were26.2%and32.5%, respectively. The sludge reduction can be promoted by using sludge pretreatment method. TCOD and VSS removal efficiencies by MSMFC were increased to58.5%and73.9%, respectively. TCOD and VSS removal efficiencies by ESMFC were increased to63.2%and77.1%, respectively. The energy efficiency of ESMFC was the biggest, MSMFC was the second, and SMFC was the lowest.
引文
[1]潘碌亭,王键,束玉宝,等.污泥减量化与资源化研究进展.环境污染与防治,2008,30(4):73-77
    [2]Lehne G, Muller J A, Schwedes J. Mechanical disintegration and aerobic digestion of excess sludge. Water Science and Technology,2001,43(1):19-26
    [3]张自杰.排水工程(下).第四版.北京:中国建筑工业出版社,2000,26-96
    [4]尹军,谭学军.污水污泥处理处置与资源化利用.北京:化学工业出版社,2005,34-39
    [5]何品晶,顾国维,李笃中,等.城市污泥处理与利用.北京:科学出版社,2003,78-89
    [6]贺延龄.废水的厌氧生物处理.北京:中国轻工出版社,1998,16-39
    [7]郭亮.污水厂剩余污泥水解及其厌氧发酵产氢技术研究:[湖南大学博士论文].湖南:湖南大学环境科学与工程学院,2009,15-20
    [8]Chulhwan P, Chunyeon L, Sangyong K, et al. Upgrading of anaerobic digestion by incorporating two different hydrolysis processes. Journal of Bioscience and Bioengineering,2005,100(2):164-167
    [9]Li Y Y, Noike T. Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment.Water Science and Technolgy,1992,26(11):857-866
    [10]Baier U, Schmidheiny P. Enhanced anaerobic degradation of mechanically disintegrated sludge. Water Science and Technolgy,1997,36(11):137-143
    [11]Cetin S, Erdineler A.The role of carbohydrate and protein parts of extracellular polymeric substances on the dewaterability of biological sludges. Water Science and Technolgy,2004,50(9):49-56
    [12]Muller J,Lehne G,Schwedes J. Disintegration of sewage sludges and influence on anaerobic digestion.Water Science and Technolgy,1998,38(8-9):425-433
    [13]Nah I W, Kang Y W, Hwang K Y,et al.Mechanical pretreatment of waste activated sludge for anaerobic digestion process.Water Research,2000,34(8):2362-2368
    [14]Lehne G, Muller J A, Schwedes J.Mechanical disintegration and anaerobic digestion of excess sludge. Water Science and Technolgy,2001,43(1):19-26
    [15]Choi H B, Hwang K Y, Shin E B. Effects on anaerobic digestion of sewage sludge pretreatment. Water Science and Technolgy,1997,35(3):200-207
    [16]Ray B T, Lin J G, Raj an R V. Low-level chemical pretreatment for enhanced anaeorbic digestion. Research Journal of the Water Pollution Control Federation,1990,62(1):81-87
    [17]Lin J G, Chang C N, Chang S C. Enhancement of anaerobic digestion of waste activated sludge by alkaline solubiilzation. Bioresource Technology,1997, 62(1):85-90
    [18]Alleman J E, Kim B J, Quivey D M, et al. Alkaline hydrolysis of munitions-grade nitrocellulose. Water Science and Technolgy,1994,30(1):63-72
    [19]Lin J G, Chang C N, Chang S C. Enhancement of anaerobic digestion of waste activated sludge by alkaline solubilization. Bioresource Technology,1997, 62(3):85-90
    [20]Raj an R V, Lin J G, Ray B T. Low-level chemical pretreatment for enhanced sludge solubilization. Journal of the Water Pollution Control Federation,1989, 61(43):1678-1683
    [21]Weemaes M P J, Verstraete W H. Evaluation of current wet sludge disintegration techniques. Journal of Chemical Technolgy and Biotechnology,1998,73(2): 83-92
    [22]Park K Y, Ahn K H, Maeng S K, et al. Feasibility of sludge ozonation for stabilization and conditioning. Ozone Science and Engineering,2003,25(1): 73-80
    [23]王琳,孙德栋.臭氧氧化污泥的试验研究.环境污染与防治,2005,27(2):99-102
    [24]Weemaes M, Grootaerd H, Simoens F, et al. An aerobic digestion of ozonized biosolids. Water Research,2000,34(8):2330-2336
    [25]Neyns E, Baeyens J, Weemaes M, et al. Pilot scale peroxidation(H2O2) of sewage sludge. Journal of Hazardous Materials,2003,98(1/3):91-106
    [26]白晓慧.超声波技术与污水污泥及难降解废水处理.工业水处理,2000,20(12):8-14
    [27]Neis U. Ultrasound in water, wastewater and sludge treatment. Water21, 2000,21(4):36-39
    [28]Petrier C, Francony A. Incidence of wave frequency on the reaction rates during ultrasonic waste water treatment. Water Science and Technolgy,1997,35(4): 175-180
    [29]Wang C C, Chang C W, Chu C P, et al. Producing hydrogen from wastewater Sludge by Clostridium biofermentans. Journal of Biotechnolgy,2003,102(1): 83-92
    [30]Bien J B, Malina G, Bien J D, et al. Enhancing anaerobic fermentation of sewage sludge for increasing biogasgeneration. Journal of Environmental Science and Health,2004,39(4):939-949
    [31]朱敬平,李笃中.污泥处置(II)污泥之前处理.台大工程学刊,2000,82:49-76
    [32]Haug R T. Sludge processing to optimize digestibility and energy production. Journal of the Water Pollution Control Federation,1977,49(7):1713-1721
    [33]Haug R T, Stuckey D C, Gossett J M, et al. Effects of thermal pretreatment on digestibility an dewaterability of organic sludges. Journal of the Water Pollution Control Federation,1978,50(1):73-85
    [34]Hiraoka M, Takeda N, Sakai S, et al. Highly efficient anaerobic digestion with thermal pretreatment. Water Science and Technolgy,1985,17(5):529-539
    [35]Haug R T, LeBrun T J, Tortorici L D. Thermal pretreatment of sludges, afield demonstration. Journal of the Water Pollution Control Federation, 1983,55(1):23-34
    [36]乔玮,王伟,徐衣显,等.碱辅助条件下的污泥微波热水解特性研究.环境科学,2009,30(9):2678-2683
    [37]Martanu M R,Nemtanu M R,Oproiu C,et al. Application of accelerated electron beam and microwave irradiation to biological waste treatment.7th International Conference on Electron Beam Technologies,2005,77(4):501-506
    [38]Bani K S, Bandyopadhyay S, Ganguly S. Bioeffects of microwave-a brief review. Bioresource Technology,2003,87(2):155-159
    [39]Park B, Ahnj H, Kim J, et al. Use of microwave pretreatment for enhanced anaerobiosis of secondary sludge. Water Science and Technolgy,2004, 50(9):17-23
    [40]Eskiciogl U C, Terzi An N, Kennedy K J, et al. A thermal microwave effects for enhancing digestibility of waste activated sludge. Water Research,2007,41(11): 2457-2466
    [41]阎鸿,程振敏,王亚炜,等.不同微波能量输入条件下污泥中碳、氮、磷的释放特性.环境科学,2009,30(12):3639-3644
    [42]乔玮,王伟,黎攀,等.城市污水污泥微波热水解特性研究.环境科学,2008,29(1):152-157
    [43]谢波,郭亮,李小明,等.三种预处理方法对污泥的破解效果,中国环境科学,2008,28(5):417-421
    [44]田禹,方琳,黄君礼.微波辐射预处理对污泥结构及脱水性能的影响.中国环境科学,2006,26(4):459-463
    [45]Aitken M D. Waste treatment applications of enzymes:opportunities and obstacles. Chemical Enginering Journal,1993,52(2):49-58
    [46]Hasegawa S. Sludge minimization technic with thermophilic bacteria S-TE process. Environmental Earth Science,2000,11(1):132-133
    [47]Akashi A, Shiota N, Hasegawa S, et al. Zero-discharge activated sludge process, S-TE process. Shinko Pantec Engineering Reports,2000,43(2):2-9
    [48]Barjenbruch M, Kopp low O. Enzymatic, mechanical and thermal pretreatment of surplus sludge. Advances in Environmental Research,2003,7(3):715-720
    [49]Hasegawa S, Shiota N, Katsura K, et al. Solubilization of organic sludge by thermophilic aerobic bacteria as a pretreatment for anaerobic digestion. Water Science and Technology,2000,41(3):163-169
    [50]史彦伟,李小明,赵维纳,等.微曝气条件下S-TE剩余污泥溶解性研究.环境科学,2008,29(1):139-144
    [51]史彦伟,李小明,杨麒,等.S-TE污泥溶解过程中主要固形物质的变化及动力学分析.环境科学学报,2008,28(2):319-325
    [52]Azize A. Enzymatic treatment effects on dewaterability of anaerobically digested biosolids I:performance evaluations. Process Biochemistry,2005,40(7): 2427-2434
    [53]罗琨,杨麒,李小明,等.外加酶强化剩余污泥水解的研究.环境科学,2010,31(3):763-767
    [54]Barjenbruch M, Kopplow O. Enzymatic mechanical and thermal pretreatment of surplus sludge. Advances in Environmental Research,2003,7(3):715-720
    [55]Logan B E.微生物燃料电池.冯玉杰,王鑫,李贺,等.北京:化学工业出版社,2009,4-6
    [56]Logan B E, Hamelers B, Rozendal R, et al. Microbial fuel cell:methodology and technology. Environmental Science and Technology,2006,40(17):5181-5192
    [57]Rabaey K, Lissens G, Verstraete W. Microbial fuel cells:performances and perspectives. London, IWA Publishing,2005:375-396
    [58]Clauwaert P, Vander Ha D, Boon N, et al. Open air biocathode enables effective electricity generation with microbial fuel cells. Environmental Science and Technology,2007,41(21):7564-7569
    [59]Potter M C. Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B,1911,84(571):260-276
    [60]Park D H, Zeikus J G. Electricity generation in microbial fuel cell using neutral red as electronophore. Applied and Environmental Microbiology,2000,66(5): 1292-1297
    [61]Siebel D, Bennetto H P, Delaney G M,et al. Electron-transfer coupling in microbial fuel cells:1.comparison of redox-mediator reduction rates and respiratory rates of bacteria. Journal of Chemical Technology and Biotechnology,1984,34(1):3-12
    [62]Delaney G M, Bennetto H P, Mason J R, et al. Electron-transfer coupling in microbial fuel cells:2.performance of fuel cells containing selected microorganism-mediator combinations. Journal of Chemical Technology and Biotechnology,1984,34(1):13-27
    [63]Rhoads A, Beyenal H, Lewandowski Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant.Environmental Science and Technology,2005,39(12):4666-4671
    [64]Kim H J, Hyun M S,Chang I S,et al. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium,shewanella putrefaciens. Journal of Microbiology and Biotechnology,1999,9(3):365-367
    [65]Bond D R, Holmes D E, Tender L M, et al.Electrode-reducing microorganisms that harvest energy from marine sediments.Science,2002,295(5554):483-485
    [66]尤世界.微生物燃料电池处理有机废水过程中的产电特性研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学市政环境工程学院,2008,6-8
    [67]Liu H, Ramnarayanan R, Logan B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science and Technology,2004,38(7):2281-2285
    [68]关毅,张鑫.微生物燃料电池.化学进展,2007,19(1):74-79
    [69]Kim H J, Park H S, Hyun M S, et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense. Enzyme and Microbial Technology,2002,30(7):145-152
    [70]Vignais P M, Billoud B. Occurrence,classification,and biological function of hydrogenases:an overview.Chemical Reviews,2007,107(10):4206-4272
    [71]Bard A J, Faulkner L R. Electrochemical methods:fundamentals and applications, 2nd edition. New York:John Wiley and Sons,2001,66-88
    [72]Katsaounis A, Balomenou S P, Tsiplakides D, et al. The role of potential-dependent electrolyte resistance in the performance,steady-state multiplicities and oscillations of PEM fuel cells:experimental investigation and macroscopic modelling. Electrochimica Acta,2005,50(25-26):5132-5143
    [73]Fan Y Z, Sharbrough E, Liu H. Quantification of the internal resistance distribution of microbial fuel cells. Environmental Science and Technology,2008,42(21):8101-8107
    [74]冯玉杰,王鑫,李贺,等.乙酸钠为基质的微生物燃料电池产电过程.哈尔滨工业大学学报,2007,39(12):1890-1894
    [75]Zhang E R, Xu W, Diao G W,et al.Electricity generation from acerate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells.Journal of Power Sources,2006,161(2):820-825
    [76]曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究.环境科学学报,2006,26(8):1252-1257
    [77]尤世界,赵庆良,姜君秋.废水同步生物处理与生物燃料电池发电研究.环境科学,2006,27(9):1786-1790
    [78]Torres C I, Marcus A K, Rittmann B E. Kinetics of consumption of fermentation products by anode- respiring bacteria. Applied Microbiology and Biotechnology,2007,77(3):689-697
    [79]Moon H, Chang I S, Kim B H.Continuous electricity produciong from artificial wastewater using a mediator-less microbial fuel cell. Bioresource Technology,2006,97(4):621-627
    [80]冯雅丽,李浩然,祝学远.单室直接微生物燃料电池性能影响因素分析.北京科技大学学报,2007,29(2):162-165
    [81]Catal T, Fan Y Z, Li K C, et al. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells. Journal of Power Sources,2008,180(1):162-166
    [82]Hu Z Q. Electricity generation by a baffle-chamber membraneless microbial fuel cell. Journal of Power Sources,2008,179(1):27-33
    [83]Huang L P, Logan B E. Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells. Applied Microbiology and Biotechnology,2008,80(4):655-664
    [84]Catal T, Li K C, Bermek H K, et al. Electricity production from twelve monosaccharides using microbial fuel cells. Journal of Power Sources, 2008,175(1):196-200
    [85]Ren Z, Ward T E, Regan J M. Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environmental Science and Technology,2007,41(13):4781-4786
    [86]Ren N Q, Wang B Z, Huang J C. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnology and Bioengineering,1997,54(5): 428-433
    [87]Catal T, Xu S T,Li K,et al. Electricity generation from polyalcohols in single-chamber microbial fuel cells.Biosensors and Bioelectronics,2008,24(4): 849-854
    [88]Liu H, Cheng S A, Logan B E. Production of electricity from acetate or butyrate using a single- chamber microbial fuel cell. Environmental Science and Technology,2005,39(2):658-662
    [89]Yu E H, Cheng S A, Scott K, et al. Mictobial fuel cell performance with non-Pt cathode catalysts. Journal of Power Sources,2007,171 (2):275-281
    [90]Oh S E, Logan B E. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Research,2005,39(19):4673-4682
    [91]Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science and Technology,2004,38(14):4040-4046
    [92]Zuo Y, Cheng S A, Call D, et al. Tubular membrane cathodes for scalable power generation in microbial fuel cells. Environmental Science and Technology, 2007,41(9):3347-3353
    [93]Kim J R, Jung S H, Logan B E, et al. Electricity generation and microbial community analysis of ethanol powered microbial fuel cells. Bioresource Technology,2007,98(13):2568-2577
    [94]He Z, Minteer S D, Angenent L T. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environmental Science and Technology,2005,39(14):5262-5267
    [95]Huang L P, Zeng R J, Angelidaki I. Electricity production from xylose using a mediator-less microbial fuel cell. Bioresource Technology,2008,99(10): 4178-4184
    [96]Min B, Logan B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science and Technology,2004,38(21):5809-5814
    [97]Rismani-Yazdi H,Christy A D,Dehority B A,et al. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnology and Bioengineering,2007,97(6):1398-1407
    [98]Logan B E, Murano C,Scott K,et al. Electricity generation from cysteine in a microbial fuel cell. Water Research,2005,39(5):942-952
    [99]Heilmann J,Logan B E. Production of electricity from proteins using a microbial fuel cell. Water Environment Research,2006,78(5):531-537
    [100]Rabaey K, Verstraete W. Microbial fuel cells:novel biotechnology for energy generation. Trends in Biotechnology,2005,23(6):291-298
    [101]Gil G C,Chang I S,Kim B H,et al. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosensors and Bioelectronics,2003,18(4):327-338
    [102]Rabaey K, Clauwaert P, Aelterman P, et al. Tubular microbial fuel cells for efficient electricity generation. Environmental Science and Technology, 2005,39(20):8077-8082
    [103]Min B, Kim J R, Oh S E, et al. Electricity generation from swine wastewater using microbial fuel cells. Water Research,2005,39(20):4961-4968
    [104]王超,薛安,赵华章,等.单室型微生物燃料电池处理黄姜废水的性能研究.环境科学,2009,30(10):3093-3098
    [105]Zuo Y, Maness P C, Logan B E. Electricity production from steam-exploded corn stover biomass. Energy Fuels,2006,20(4):1716-1721
    [106]You S,Zhao Q,Jiang J,et al. Sustainable approach for leachate treatment: Electricity generation in microbial fuel cell. Journal of Environmental Science and Health Part A,2006,41(12):2721-2734
    [107]Feng Y,Wang X,Logan B E,et al. Brewery wastewater treatment using air-cathode microbial fuel cells. Applied Microbiology and Biotechnology, 2008(5),78:873-880
    [108]Huang L, Logan B E. Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Applied Microbiology and Biotechnology,2008,80(2):349-355
    [109]张翠萍,王志强,刘广立,等.降解喹啉的微生物燃料电池的产电特性研究.环境科学学报,2009,29(4):740-746
    [110]张翠萍,刘广立,张仁铎,等.喹啉和吡啶共存条件下的MFC产电特性研究.环境科学学报,2010,30(7):1372-1376
    [111]Luo H, Liu G, Jin S. Phenol degradation in microbial fuel cells. Chemical Engineering Journal,2009,147(2):259-264
    [112]Zhang C, Li M, Liu G, et al. Pyridine degradation in the microbial fuel cells. Journal of Hazardous Materials,2009,172(1):465-471
    [113]Zhang C, Liu G, Zhang R, et al. Electricity production from and biodegradation of quinoline in the microbial fuel cell. Journal of Environmental Science and Health Part A,2010,45(2):250-256
    [114]Luo Y, Zhang R, Liu G, et al. Electricity generation from indole and microbial community analysis in the microbial fuel cell. Journal of Hazardous Materials, 2010,176(1-3):759-764
    [115]Sun J, Hu Y Y, Bi Z, et al. Simultaneous decolorization of azodye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresource Technology,2009,100(13): 3185-3192
    [116]冯玉杰,王鑫,王赫名,等.以玉米秸秆为底物的纤维素降解菌与产电菌联合产电的可行性.环境科学学报,2009,29(11):2295-2299
    [117]Wang X, Feng Y, Wang H, et al. Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environmental Science and Technology,2009,43(15):6088-6093
    [118]Yuan S J, Sheng G P, Li W W,et al. Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell. Environmental Science and Technology,2010,44(11):5575-5580
    [119]Min B, Cheng S, Logan B E. Electricity generation using membrane and salt bridge microbial fuel cells.Water Research,2005,39(9):1675-1686
    [120]Rabaey K, Lissens G, Siciliano S D,et al.A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters,2003,25(18):1531-1535
    [121]Ringeisen B R, Henderson E, Wu P K,et al. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environmental Science and Technology,2006,40(8):2629-2634
    [122]Biffinger J C, Pietron J, Ray R,et al.A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathode. Biosensors and Bioelectronics,2007,22(8):1672-1679
    [123]Ringeisen B R, Ray R, Little B. A miniature microbial fuel cell operating with an aerobic anode chamber. Journal of Power Sources,2007,165(2):591-597
    [124]Aelterman P, Rabaey K, Pham T H,et al.Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental Science and Technology,2006,40(10):3388-3394
    [125]Arjan D, Annemiek T H, Michel S,et al. Analysis and improvement of a scaled-up and stacked microbial fuel cell. Environmental Science and Technology,2009,43(23):9038-9042
    [126]Park D H, Zeikus J G. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology and Bioengineering, 2003,81(3):348-355
    [127]He Z, Kan J J, Wang Y B, et al. Electricity production coupled to ammonium in a microbial fuel cell. Environmental Science and Technology,2009, 43(9):3391-3397
    [128]He Z, Shao H B,Largus T.Angenent.Increased power production from a sediment microbial fuel cell with a rotating cathode.Biosensors and Bioelectronics,2007,22(12):3252-3255
    [129]梁鹏,范明志,曹效鑫等.填料型微生物燃料电池产电特性的研究.环境科学,2008,29(2):512-517
    [130]An J, Moon H, Chang I S. Multiphase electrode microbial fuel cell system that simultaneously converts organics coexisting in water and sediment phases into electricity.Environmental Science and Technology,2010,44(18):7145-7150
    [131]An J, Kim D, Chun Y, et al. Floating-type microbial fuel cell (FT-MFC) for treating organic-contaminated water. Environmental Science and Technology, 2009,43(5):1642-1647
    [132]Sarinee O, Mana S, Sumittra C, et al. Impedance analysis of bio-fuel cell electrodes. Biosensors and Bioelectronics,2007,23(5):721-727
    [133]Qiao Y, Li C M, Bao S J, et al.Carbon nanotube/polyaniline composite as anode material for microbial fuel cells.Journal of Power Sources,2007,170(1):79-84
    [134]Zhao F, Hunen N, Varcoe J R, et al. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environmental Science and Technology, 2008,42(13):4971-4976
    [135]梁鹏,范明志,曹效鑫,等.碳纳米管阳极微生物燃料电池产电特性的研究.环境科学,2008,29(8):2356-2360
    [136]Wang X, Cheng S A, Feng Y J,et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environmental Science and Technology,2009,43(17):6870-6874
    [137]Cheng S A, Logan B E.Ammonia treatment of carbon cloth anodes to enchance power generation of microbial fuel cells.Electrochemistry Communications, 2007,9(3):492-496
    [138]Logan B E, Cheng S A, Watson V,et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science and Technology,2007,41(9):3341-3346
    [139]Alimde W, Haluk B, Zbignie W. Scaling up microbial fuel cells. Environmental Science and Technology,2008,42(20):7643-7648
    [140]Oh S, Min B, Logan B E.Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental Science and Technology, 2004,38(18):4900-4904
    [141]You S J, Zhao Q L, Zhang J N, et al.A microbial fuel cell using permanganate as the cathodic electron acceptor.Journal of Power Sources,2006, 162(2):1409-1415
    [142]Mohan S V, Saravanan R, Raghavulu S V,et al. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microxora:effect of catholyte. Bioresource Technology,2008,99(3):596-603
    [143]Liu H, Ranmahayanan R, Logan B E. Production of electricity during wastewater treatment using a singal chamber microbial fuel cell. Environmental Science and Technology,2004,38(7):2281-2285
    [144]Cheng S A, Liu H, Logan B E.Power dencities using different cathode catalysts(Pt and CoTMPP) and poolymer Binders(Nafion and PTFE) in single chamber microbial fuel cells. Environmental Science and Technology, 2006,40(1):364-369
    [145]Yang S Q, Jia B Y, Liu H. Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell. Bioresource Technology,2009,100(3):1197-1202
    [146]Zhao F, Harnisch F, Schroder U, et al. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochemistry Communications,2005,(7): 1405-1410
    [147]Morris J M, Jin S, Wang J Q, et al. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells. Electrochemistry Communications, 2007,9(7):1730-1734
    [148]Zhao F, Harnisch F, Roder U, et al. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environmental Science and Technology, 2006,40(17):5193-5199
    [149]Freguia S, Rabaey K, Yuan Z G, et al. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochimica Acta, 2007,53(2):598-603
    [150]Annemiek T H, David P B T B S,Hubertus V M H, et al. Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells. Environmental Science and Technology,2010, 44(18):7151-7156
    [151]Jeffrey J F, Miriam R, Michael A C,et al. Microbial fuel cell performance with a pressurized cathode chamber. Environmental Science and Technology, 2008,42(22):8578-8584
    [152]Cesar I T, Hyung s, Bruce E R. Carbonate species as OH-carriers for decreasing the pH gradient between cathode and anode in biological fuel cells. Environmental Science and Technology,2008,42(23):8773-8777
    [153]Freguia S, Rabaey K, Yuan Z G, et al. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells.Water Research,2008,42(6-7):1387-1396
    [154]Zuo Y, Cheng S A, Logan B E. Ion exchange membrane cathodes for scalable microbial fuel cells. Environmental Science and Technology,2008,42(18): 6967-6972
    [155]Kim J R, Cheng S A, Oh S E,et al. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental Science and Technology,2007,41 (3):1004-1009
    [156]Rozendal R A, Hamelers H V M, Buisman C J N. Effects of membrane cation transport on pH and microbial fuel cell performance. Environmental Science and Technology,2006,40(17):5206-5211
    [157]Fan Y Z, Hu H Q, Liu H. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. Journal of Power Sources,2007,171(2):348-354
    [158]Mohan S V, Raghavulu S V, Sarma P N. Biochemical evaluation of bioelectricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane. Biosensors and Bioelectronics,2008,23(9):1326-1332
    [159]Zhang X Y, Cheng S A, Wang X, et al. Separator characteristics for increasing performance of microbial fuel cells. Environmental Science and Technology, 2009,43(21):8456-8461
    [160]He Z, Huang Y L, Manohar A K, et al. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry,2008,74(1):78-82
    [161]Jadhav G S, Ghangrekar M M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresource Technology,2009,100(2):717-723
    [162]Jong B C, Kim B H, Chang I S,et al. Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environmental Science and Technology,2006,40(20):6449-6454
    [163]Liu H, Cheng S A, Logan B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration.Environmental Science and Technology,2005,39(14):5488-5493
    [164]Liu H, Cheng S A, Huang L P, et al. Scale-up of membrane-free single-chamber microbial fuel cells. Journal of Power Sources,2008,179(1):274-279
    [165]Fan Y Z, Hu H Q, Liu H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environmental Science and Technology,2007,41(23):8154-8158
    [166]Thygesen A, Poulsen F W, Min B, et al. The effect of different substrates and humic acid on power generation in microbial fuel cell operation. Bioresource Technology,2009,100(3):1186-1191
    [167]Park D K,Laivenieks M,Guettler M V, et al.Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production.Applied and Environmental Microbiology,1999,65(7):2912-2917
    [168]Logan B E.Extracting hydrogen and electricity from renewable resource. Environmental Science and Technology,2004,38(9):160-167
    [169]Rabaey K,Boon N,Hofte M,et al. Microbial phenazine production enhances electron transfer in biofuel cells.Environmental Science and Technology,2005, 39(9):3401-3408
    [170]Kim B H, Chang I S, Gil G C, et al. Novel BOD (biochemical oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letters,2003,25(7):541-545
    [171]Kim B H, Park H S, Kim H J, et al. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Applied Microbiology and Biotechnology,2004,63(6):672-681
    [172]Xiong Y J, Shi L, Chen B W, et al. High affinity binding and direct electron transfer to solid metals by the Shewanella on eidensis MR-1 outer membrane c-type cytochrome OmcA. Journal of the American Chemica,2006,1128(43): 13978-13979
    [173]Rabaey K, Boon N, Siciliano S D, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbioligy,2004,70(9):5373-5382
    [174]Pham T H, Boon N, Aelterman P, et al. Metabolites produced by pseudomonas sp. enable a grampositive bacterium to achieve extracellular electron transfer. Applied Microbiology and Biotechnology,2008,77(5):1119-1129
    [175]Pham T H, Boon N, Maeyer K D,et al. Use of pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation.Applied Microbiology and Biotechnology, 2008,80(6):985-993
    [176]Gorby Y A, Yanina S. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the USA,2006,103(30):11358-11363
    [177]Reguera G, Mccarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires. Nature,2005,435(7045):1098-1101
    [178]Kim H J, Park H S, Hyun M S, et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microbial Technology,2002,30(2):145-152
    [179]Gorby Y A,Yanina S,McLean J S,et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences, 2006,103(30):11358-11363
    [180]Nevin K P, Lovley D R. Lack of production of electron-shuttling compounds or solubilization of Fe (Ⅲ) during reduction of insoluble Fe (Ⅲ) oxide by Geobacter metallireducens.Applied and Environmental Microbiology,2000, 66(6):2248-2251
    [181]Reguera G, Nevin K P, Nicoll J S, et al. Biofilm and nanowire production leads to increased current in geobacter sulfurreducens fuel cells. Applied and Environmental Microbiology,2006,72(11):7345-7348
    [182]Marsili E, Rollefson J B, Baron D B, et al. Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms. Applied and Environmental Microbiology,2008,74(23):7329-7337
    [183]Liu Y, Harnisch F, Fricke K, et al. Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosensors and Bioelectronics,2008,24(1): 1006-1011
    [184]Dumas C, Basseguy R, Bergel A. DSA to grow electrochemically active biofilms of Geobacter sulfurreducens. Electrochimica Acta,2008,53(7): 3200-3209
    [185]孙寓姣,左剑恶,崔龙涛,等.不同废水基质条件下微生物燃料电池中细菌群落解析.中国环境科学,2008,28(12):1068-1073
    [186]黄霞,范明志,梁鹏,等.微生物燃料电池阳极特性对产电性能的影响.中国给水排水,2007,23(3):8-13
    [187]张锦涛,倪晋仁,周顺桂.基于铁还原菌的微生物燃料电池研究进展.应用与环境生物学报,2008,14(2):290-295
    [188]Aelterman P, Freguia S, Keller J, et al. The anode potential regulates bacterial activity in microbial fuel cells. Applied Microbiology and Biotechnology, 2008,78(3):409-418
    [189]Ishii S, Watanabe K, Yabuki S, et al. Comparison of electrode reduction activities of geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell. Applied and Environmental Microbiology, 2008,74(23):7348-7355
    [190]Park H S, Kim B H. A novel electrochemically active and Fe (Ⅲ) reducing bacterium phylogenetically related to clostridium butyricum isolated from a microbial fuel cell. Anaerobe,2001,7(6):297-306
    [191]Bond D R, Lovley D R. Electricity production by Geobacter Sulfurreducens attached to electrodes. Applied and Environmental Microbiology,2003,69(3): 1548-1555
    [192]Pham C A, Jung S J, Phung N T, et al. A novel electrochemically active and Fe (Ⅲ)-reducing bacterium Phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiology Letters,2003,223(1): 129-134
    [193]Holmes D E, Bond D R, Lovley D R. Electron transfer by desulfobulbus propionicus to Fe(Ⅲ) and graphite electrodes. Applied and Environmental Microbiology,2004,70(2):1234-1237
    [194]Bond D R, Lovley D R. Evidence for involvement of an electron shuttle in electricity generation by geothrix fermentans. Applied and Environmental Microbiology,2005,71(4):2186-2189
    [195]刘志丹,连静,杜竹玮,等.利用异化金属还原菌构建含糖微生物燃料电池.生物工程学报.2006,22(1):131-137
    [196]Bretschger O, Obraztsova A, Sturm C A,et al. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Applied and Environmental Microbiology,2007,73(21):7003-7012
    [197]Prasad D, Arun S, Murugesan M,et al. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell.Biosensors and Bioelectronics,2007,22(11):2604-2610
    [198]Xing D F, Zuo Y, Cheng S, et al. Electricity generation by rhodopseudomonas palustris DX-1. Environmental Science and Technology,2008,42(11): 4146-4151
    [199]Zuo Y, Xing D, Regan J M, et al. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Applied and Environmental Microbiology,2008,74(10):3130-3137
    [200]Borole A P, O Neill H, Tsouris C, et al. A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum. Biotechnology Letters,2008,30(8): 1367-1372
    [201]Park H, Sanchez D, Cho S K,et al. Bacterial communities on electron-beam Pt-deposited electrodes in a mediator-Less microbial fuel cell. Environmental Science and Technology,2008,42(16):6243-6249
    [202]Liu M, Yuan Y, Zhang L X, et al. Bioelectricity generation by a gram-positive coryneb act erium sp. strain MFC03 under alkaline condition in microbial fuel cells. Bioresource Technology,2010,101(6):1807-1811
    [203]陈姗姗,张翠萍,刘广立,等.一株以喹啉为燃料的产电假单胞菌(Pseudomonas sp.) Q1的特性研究.环境科学学报,2010,30(6):1130-1137
    [204]Heijne A T, Hamelers H V M, Buisman C J N. Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environmental Science and Technology,2007,41(11):4130-4134
    [205]Tandukar M, Huber S J, Onodera T,et al. Biological chromium(Ⅵ) reduction in the cathode of a microbial fuel cell. Environmental Science and Technology,2009,43(21):8159-8165
    [206]Kim J R, Dec J, Bruns M A, et al. Removal of odors from swine wastewater by using microbial fuel cells. Applied and Environmental Microbiology, 2008,74(8):2540-2543
    [207]Virdis B, Rabaey K, Yuan Z G, et al. Microbial fuel cells for simultaneous carbon and nitrogen removal.Water Research,2008,42(12):3013-3024
    [208]谢珊,陈阳,梁鹏,等.好氧生物阴极型微生物燃料电池的同时硝化和产电的研究.环境利·学,2010,31(7):1601-1606
    [209]Butler C S, Clauwaert P, Green S J,et al. Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environmental Science and Technology, 2010,44(12):4685-4691
    [210]Feng C H, Li F B, Mai H J,et al. Bio-electro-fenton process driven by microbial fuel cell for wastewater treatment. Environmental Science and Technology, 2010,44(5):1875-1880
    [211]Dwwan A, Beyenal H, Lewandowski Z. Intermittent energy harvesting improves the performance of microbial fuel cells.Environmental Science and Technology, 2009,43(12):4600-4605
    [212]Virdis B, Rabaey K, Yuan Z G,et al. Electron fluxes in a microbial fuel cell performing carbon and nitrogen removal. Environmental Science and Technology,2009,43(13):5144-5149
    [213]Mohan S V, Mohanakrishna G, Sarma P N. Effect of anodic metabolic function on bioelectricity generation and substrate degradation in single chambered microbial fuel cell. Environmental Science and Technology,2008,42(21):8088-8094
    [214]国家环保局编.水和废水监测分析方法.第四版.北京:中国环境科学出版社,2002,102-219
    [215]Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry,1956, 28(3):350-356
    [216]任南琪,王爱杰,马放.产酸发酵微生物生理生态学.北京:科学出版社,2005,301-306
    [217]Pin C, Marin M L, Selgas D, et al. Differences in production of several extracellular virulence factors in clinical and food Aeromonas spp. strains. Journal of Applied Bacteriology,1995,78(2):175-179
    [218]Goel R, Mino T, Satoh H, et al. Enzy meactivities under anaerobic and aerobic conditions in activated sludge sequencing batch reactor. Water Research, 1998,32(7):2081-2088
    [219]胡琼英,狄洌.生物化学实验.北京:化学工业出版社,2007,24-26
    [220]Logan B E, Hamelers B, Rozendal R,et al. Microbial fuel cells:methodology and technology. Environmental Science and Technology,2006,40(17): 5181-5192
    [221]You S J,Zhao Q L,Jiang J Q. Biological wastewater treatment and simultaneous generating electricity from organic wastewater by microbial fuel cell. Environmental Science,2006,27(9):1786-1790
    [222]Min B, Logan B E. Continuous electricity generation from domestic wastewater in a flat plate microbial fuel cell. Environmental Science and Technology, 2004,38(21):5809-5814
    [223]Liu H, Cheng S A, Logan B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength,temperature, and reactor configuration. Environmental Science and Technology,2005,39(14):5488-5493
    [224]Cheng S A, Liu H,Logan B E.Increased power generation in a contionuous flow MFC with advective flow through the porous anode and reduced electrode spacing.Environmental Science and Technology,2006,40(7):2426-2432
    [225]高永青,彭永臻,王建龙,等.剩余污泥水解酸化过程中胞外聚合物的影响因素研究.中国环境科学,2010,30(1):58-63
    [226]Shanableh A, Joma S. Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment. Water Science and Technology, 2001,44(10):129-135
    [227]Hamers A, Mason C A, Hamer G. Death and lysis during aerobic thermophilic sludge treatment:characterization of recalcitrant products. Water Research, 1994,28(4):863-869
    [228]Moon H, Chang I S, Kim B H. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresource Technology,2006,97(4):621-627
    [229]Cheng S A, Liu H, Logan B E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science and Technology,2006,40(7):2426-2432
    [230]Keiding K, Nielsen P H. Desorption of organic macromolecules from activated sludge:effect of ionic composition.Water Research,1997,31(7):1665-1672
    [231]Brown M, Lester J N. Metal removal in activated sludge the role of bacterial extracelluar polymers.Water Research,1979,13(9):817-837
    [232]Dignac M F, Urbain V, Rybacki D, et al. Chemical description of extracellular polymers:implication on activated sludge floc structure. Water Science Technology,1998,38(8):45-53
    [233]Houghton J I, Stephens O T. Effect of in fluent organic content on digested sludge extracellular polymer content and dewaterability.Water Research,2002, 36(14):3620-3628
    [234]周群英,高廷耀.环境工程微生物学.第二版.北京:高等教育出版社 2000.26-29
    [235]Jang J K, Pham T H, Chang I S, et al. Construction and operation of a novel mediator- and membrane- less microbial fuel cell. Process Biochemistry,2004, 39(8):1007-1012
    [236]Mohan S V, Mohanakrishna G, Reddy B P, et al. Bioelectricity generation from chemical wastewater treatment in mediatorless(anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment. Biochemical Engineering Journal,2008,39(1): 121-130
    [237]Hong S W, Chang I S, Choi Y S,et al. Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell. Bioresource Technology,2009,100(12):3029-3035
    [238]Freguia S, Rabaey K, Yuan Z G,et al. Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environmental Science and Technology,2008,42(21):7937-7943

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700