分散支撑液膜在稀土金属迁移与分离回收中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文涉及一种稀土金属的迁移与分离回收技术,主要研究了以多孔高分子聚合物膜为支撑体,有机磷酸为流动载体,煤油为膜溶剂,煤油和流动载体的混合溶液作为膜溶液,膜溶液和HCl溶液组成分散相的分散支撑液膜(DSLM)中几种稀土金属的迁移和分离回收行为,通过传质过程分析,建立相应的数学模型,取得以下研究结果:
     1、采用以2-乙基己基膦酸-单-2-乙基己基酯(PC-88A)为流动载体的DSLM体系对La(Ⅲ)、Ce(Ⅳ)、Tb(Ⅲ)、Eu(Ⅲ)、Dy(Ⅲ)和Tm(Ⅲ)的迁移行为进行了研究.考察了料液相pH、金属离子初始浓度、分散相中HCl浓度、膜溶液与HCl溶液体积比、不同解析剂及不同载体浓度对La(Ⅲ).Ce(IV).Tb(Ⅲ).Eu(Ⅲ).Dy(Ⅲ)和Tm(Ⅲ)迁移的影响,得出了La(Ⅲ).Ce(IV).Tb(Ⅲ).Eu(Ⅲ).Dy(Ⅲ)和Tm(Ⅲ)最优迁移条件分别为:分散相中HCl溶液浓度都为4.00 mol/L;膜溶液与HCl溶液体积比分别为30:30、40:20、30:30、30:30、40:20和40:20;载体浓度分别控制在0.160 mol/L、0.160 mol/L、0.100 mol/L、0.160 mol/L、0.100 mol/L和0.160 mol/L;料液相pH分别为4.00、1.00、5.20、4.20、5.00和5.10;在最优条件下,料液相中La(Ⅲ).Ce(Ⅳ)、Tb(Ⅲ)、Eu(Ⅲ).Dy(Ⅲ)和Tm(Ⅲ)的初始浓度分别为8.00×10-5 mol/L.7.O0×10-5 mol/L.1.00×10-4mol/L.8.00×10-5 mol/L.8.00×10-5 mol/L和1.00×10-4mol/L时,分别迁移125 min.75 min、95 min、130 min.95 min和155 min,迁移率分别达到93.9%、96.3%、95.2%、95.3%、96.2%和92.2%。
     2、采用以二-(2-乙基己基)磷酸(D2EHPA)为流动载体的DSLM体系对La(Ⅲ).Ce(Ⅳ). Tb(Ⅲ).Eu(Ⅲ).Dy(Ⅲ)和Tm(Ⅲ)的迁移行为进行了研究。考察了料液相pH、金属离子初始浓度、分散相中HCl浓度、膜溶液与HCl溶液体积比、不同解析剂及不同载体浓度对La(Ⅲ).Ce(Ⅳ).Tb(Ⅲ).Eu(Ⅲ).Dy(III)和Tm(Ⅲ)迁移的影响,得出了La(Ⅲ).Ce(IV). Tb(Ⅲ).Eu(Ⅲ).Dy(Ⅲ)和Tm(Ⅲ)最优迁移条件分别为:分散相中HCl溶液浓度都为4.00mol/L;膜溶液与HCl溶液体积比分别为20:40、30:30、30:30、30:30、20:40和40:20;载体浓度都控制在0.160 mol/L;料液相pH分别为5.00、0.50、4.50、5.00、4.50和5.00;在最优条件下,料液相中La(Ⅲ)、Ce(Ⅳ)、Tb(Ⅲ)、Eu(Ⅲ)和Tm(Ⅲ)的初始浓度均为1.OOx10-4 mol/L时,迁移35 min, La(Ⅲ)、Tb(Ⅲ)、Eu(III)、Dy(Ⅲ)和Tm(Ⅲ)迁移率分别达到94.8%、99.1%、93.7%、98.2%和99.2%,Ce(Ⅳ)迁移30 min,迁移率达到78.3%。稀土金属迁移过程中,最适合的解析剂是HCl; Eu(Ⅲ)的迁移率随离子强度的增加而增加,其它稀土金属的迁移率受离子强度影响不明显。
     3、PC-88A和D2EHPA混合作为载体时,研究了DSLM体系中Tb(Ⅲ)、Eu(Ⅲ)和Dy(Ⅲ)的迁移行为。考察了分散相中HCl浓度、膜溶液与HCl溶液体积比、料液相pH、金属离子初始浓度、不同解析剂以及混合载体浓度与比例对Tb(Ⅲ)、Eu(Ⅲ)和Dy(Ⅲ)迁移的影响,得出了Tb(Ⅲ)、Eu(Ⅲ)和Dy(Ⅲ)的最佳迁移条件为:分散相中HCl溶液浓度均为4.00mol/L;膜溶液与HCl溶液体积比分别为20:40、40:20和40:20;膜溶液中PC-88A与D2EHPA浓度均为8.00x10-2 mol/L;料液相pH分别为3.80、4.80和3.80;在最优条件下,料液相中Tb(Ⅲ)、Eu(Ⅲ)和Dy(Ⅲ)的初始浓度都为1.OO×10-4 mol/L时,30 min,迁移率分别达到95.4%、94.6%和97.0%。
     4、在对单个稀土金属进行DSLM迁移研究的基础上,对混合稀土金属进行了DSLM分离研究,取得了以下结果:
     (1)PC-88A为载体时,在La(Ⅲ)、Ce(Ⅳ)、Tb(Ⅲ)、Eu(III)、Dy(Ⅲ)、Tm(Ⅲ)混合稀土金属的DSLM分离体系中选择液相酸度为0.50 mol/L、分散相中HCl浓度为4.00 mol/L、膜溶液与HCl溶液体积比为30:30、载体PC-88A浓度为0.160 mol/L时,在此条件下研究各稀土金属在DSLM中的分离行为,当各元素浓度均为1.00×10-4 mol/L时,Ce(Ⅳ)在120min时,可以与其它稀土金属分离。当调节料液相pH为2.80时,300 min时,Tb(Ⅲ)、Eu(Ⅲ)、Dy(Ⅲ)三种元素与La(Ⅲ)的分离因子分别为3.95、4.87和6.12;与Tm(Ⅲ)的分离因子分别为12.8、15.8和19.8。
     (2) D2EHPA为载体时,在La(Ⅲ)、Tb(III)、Eu(Ⅲ)、Dy(Ⅲ)、Tm(Ⅲ)混合稀土金属的DSLM分离体系中选择料液相pH为2.80、分散相中HCl浓度为4.00 mol/L、膜溶液与HCl溶液体积比为30:30、D2EHPA浓度为0.160 mol/L时,在此条件下研究各稀土金属在DSLM中的分离行为,当各金属离子浓度均为1.OOx10-4 mol/L时,80 min时,Tb(Ⅲ)、Eu(Ⅲ)、Dy(Ⅲ)三种元素与La(Ⅲ)的分离因子分别为9.24、4.81和1.80;与Tm(Ⅲ)的分离因子分别为64.4、33.5和12.6。Tb(Ⅲ)和Eu(Ⅲ)在此条件下可以很好的与La(Ⅲ)、Dy(Ⅲ)、Tm(Ⅲ)分离。调节料液相pH为2.00时,160 min, Dy(Ⅲ)与La(Ⅲ)的分离因子为23.3;与Tm(Ⅲ)的分离因子为102.9。Dy(Ⅲ)在此条件下可以很好的与La(Ⅲ)与Tm(Ⅲ)分离。La(Ⅲ)和Tm(Ⅲ)的混合溶液,调节料液相pH为3.00,250 min, La(III)与Tm(Ⅲ)的分离因子为19.1。La(Ⅲ)在此条件下可以很好的与Tm(Ⅲ)分离。
     (3)采用混合载体时,在Tb(III)、Eu(Ⅲ)、Dy(Ⅲ)混合稀土金属的DSLM分离体系中选择料液相pH为2.60、分散相中HCl浓度为4.00 mol/L、膜溶液与HCl溶液体积比为30:30、混合载体中PC-88A和D2EHPA浓度均为8.00×10-2 mol/L时,在此条件下研究混合稀土金属在DSLM中的分离行为,当各稀土金属初始浓度均为1.00×10-4 mol/L时,80min时,Tb(Ⅲ)、Dy(Ⅲ)与Eu(Ⅲ)的分离因子分别为24.2和10.7;Tb(Ⅲ)与Dy(Ⅲ)的分离因子为2.26。Tb(Ⅲ)和Dy(Ⅲ)在此条件下可以很好的与Eu(Ⅲ)分离。调节料液相pH为2.00时,80 min时,Eu(Ⅲ)、Dy(Ⅲ)与Tb(Ⅲ)的分离因子分别为28.9和19.1。Eu(Ⅲ)、Dy(Ⅲ)在此条件下可以与Tb(Ⅲ)分离。
     5、通过传质分析,证明料液相和分散相中的氢离子是稀土金属通过DSLM迁移的驱动力:迁移实验表明稀土金属在DSLM中的迁移行为宏观上具有连串反应的动力学特征,推导出稀土金属通过DSLM迁移的速率方程、Rf、Rm和Rs与准一级表观速率常数k1和k2的关系及稀土金属离子迁移的通量方程,获得稀土金属通过DSLM迁移动力学参数k1、k2、tmax、Rmmax、Jfmax及Jsmax。通过膜传质过程机理的探索,建立了稀土金属在DSLM中的传质动力学方程,计算出稀土金属通过DSLM迁移动力学参数Af,△m、df和Dm,得到稀土金属的渗透系数方程,通过实验验证了方程与实验结果较为一致。
The transport and separation for recovery of some kinds of rare earths through a dispersion supported liquid membrane (DSLM) consisting of polyvinylidene fluoride membrane (PVDF) as the liquid membrane support, dispersion solution including HCl solution as the stripping solution and organophosphates carrier in kerosene as the membrane solution, has been studied. The mathematical model of metal ions transport in liquid membrane systems was established by the analysis of mass transfer. The results are summarized as follows:
     1. The transport of La(Ⅲ), Ce(IV), Tb(III), Eu(Ⅲ), Dy(III) and Tm(Ⅲ) through a DSLM system with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A) as the carrier was studied. Effects of volume ratio of membrane solution and HCl solution, HCl concentration in the dispersion phase, pH in the feed phase, initial concentrations of these rare earths, concentration of PC-88A and different stripping agents on transport of these rare earths have been studied respectively. As a result, the optimum transport conditons of La(III), Ce(Ⅳ), Tb(III), Eu(III), Dy(III) and Tm(III) were obtained as that volume ratio of membrane solution and HCl solution 30:30,40:20,30:30,30:30,40:20 and 40:20 in the dispersion phase respectively, concentration of HCl solution 4.0 mol/L in the dispersion phase, pH value in the feed phase 4.00,1.00,5.20,4.20,5.00 and 5.10 respectively, concentration of PC-88A 0.160mol/L,0.160 mol/L,0.100 mol/L,0.160 mol/L,0.100 mol/L and 0.160 mol/L in the membrane solution respectively. Under the optimum conditions, when initial concentration of La(Ⅲ), Ce(IV), Tb(III), Eu(III), Dy(III) and Tm(III) were 8.00×10-5mol/L,7.00x10-5 mol/L, 1.O0×10-4 mol/L,8.00x10-5mol/L,8.00×10-5 mol/L and 1.OOx10-4mol/L respectively, during the transport time of 125 min,75 min,95 min,130 min,95 min and 155 min the transport percentages of these rare earths are up to 93.9%,96.3%,95.2%,95.3%,96.2% and 92.2% respectively.
     2. The transport of La(Ⅲ), Ce(IV), Tb(Ⅲ), Eu(Ⅲ), Dy(Ⅲ) and Tm(Ⅲ) through a DSLM system with Di(2-ethylhexyl)phosphoric acid (D2EHPA) as the carrier was studied. Effects of volume ratio of membrane solution and HCl solution, HCl concentration in the dispersion phase, pH in the feed phase, initial concentrations of these rare earths, concentration of D2EHPA and different strip agents on transport of these rare earths have been studied respectively. As a result, the optimum transport conditons of La(Ⅲ), Ce(IV), Tb(Ⅲ), Eu(Ⅲ), Dy(Ⅲ) and Tm(Ⅲ) were obtained as that volume ratio of membrane solution and HCl solution 20:40,30:30,30:30, 30:30,20:40 and 40:20 in the dispersion phase respectively, concentration of HCl solution 4.00 mol/L in the dispersion phase, pH value in the feed phase 5.00,0.500,4.50,5.00,4.50 and 5.00 respectively, concentration of D2EHPA 0.160 mol/L,0.160 mol/L,0.100 mol/L,0.160 mol/L, 0.100 mol/L and 0.160 mol/L in the membrane solution respectively. Under the optimum conditions, when initial concentration of La(III), Tb(III), Eu(III), Dy(Ⅲ) and Tm(III) were all 1.00x10-4 mol/L, during the transport time of 35 min the transport percentages of these rare earths are up to 94.8%,99.1%,93.7%,98.2% and 99.2%, respectively, and the transport percentages of Ce(IV) is 78.3%.
     3. The transport of Tb(III), Eu(Ⅲ) and Dy(III) through a DSLM system with PC-88A and D2EHPA as the mixed carrier was studied. Effects of volume ratio of membrane solution and HCl, HCl concentration in the dispersion phase, pH in the feed phase, initial concentrations of these rare earths, concentration and ratio of mixed carrier and different stripping agents on transport of these rare earths have been studied respectively. As a result, the optimum transport conditons of Tb(Ⅲ), Eu(Ⅲ) and Dy(Ⅲ) were obtained as that volume ratio of membrane solution and HCl solution 20:40,40:20 and 40:20 in the dispersion phase respectively, concentration of HCl solution 4.00 mol/L in the dispersion phase, pH value in the feed phase 3.80,4.80 and 3.80 respectively, concentration of PC-88A 8.00×10-2 mol/L and D2EHPA 8.00×10-2 mol/L in the membrane solution respectively. Under the optimum conditions, when initial concentration of Tb(Ⅲ), Eu(Ⅲ) and Dy(III) were all 1.OO×1O-4 mol/L, during the transport time of 30 min the transport percentages of these rare earths are up to 95.4%,94.6% and 97.0%.
     4. According to the transport studies of every rare earths metal in DSLM system, separations of mixed rare earths were studied in DSLM. The results are sumrnarized as follows:
     (1) DSLM separation system with PC-88A as the carrier:Ce(IV) can be separated from other rare earths in 120 min with PC-88A as the carrier, when initial concentration of La(III), Ce(IV), Tb(Ⅲ), Eu(Ⅲ), Dy(III) and Tm(III) were all 1.00×10-4mol/L, acidity in the feed phase was 0.500 mol/L, volume ratio of membrane solution and HCl solution 30:30, concentration of HCl solution 4.00 mol/L in the dispersion phase, and concentration of PC-88A was 0.160 mol/L in the membrane solution. Then pH in the feed phase was adjusted to 2.80, in 300 min the separation factors of Tb(Ⅲ), Eu(Ⅲ) and Dy(Ⅲ) separated from La(Ⅲ) were 3.95,4.80 and 6.12 respectively. However, Tb(III), Eu(Ⅲ) and Dy(Ⅲ) separated from Tm(III) were 12.8,15.8 and 19.8 respectively.
     (2) DSLM separation system with D2EHPA as the carrier:In 80 min the separation factors of Tb(Ⅲ), Eu(III) and Dy(Ⅲ) separated from La(Ⅲ) were 9.24,4.81 and 1.80 respectively with D2EHPA as the carrier, when initial concentration of La(Ⅲ), Ce(IV), Tb(Ⅲ), Eu(Ⅲ), Dy(Ⅲ) and Tm(Ⅲ) were all 1.OO+10-4 mol/L, pH in the feed phase was 2.80, volume ratio of membrane solution and HCl solution 30:30, concentration of HCl solution 4.00 mol/L in the dispersion phase, and concentration of D2EHPA was 0.160 mol/L in the membrane solution. However, Tb(Ⅲ), Eu(Ⅲ) and Dy(Ⅲ) separated from Tm(Ⅲ) were 64.4,33.5 and 12.6 respectively, so Tb(Ⅲ) and Eu(Ⅲ) can be separated from La(Ⅲ), Dy(III) and Tm(Ⅲ). When pH in the feed phase was adjusted to 2.00, in 160 min the separation factors of Dy(Ⅲ) separated from La(Ⅲ) and Tm(III) were 23.3 and 102.9 respectively, so Dy(Ⅲ) can be separated from La(Ⅲ) and Tm(Ⅲ). When pH in the feed phase was adjusted to 3.00, in mixed solution with La(III) and Tm(Ⅲ), in 250 min the separation factors of La(Ⅲ) separated from Tm(Ⅲ) was 19.1, so La(III) can be separated from Tm(III).
     (3) DSLM separation system with PC-88A and D2EHPA as the mixed carrier:In 80 min the separation factors of Tb(III) and Dy(Ⅲ) separated from Eu(Ⅲ) were 24.2 and 10.7 respectively with PC-88A and D2EHPA as the mixed carrier, when initial concentration of Tb(Ⅲ), Eu(Ⅲ) and Dy(III) were all 1.OOxlO-4mol/L, pH in the feed phase was 2.60, volume ratio of membrane solution and HCl solution 30:30, concentration of HCl solution 4.00 mol/L in the dispersion phase, and concentration of D2EHPA and PC-88A were all 8.00x 10-2 mol/L in the membrane solution. However, Tb(III) separated from Dy(III) was 2.26, so Tb(III) and Dy(III) can be separated from Eu(III). When pH in the feed phase was adjusted to 2.00, in 80 min the separation factors of Dy(III) and Eu(III) separated from Tb(III) were 28.9 and 19.1 respectively, so Eu(III) and Dy(III)can be separated from Tb(III).
     5. Through the analysis of mass transfer, the driving force of transportation is differences of concentration of hydrogen ion between feed phase and dispersion phase. The kinetics of transportation of metal ion through liquld membrane is studied and the results indicated that the transport kinetics could be analyzed in the formalism of concatenation reaction. The rate equation of transportation was obtained. The transport kinetics parameters are calculated including k1,k2, tmax, Rmax,Jfmax and Jsmax. The transport kinetics parameters Af,△m, df and Dm are calculated through the DSLM system. The osmotic coefficient equation is obtained through the DSLM. The osmotic coefficient equation is proved by transportation experiment.
引文
[1]王明华,徐瑞钧,周永秋,等.普通化学(第五版)[M].北京:高等教育出版社,2001.
    [2]于锦,姚思童,迟松江,等.发展中的稀土分离技术[J].沈阳工业大学学报,1999,21(1):83~85.
    [3]弗拉索夫,柯刚,王大雄,等.稀土元素问题[J].中国地质,1958,3(1):1 1~21.
    [4]刘文华,刘鹏宇.稀土元素分析[J].分析试验室,2002,21(3):89~108.
    [5]Li Q M, Liu Q, Zhang Q F, et al. Separation study of cadmium through an emulsion liquid membrane using triisooctylamine as mobile carrier[J]. Talanta,1998,46(2):927-932.
    [6]Karen L, Bhavani R, John W. Electrical and chemical demulsification techniques for microemulsion liquid membraneslJ]. Journal of membrane seience,1994,91(3):231-248.
    [7]He D S, Ma M, Wang H, et al. Effect of Kinetic Synergist on Transport of Copper(II) through a Liquid Membrane Containing P507 in Kerosene [J]. Can. J. Chem.,2001,79(8):1213-1219.
    [8]Gu S X, Yu Y D, He D S, et al. Comparison of Transport and Separation of Cd(II) between Strip Dispersion Hybrid Liquid Membrane (SDHLM) and Supported Liquid Membrane (SLM) Using Tri-n-octylamine as Carrier [J] Sep. Purif. Technol.,2006,51(3):277-284.
    [9]He D S, Gu S X, Ma M. Simultaneous Removal and Recovery of Cadmium(II) and CN from Simulated Electroplating Rinse Wastewater by a Strip Dispersion Hybrid Liquid Membrane (SDHLM) Containing Double Carrier [J]. J. Membr. Sci.,2007,305(1):36-47.
    [10]Sonawane J V, Pabby A K, Sastre A M. Au(I) Extraction by LIX-79/n-heptane Using the Pseudo-emulsion-Based Hollow-fiber Strip Dispersion (PEHFSD) Technique[J]. J. Membr. Sci.,2007, 300(1-2):147-155.
    [11]尹中林.中国拜耳法氧化铝生产技术的发展方向[J].轻金属,2000,(4):25~28.
    [12]王鸿振,梁勇,姜平国,等.赤泥中回收稀土金属的综述[J].稀有金属快报,2005,24(10):5-8.
    [13]侯庆烈,王振华.稀土金属的制备与提纯研究进展[J].上海有色金属,1999,20(3):132~141.
    [14]李国云,李国栋.熔盐萃取法制备低氧、低钙稀土金属(Dy、Y)的研究[D].内蒙古:内蒙古大学,2004.
    [15]Smirnov D I, Molchanova T V. The Investigation of Sulfuric Acid SorptionRecovery of Scandium and Uranium from the Red Mud of Alumina Production[J].Hydrometallurgy,1997,45(3):249-259.
    [16]韦刚健,刘颖,涂湘林,等.利用选择性特效树脂富集分离岩石样品中的锶钐和钕[J].岩矿测试,2004,24(1):11~14.
    [17]Ochsenkuhn P M, Hatzilyberis T, Argyropoulou R, et al. Pilot Plant Investigation of the Leaching Process for the Recovery of Scandium from Red Mud[J]. Ind. Eng. Chem. Res.,2002,41(23): 5794-5801.
    [18]施林妹,王惠君.亚胺基二乙酸树脂吸附钐(Ⅲ)的研究[J].浙江海洋学院学报(自然科学版),2005,
    24(2):140~142.
    [19]潘仲巍,张秋君,蓝启华,等.镧、钐、钬、铒与铁的D301萃取色谱法分离研究[J].泉州师范学院学报(自然科学),2007,25(6):62~66.
    [20]李玲颖,孙元明,钟凤林.反相萃取柱色层法分离轻稀土中相邻单一元素:微量La、Ce、Pr-Nd、Sm的分离测定[J].分析化学,1981,9(1):48~50.
    [21]应娓娟,雅文厚,沈韵玉,等.CL-P204萃淋树脂分离稀土的研究稀有金属[J].1981,(6):1-6.
    [22]彭春霖,崔永德,宋清秀.几种矿物酸为流动相对HEH(EHP)萃取柱色谱分离稀土的影响[J].分析化学,1983,11(7):318-323.
    [23]常宏涛,吴文远,涂赣峰,等.P204-HCl-H3cit体系萃取分离轻稀土的研究[J].稀土,2008,29(3):18-21.
    124]刘峙嵘,周利民.烷基酞亚胺萃取稀土的研究[J].有色金属(冶炼部分),2006,(5):34-38.
    [25]Nayak D, Lahiri S, Das N R. Synergistic extraction of neodymium and carrier-free promethium by the mixture of HDEHP and PC-88A[J]. J. Radioanal. Nucl. Chem.,1999,210(2):555-560.
    [26]刘营,邓佐国,徐廷华.’Cyanex272与HEHEHP混合体系萃取重稀土研究[J].稀有金属,2000,24(5):394~397.
    1[27]李聚源.1-苯基-3-甲基-4-乙酰基毗唑酮-5与1,10菲绕啉对镧(Ⅲ)、钐(Ⅲ)、铒(Ⅲ)的协同萃取[J].西安石油学院学报(自然科学版),2003,18(4):59-62.
    [28]贾琼,李德谦,牛春吉.1-苯基-3-甲基-4-苯甲酰基-吡唑酮-5与中(膦)萃取剂协同萃取镧B[J].分析化学,2004,32(11):1421~1425.
    [29]Xiong Y, Wang X L, Li D. Synergistic extraction and separation of heavy lanthanide by mixture of bis (2, 4,4-trimethylpentyl) phosphinic acid and 2-ehtylhexyl phosphinic acid mono-2-ethylhexyl ester[J]. Sep. Purif. Technol.,2005,4(3):230-233.
    [30]黄小卫,李建宁.P204-P507在酸性硫酸盐溶液中对Nd3+和Sm3+的协同萃取[J].中国有色金属学报,2008,18(2):356-371.
    [31]Haber F, Klemensiewicz Z. Uber elektrische phasengrenzkrafte zeitschirft fphysik[J]. Chemie,1909, 67(2):385-431.
    [32]Beutner R. Water-immiscible organic liquids as general conductors in galvanic cells[C]. In:Miller.L, ed. 23rd General Meeting of the American Electrochemical Society. Atlantic City, N J:1913.401-403.
    [33]Beutner R. Neue erscheihungen der eletrizitatserregung, welch einige bioelektrische phanomene erklaren[J]. Zeitschrift f Elektrochem,1913,19(8):319-330.
    [34]Osterbout W J V Some model of protoplasmic surface[J]. Cold Spring Habor Symp Quant Biol,1940, 8(1):51-56.
    [35]Widdas W F. Facilitated transfer of hexoses across the human erythrocyte membrane[J]. J Physiol,1954, 125(11):163-169.
    [36]Schloander P F. Oxygen transport through hemoglobin solution[J]. Science,1960,131(3):585-590.
    [37]Wittenberg J B. The molecular mechanism of hemoglobin facilitated oxygen fiffusion[J]. J Biol Chem, 1966,241(31):104-110.
    [38]Stark G, Benz R. The transport of potasium through liquid bilayer membranes by the natural carriers valinomycin and monaction[J]. J Membr Biol,1971,5(2):133-142.
    [39]Bloch R, Finkelstein A, Kedem 0, et al. Metal ion separation by dialysis through solvent membranes[J]. I& EC Process Design and Dev,1967,6(2):231-237.
    [40]Ward W J. Robb W L. Carbon dioxide-oxygen separation: facilitated transport of carbon dioxide across a liquid film[J]. Science,1967,156:1481-1486.
    [41]Li N N, Somerset N J. Separating hydrocarbons with liquid membrane[P]. US Pat:3419794.1968.
    [42]Danesi P R, Reichley-Yinger L, Rickert P G. Lifetime of supported liquid membranes:the influence of interfacial properties, chemical composition and water transport on the long-term stability of the membranes[J].J Membr Sci,1987,31(2-3):117-145.
    [43]Fabiani C, Merigiola M, Seibona G, et al. Degradation of supported liquid membranes under an osmotic pressure gradient[J]. J Membr Sci,1987,30(1):97-104.
    [44]Matson S L, Lopez J, Quinn J A. Separation of gases with synthetic membrane[J]. Chem Eng Sci,1983, 38(2):503-524.
    [45]Zouhri A, Emst B, Bugard M. Bulk liquid membrane for the recovery ofchromium(VI) from a hydroehloric acid medium using dicyclohexano-18-crown-6 as extractant carrier [J]. Sep. Sci. Technol., 1999,34(9):1891-1905.
    [46]Alpoguz H K, Memon S, Ersoz M, et al. Kinetics of mercury(II)transport through a bulk liquid membrane containing calix[4] arene derivatives as carrier[J]. Sep. Sci. Technol.,2003,38(7): 1649-1664.
    [47]Chakravarti A K, Chowdhury S B, Mukerjee D C. Liquid membrane multipleemulsion proeess of separation of copper(II) from waste waters[J]. Colloids Surf.,2000,166(1-3):7-25.
    [48]Teresa M, Reis A, Jorge M R, et al. Modelling of zinc extraction from sulphate solutions with bis(2-ethylhexyl) thiophosphoric acid by emulsion liquid membranes[J]. J. Membr. Sci.,2004, 237(1-2):97-107.
    [49]Li Q, Liu Q, Zhang Q F, et al. Separation study of cadmiumthrough an emulsion liquid membrane using triisooetylamine as mobile carrier[J]. Talanta,1998,46(5):927-932.
    [50]Larson K, Raghuraman B, Wieneek J. Electrical and chemical demulsification techniques for mieroemulsion liquid membranes [J]. J. Membr. Sci.,1994,91(3):231-248.
    [51]Kumbasar R A, Tutktln O. Separation and concentration of gallium from acidic leach solutions containing various metal ions by emulsion type of liquid membranes using TOPO as mobile carrier [J]. Hydrometallurgy,2004,75(1-4):111-121.
    [52]Sarangi K, Das R P. Separation of copper and zinc by supported liquid membrane using TOPS-99 as
    mobile carrier[J]. Hydrometallurgy,2004,71(3-4):335-342.
    [53]Knodo K, Yamamoto Y, Matsumoto M. Separation of indium(III) by a supported liquid membrane containing diisostearylphosphoric acid as carrier[J]. J. Membr. Sci.,1997,137(1-2):9-15.
    [54]Garcia R V, Munoz M, Valiente M. Selective separation of lanthanides by supported liquid membranes containing Cyanex 925 as a carrier[J]. Anal. Chim. Acta.,1999,387(1):77-84.
    [55]German S A, Ana N B F, Eduardo R, et al. Transport characterisation of a PIM system used for the extraction of Pb(II) using D2EHPA as carrier [J]. J. Membr. Sci.,2005,250(1-2):247-257.
    [56]Gega J, Walkowiak W, Gajda B. Separation of Co(II) and Ni(II) ions by supported and hybrid liquid membranes[J]. Sep. Purif.Technol.,2001,22-23:551-558.
    [57]Oleinikova M, Gonzalez C, Valiente M, et al. Selective transport of zinc through activated composite membranes containing di(2-ethylhexyl)dithiophosshoric acid as a carrier [J]. Polyhedron,1999,18(25): 3353-3359.
    [58]Alguaeil F J, Alonso M. Separation of zinc(II) from cobalt(II) solutions using supported liquid membrane with DP-8R(di(2-ethylhexyl)phosphoric acid)as a carrier[J]. Sep. Purif. Technol.,2005, 41(2):179-184.
    [59]侯庆烈,王振华.稀土金属的制备与提纯研究进展[J].上海有色金属,1999,20(3):132-141.
    [60]李国云,李国栋.熔盐萃取法制备低氧、低钙稀土金属(Dy、Y)的研究[D].内蒙古:内蒙古大学,2004.
    [61]Smirnov D I, Molchanova T V. The Investigation of Sulfuric Acid SorptionRecovery of Scandium and Uranium from the Red Mud of Alumina Production[J]. Hydrometallurgy,1997,45(3):249-259.
    [62]韦刚健,刘颖,涂湘林,等.利用选择性特效树脂富集分离岩石样品中的锶钐和钕[J].岩矿测试,2004,24(1):11-14.
    [63]Ochsenkuhn P M, Hatzilyberis T, Argyropoulou R, et al. Pilot Plant Investigation of the Leaching Process for the Recovery of Scandium from Red Mud[J]. Ind. Eng. Chem. Res.,2002,41(23): 5794-5801.
    [64]施林妹,王惠君.亚胺基二乙酸树脂吸附钐(Ⅲ)的研究[J].浙江海洋学院学报(自然科学版),2005,24(2):140-142.
    [65]潘仲巍,张秋君,蓝启华,等.镧、钐、钬、铒与铁的D301萃取色谱法分离研究[J].泉州师范学院学报(自然科学),2007,25(6):62~66.
    [66]Danesi P. Separation of Metal Species by Supported Liquid Membranes[J]. Sep Sci Technol,1984, 19(11):857-894.
    [67]Zha F F, Fane A, Fell C, et al. Critical Displacement Pressure of a Supported Liquid Membrane[J].J Membr Sci,1992,75:69-80.
    [68]Neplenbroek A M, Bargeman D. Smolders C A. Supported Liquid Membranes Instability Effects[J]. J Membr Sci,1992,67:121-132.
    [69]Lamb J D, Bruening R L, Izatt R M, et al. Characterization of a Supported Liquid Membrane for Macrocycle-Mediated Selective Cation Transport[J]. J Membr Sci,1988,37:13-26.
    [70]Babcock W C, Baker R W, Friesen D T, et al. Coupled Transport Membranes for Metal Separations[R]. NTIS Rep,1979,59-70.
    [71]Bakder R, Blume I. Coupled Transport Membranes.In Handbook of Industrial Membrane Technology[M]. Noyes, New Jersey:1990,9,511-518.
    [72]Neplenbroek A M, Bargeman D, Smolders C A. Mechanism of Supported Liquid Membrane Degradation:Emulsion Formation[J]. J Member Sci,1992,67:133-148.
    [73]Fabiani C, Merigiola M, Scibona S et al. Degradation of Supported Liquid Membranes under an Osmotic Pressure Gradient[J]. J Membr Sci,1987,30:97-104.
    [74]Danesi P, Yinger L R, Rickert P. Lifetime of Supported Liquid Membranes:The Influence of Interfacial Properties, Chemical Composition and Watr Transport on the Long Term Stability of the Mem-branes[J]. J Membr Sci,1987,31:117-145.
    [75]Zha F F, Fane A G, Fell C J D. Instability Membranes of Supported Liquid Membranes in Phenol Transport Model[J].J Membr Sci,1995,107:59-67.
    [76]Babcock W C, Baker R W, La Chapelle E D, et al. Coupled transport membranes Ⅱ:The mechanism of uranium transport with a tertiary amine[J]. Membrane Sci,1980,7:71-87.
    [77]Ren J X, Zhang B C. Membrane technology and water treatment in environmental protection[J]. Journal of Membrane Science and Technology,2001,21(1):25-29.
    [78]Shukla J P. Selective uphill transport of plutonium(IV) mediated by Aliquat-336 through a polymerimmobilized liquid membrane[J]. Radiochim Acta,1996,72(4):189-193.
    [79]Hovan C M. Studies on the macro-cycle-mediated transport of divalent metal ions in supported liquid membrane system[J]. Bull Korean chem.Soc,1995,16(1):33-36.
    [80]Lee H T. Separation of cobalt from a binary aqueous solution with a SLM technology[C]. Nonminjip-chungnam Taehakkyosanop kisul yonguso,1994,9(1):195-202.
    [81]Ching Y, Shiau P. Chen Z. Theoretical Analysis of Copper-ion Extraction through Hollow Fiber Supported Liquid Membranes[J]. Separation Sci. Technol.1993,28(13-14):2149-2165.
    [82]Valenzuela F, Basualto C. Application of hollow fiber supported liquid membranes technique to the selective recovery of a low content of copper from a Chilean mine water[J]. J. Membr. Sci,1999,155: 163-168.
    [83]王骋,姚秉华,谢伟.重金属镉离子的支撑液膜分离研究[J].水处理技术,2004,30(5):266~269.
    [84]卿春霞,张建民,宗刚,等.溶剂萃取法处理含柠檬酸镍废水的研究[J].纺织高校基础科学学报,2006,19(2):163~165.
    [85]卿春霞,宗刚,张建民,等.应用厚体液膜法处理含镍废水[J].过滤与分离,2006,16(4):14~16.
    [86]宗刚,金奇庭,卿春霞,等.三辛基甲基氯化铵对废水中柠檬酸镍的萃取作用[J].材料保护,2006, 39 (1):48-50.
    [87]Aroca G.A. quantitative model for the extraction of organic acid by a supported liquid membrane[C]. I chem.E. Res event Two-day symp,1994,1:39-41.
    [88]Raffaele M. Coupled transport of amino acid through a supported liquid membrane I experimental optimization[J]. J.membr sci,1992,73 (2-3):203-215.
    [80]Marek B. Enantioselective transport of amino acid through supported chiral liquid membrane[J]. J. membr sci,1993,85(3):221-228.
    [90]Cocheci V, Masu S S. Acetic acid recovery from wastewater using liquid surfactant memvranes[C]. Chem. Bull. Tech. Univ. Timisoara,1991,36(50):31-35.
    [91]张建民,崔心水.支撑液膜法提取柠檬酸-膜配方的研究[J].膜科学与技术,2006,26(4):88-92.
    [92]宋经华,张建民,吴金文.表面活性剂对支撑液膜体系提取柠檬酸的影响[J].西安工程科技学院学报,2006,20(6):745~748.
    [93]Urtiaga A M. Mathematical modeling of phenol recovery using supported liquid membrane[J]. Process Metal.1992,7(2):1539-1542.
    [94]Uriaga A M. Supported liquid membrane for the separation concentration of phenol, mass-transfer evaluation according to fundamental equations[J]. Ind. Eng. Res,1991,31(7):1745-1753.
    [95]Gorka A, Gregorio B, Nestor E. Permeation of mixtures of four phenols through a supported liquid membrane in NaCl 1.0 mol-dm-3 medium[J]. Sep.Sci. Technol,1999,34(4):665-681.
    [96]Park S W, Kim K W, Sohn I J. Facilitated transport of sodium phenolate through supported liquid membrane[J]. Separation and Purification Technology,.2000, (19):43-54.
    [97]Yang X J, Gu Z M, Wang D X. Extraction and separation of scandium from rare earths by electrostatic pseudo liquid membrane[J].J. Membr. Sci.,1995,106:131-145.
    [98]陈静.含酚废水的支撑液膜分离研究[D].西安理工大学,硕士论文,2005.
    [99]李凭力.热致相分离聚丙烯中空纤维膜及其萃取特性的研究[D].天津大学,博士论文,2002.
    [100]姚秉华,陈静,永长幸雄,等.苯酚在N-503/煤油支撑液膜体系中的传输分离[J].分析科学学报.2006,22(2):129~132.
    [101]位方,姚秉华,余晓皎,等.对硝基酚在N-503/煤油支撑液膜体系中的传输研究[J].西安理工大学学报,2006,22(3):286~289.
    [102]唐课文.药物对映体手性萃取及支载液膜分离理论与应用研究[D].中南大学,博士论文,2003.
    [103]Matson S L, Herrick C S. Progress on the selective removal of H2S from gasified coal using an immobilized liquid membrane[J]. Ind. Eng. Chem. Proc. Des. Deve,1977, (16):370-341
    [104]Ward W J. Analytical and experimental studies of facilitated transport[J]. AICHE J,1970,1(16): 405-416.
    [105]Teramoto M, Huang Q F. Facilitated transport of SO2 through supported liquid membrane using water as a carrie[J]. Separation and Purification Tech,1999, (16):109-108.
    [106]Figoli A, Ssger W F C. Facilitated oxygen transport in liquid membranes:review and new concepts [J]. J. Membr. Sci,2001,181(2):97-110.
    [107]江军锋,朱亚东,曹红斌.液膜技术在液化石油气脱硫中的工业应用[J].炼油技术与工程,2006,36(7):31~34.
    [108]沈江南,裘俊红,黄万抚.液膜分离技术及其在金属离子分离富集中的应用研究进展[J].江西有色金属,2006,20(1):28~32.
    [109]张瑞华,江德先.用乳状液膜从水溶液中提取混合稀土[J].膜科学与技术,1985,5(4):70~75.
    [110]张仲甫,张瑞华,汪德先.用液膜技术浓缩和分离稀土溶液[J].膜科学与技术,1986,6(1):41-47.
    [111]郁建涵,王士柱,姜长印,等.乳状液型液膜法提取稀土[J].稀土,1987,48(1):1-7.
    [112]刘振芳,张兴泰,范凉嘉.液膜法从离子吸附型稀土矿提取稀土[J].稀土,1988,55(2):3-8.
    [113]莫启武,王向德,万印华,等.磷酸三丁酯为载体的乳状液膜体系迁移钇(Ⅲ)的研究[J].现代化工,1999,95(1):24~26.
    [114]Konda K. Mechanisms of samarium extraction with diisostearyphosphoric acid and its permeation through supported liquid membrane[J]. J. chem. Eng. Jpn,1995,28(5):511-516.
    [115]lee C J. Extraction of trivalent europium via a supported liquid membrane containing PC-88A as a mobile carrier[J]. Chem. Eng. J,1995,57(3):253-260.
    [116]Yahaya G 0, Kim J K, J S Kim,Y G Shul, et al. Selective extraction of cesium ion with calyx arenecrown ether through thin sheet supported liquid membranes[J]. Journal of Membrane Science, 2001,187 (3):3-11.
    [117]Nakayama C, Uemiya S, Kojima T. Separation of rare earth metals using a supported liquid membrane with DTPA[J]. Journal of Alloys and Compounds,1995,225(1-2):288-290.
    [118]Chitra K R, Gaikwad A G, Surender G D, et al. Studies on ion transport of some rare earth elements through solvating extractants immobilised on supported liquid membrane[J]. Journal of Membrane Science,1997,125(2):257-268.
    [119]Akiba K, Ito M, Nakamura S. Selective transport of yttrium(III) in the presence of iron(III) through liquid-membrane impregnating acidic organophosphonate mobile carrier [J]. Journal of Membrane Science,1997,129(1):9-17.
    [120]Said N E, Rahman N A, Borai E H. Modification in Purex process using supported liquid membrane separation of cerium(III) via oxidation to cerium(Ⅳ)om fission products from nitrate medium by SLM[J]. Journal of Membrane Science,2002,198(1):23-31.
    [121]Gaikwad A G. Synergetic transport of europium through a contained supported liquid membrane using trioctylamine and tributyl phosphate as carriers[J]. Talanta,2004,63(4):917-926.
    [122]Bhattacharyya A, Mohapatra P K, Ansari S A, et al. Separation of trivalent actinides from lanthanides using hollow fiber supported liquid membrane containing Cyanex-301 as the carrier [J]. Journal of Membrane Science,2008,312(1-2):1-5.
    [123]Ramakul P, Supajaroon T, Prapasawat T, et al. Synergistic separation of yttrium ions in lanthanide series from rare earths mixture via hollow fiber supported liquid membrane[J]. Journal of Industrial and Engineering Chemistry,2009,15(2):224-228.
    [124]刘兴荣,郑载兴.聚砜—-P204支撑液膜分离稀土离子研究[J].稀土,1992,2(4):152~155.
    [125]刘彦民,霍子春,李标国,等.含P507的支撑液膜分离稀土Nd3+、Sm3+、Y3+的研究[J].稀土,1992,2(5):31-37.
    [126]刘兴荣,郑载兴.支撑液膜法分离铕和钇[J].稀土,t993,3(4):42-46.
    [127]王玉洁,张淑敏,李德谦.中空纤维膜萃取分离混合稀土中的钍[J].中国稀土学报,1998,16(3):193~198.
    [128]王玉洁,张淑敏,李德谦.铈(Ⅳ)与RE(Ⅲ)的中空纤维膜基萃取分离[J].高等学校化学学报,1998,19(6):970--972.
    [129]易涛,严纯华,李国标.平板夹心型支撑液膜萃取体系中La3+的迁移行为[J].中国稀土学报,1995,13(9):197-200.
    [130]沈江南,裘俊红,黄万抚.液膜分离技术及其在金属离子分离富集中的应用研究进展[J].江西有色金属,2006,20(1):28~32.
    [131]刘又年,舒万艮,黄可龙.支撑液膜法提取稀土的动力学[J].中南工业大学学报(自然科学版),1994,7(4):535~539.
    [132]严纯华,李洁,杜启云,等.中空纤维管夹心型支撑液膜萃取体系中La3+的迁移行为[J].中国稀土学报,1996,14(3):406--411.
    [133]Danesi P R, Reichley-Yinger L, Rickert P G. Lifetime of supported liquid membranes:the influence of interfacial properties, chemical composition and water transport on the long term stability of the membranes[J]. J Membr Sci,1987,31(2-3):117-145.
    [134]Fabiani C, Merigiola M, Seibona G, et al. Degration of supported liquid membranes under an osmotic pressure gradient[J]. J Membr Sci,1987,30(1):97-104.
    [135]Matson S L, Lopez J, Quinn J A. Separation of gases with synthetic membrane[J]. Chem Eng Sci,1983, 38:503-524.
    [136]顾忠茂.液膜分离技术进展[J].膜科学与技术,2003,23(4):214~233.
    [137]顾忠茂.液膜分离过程研究的新进展[J].膜科学与技术,1999,19(6):10~15.
    [138]Visser A E, Davis Jr J H, Rogers R D, et al. Supported ionic liquid membranes and facilitated ionic liquid membranes[C]. Green(or Greener)Industrial Application of Ionic Liquids. San Diego CA:USA, April,1-5,2001.
    [139]Fortunato R, Afonso C A M, Reis M A M, et al. Supported liquid membranesusing ionic liquids:studyof stability and transport mechanisms [J]. Journal of Membrane Science,2004,242:197-209.
    [140]王俊九,褚立强,范广宇,等.支撑液膜分离技术[J].水处理技术,2001,27(4):187~191.
    [141]Noble R D. eneralized microscopic mechanism of facilitated transport in fixed site carrier
    membranes[J]. Journal of Membrane Science,1992,12(75):21-29.
    [142]王彩玲,张立志.支撑液膜稳定性研究进展[J].化工进展,2007,26(7):949~956.
    [143]Neplenbroek A M, Bargeman D, Smolders C A. Supported liquid membranes:stabilization by gelation[J]. J Member Sci,1992,67(3):149-165.
    [144]Kemperman A J B, Damink B, Boomgaard Th Van den, et al. Stabilization of supported liquid membranes by gelation with PVC[J]. J Appl Polym Sci,1997,65(1):1205-1216.
    [145]Kemperman A J B, Rolevink H H M, Bargeman D, et al. Stabilization of supported liquid membranes by interfacial polymerization top layers[J]. J Membr Sci,1998,138(22):43-55.
    [146]Vijers M C, Jin M, Wessling M, et al. Supported liquid membranes modification with sulphonated poly (ether ether ketone):permeability,selectivity and stability[J]. J Membr Sci,1998,147(16):117-130.
    [147]Deetz D W,Kreevoy M M. Stabilized liquid films[P]. US:4710205,1987.
    [148]王明玺,王保国,赵洪,等.支撑液膜蒸汽渗透法分离甲苯/环己烷[J].石油化工,2004,33(8):747~751.
    [149]金美芳.复合支撑液膜[J].水处理技术,2000,26(1):18~21.
    [150]He T, Mulder M, Wewwling M. Stabilization methods hollow fiber membranes used in heavy metal extraction[A]. North American Membrane Society 2001 Meeting [C]. Lexington, Kentucky: USA, May 15-20,2001.
    [151]Obuskovic G, Majumdar S, Sirkar K. Selective removal of VOCs from gas streams in a plasma polymerized silicone-coated hollow fiber permeator[C]. North American Membrane Society 2002 Meeting. Long Beach, California:USA, May 11-15,2002.
    [152]Zhang L Z. Fabrication of a lithium chloride solution based composite supported liquid membrane and its moisture permeation analysis[J]. Journal of Membrane Science,2006,276:91-100.
    [153]Visser A E, Davis Jr J H, Rogers R D, et al. Supported ionic liquid membranes and facilitated ionic liquid membranes [A]. Green (or Greener) Industrial Applications of Ionic Liquids [C]. San Diego CA:USA,1-5 April,2001.
    [154]Carlin R T. Supported ionic liquid membrane reactors:Energy saving with reduced materials requirements [A]. Green (or Greener) Industrial Applications of Ionic Liquids[C]. San Diego CA:USA, 1-5 April,2001..
    [155]Raghuraman B, Wiencek J. Extraction with emulsion liquid membranes in a Hollow fiber contactor[J]. AIChE J,1993,39:1885-1889.
    [156]罗小健,何鼎胜,马铭,等.N530-OT-煤油-HCl反萃分散组合液膜体系迁移和分离铜的研究[J].无机化学学报,2005,(4):588~592.
    [157]张卫东,李爱民,李雪梅,等.液膜技术原理及中空纤维更新液膜[J].现代化工,2005,25(4):66~68.
    [158]喻远达,谷淑湘,罗小键,等.N902-煤油-HCl反萃分散组合液膜迁移和分离铜[J].应用化学, 2006,23(7):765-768.
    [159]Zha F F, Fane A G, Fell C J D. Instability mechanisms of supported liquid membranes in phenol transport process [J]. Journal of Membrane Science.1995,107:59-74.
    [160]Raquel F, Carlos A M, Afonso J B,et al. Stability of supported ionic liquid membranes as studied by X-ray photoelectron spectroscopy[J]. Journal of Membrane Science.2005,256:216-223.
    [161]易涛,严纯华,李标国.平板夹芯型支撑液膜萃取体系中La3+迁移行为[J].中国稀土学报,1995,13(3):197~200.
    [162]杜启云,王利生,胡新萍.几种支撑液膜组件的结构形式[J].水处理技术,1995,21(5):242~252.
    [163]朱国斌,李国标.中空纤维管夹心型支撑液膜萃取体系中La(Ⅲ)的迁移行为[J].中国稀土学报,1995,13(4):303~307.
    [164]Teramoto M, Tohno N, Ohnishi N, et al. Development of a spiral-type flowing liquid membrane module with high stability and its qpplication to the recovery of chromium and zinc[J]. Sep Sci Technol, 1989,24(7):981-999.
    [165]Teramoto M, Matsuyama H, Yamashiro T, et al. Separation of ethylene from ethane by a flowing liquid membrane using silver nitrate as a carrier[J]. J Membr Sci,1989,46(21):115-136.
    [166]Matsuyama H, Boku J, Teramoto M. Separation an centration of heavy metal ions by a spiral-type flowing liquid membrane module[J]. Water Treatment,1990,5(3):237-252.
    [167]Majumder S, Guha A K, Sirkar K K. A new liquid membrane technique for gas separation[J]. AIChE J, 1988,34:1135-1145.
    [168]Sengupta A, Basu R, Sirkar K K. separation of solutes from aqueous solution by contained liquid membrane[J]. AIChE J,1988,34:1698-1798.
    [169]李皓淑,任钟旗,张卫东,等.利用中空纤维更新液膜技术从稀溶液中提取柠檬酸明.食品科技,2007,10(4):141~145.
    [170]Pei L, Yao B H, Zhang C J. Transport of Tm(III) through dispersion supported liquid membrane containing PC-88A in kerosene as the carrier [J]. Sep. Purif Technol.,2009,65(2):220-227.
    [171]吴小宁,姚秉华,付兴隆,等.PC-88A-煤油-HCl分散支撑液膜中Co(Ⅱ)的传输研究[J].西安理工大学学报,2008,24(2):187~191.
    [172]吴小宁,姚秉华,付兴隆.PC-88A-煤油-HCl分散支撑液中Zn(Ⅱ)的传输与分离研究[J].水处理技术,2009,35(7):22-26.
    [173]El-Said N, Rahman N A, Borai E H. Modification in Purex Process Using Supported Liquid Membrane Separation of Cerium(III) via Oxidation to Cerium(IV) from Fission Products from Nitrate Medium by SLM[J]. J. Membr. Sci.,2002,198(1):23-31.
    [174]乔军,柳召刚,张存瑞,等.多组分硫酸体系P507萃取分离铈(Ⅳ)工艺[J].稀土,1999,20(4):65~69.
    [175]Alpoguz H K, Memon S, Ersoz M, et al. Kinetics of mercury(II) transport through a bulk liquid Membrane containing calix[4] arene derivatives as carrier[J]. Sep. Sei. Technol.,2003,38(7): 1649-1664.
    [176]He D S, Ma M, Wang H, et al. Effect of Kinetic Synergist on Transport of Copper(Ⅱ) through a Liquid Membrane Containing P507 in Kerosene[J]. Can. J. Chem.,2001,79(8):1213-1219.
    [177]Danesi P R. Separation of Metal Species by Supported Liquid Membrane[J]. Sep. Sci. Technol.,1985, 19(12):857-894.
    [178]Danesi P R, Horwitz E P, Vandegrift G F, et al. Mass Transfer Rate through Liquid Membrane: Interfacial Chemical Reactions and Diffusion as Simultaneous Permeability Controlling Factors[J]. Sep. Sci. Technol.,1981,16(1):202-214.
    [179]He D S, Luo X J, Yang C M, et al. Study of Transport and Separation of Zn(II) by a Combined Supported Liquid Membrane/Strip Dispersion Containing D2EHPA in Kerosene as the Carrier[J]. Desalination,2006,194(2):40-51.
    [180]Danesi P R. Separation of Metal Species by Supported Liquid Membrane[J]. Sep. Sci. Technol.,1984, 19(11):857-894.
    [181]Danesi P R, Horwitz E P, Rickert P G Transported of Eu2+ through a Bis(2-ethylhexyl) Phosphoric Acid, N-Dodecanol Solid Supported Liquid Membrane[J]. Sep. Sci. Technol.,1982,17(2):1183-1192.
    [182]Yaftian M R, Burgard M, Dieleman C B, et al. Rare Earth Metal-ion Separation Using a Supported Liquid Membrane Mediated by a Narrow Rim Phosphorylated Calix(IV) Arene[J]. J. Membr. Sci., 1998,144(2):57-64.
    [183]刘又年,舒万艮,黄可龙.支撑液膜法提取稀土的动力学[J].中南矿冶学院学报,1994,25(4):535~539.
    [184]Chiarizia R, Castagnola A, Danesi P R, et all. Mass transfer rate through solid supported liquid membranes: Influence of carrier dimerization and feed metal concentration on membrane permeability [J]. J. Membr. Sci.,1983,14(1):1-11.
    [185]Danesi P R, Vandegrift G F. Kinetics and mechanism of the interfacial mass transfer of Eu3+ and Am3+ in system bis(2-ethylhexyl) phosphate-n-dodecane NaCl-HCl-water[J]. J Phs Chem,1981,85:36-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700