手性选择剂对氨基酸的包合作用及其用于固膜拆分的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性物质的拆分在现在化工、生物领域有很重要的意义,高效低耗能的拆分方法是目前研究的热点。固膜手性拆分法与传统拆分方法相比,有很多优点:效性高、能耗低、便于连续操作等,已经成为极具发展潜力的方法。固膜拆分过程主要是根据膜上所接选择剂的手性基团对所拆分的两种对映体的选择性差距来实现,推动力包括压力、浓度或电势差等。手性选择剂的选择是关键技术之一。本实验旨在研究新型手性选择剂和固膜制备方法。
     本实验对β-环糊精(β-CD)进行改性,制备了β-环糊精类手性离子液体(β-CD-IL)单-6-脱氧基-6-(3-甲基咪唑)β-环糊精对甲苯磺酸盐作为手性选择剂。实验通过紫外分光光度法考察了β-CD以及β-CD-IL与氨基酸包合反应的包合比例和包合常数,得到酪氨酸与β-CD及β-CD-IL包合反应的比例为1:1,β-CD与D-酪氨酸的包合常数为214.42,β-CD与L-酪氨酸的包合常数为的220.40。色氨酸与β-CD的包合反应比例不确定。
     实验中用研磨法制备了β-CD类手性选择剂与氨基酸的包合物,通过XRD、FT-IR、NMR等手段检测了包合物的性状,证明包合物生成。用饱和溶液法研究了色氨酸与β-CD类手性选择剂的包合反应,得到了分离因子,两种手性选择剂对色氨酸均有手性识别能力,随着β-CD类手性选择剂浓度的增加,分离因子呈现增大的趋势。β-CD与D,L-色氨酸包合反应比例为5:1时分离因子可达1.402,β-CD-IL与D,L-色氨酸包合反应比例为20:1时分离因子可达1.558。
     在固膜拆分实验中,本实验分别选用PAN膜与N6膜为基膜,β-CD-IL与壳聚糖(CS)为手性选择剂,通过调节手性选择剂的浓度和比例制备了不同种类和层数的手性拆分固膜,通过红外光谱、扫描电镜的表征证明手性选择剂接在固膜上。用制备的固膜对D,L-色氨酸进行了拆分和吸附实验。以PAN膜为基膜的手性固膜得到的拆分因子最大为1.12,膜渗透通量随着时间的进行有所减少。以N6膜为基膜的手性拆分实验中,一层CS(1g)膜的拆分因子最大,为1.18。固膜对色氨酸的吸附量随着手性选择剂浓度的增大而增大,最大达到105.53mg/g膜。
The separation of chiral compounds is very important for the chemicaland biological field, meanwhile, the method that shows high efficiencyand low energy consumption is the main point in current research. Thesolid membrane separation process, as a tremendous potential method,has some advantages including high efficiency, low energy consumptionand convenient continuous operation, compared with the traditionalmethods. The process is based on the selective difference of chiral groupof selector immobilized on membrane for the two isomers needed to beseparated, and the driving force of separation contains pressure,concentration and potential difference. Obviously, the selection of chiralselector is very crucial for the process mentioned above. Thus, the aim ofthis work is to explore some noval chiral selectors and preparationmethods of solid membrane.
     The mono-6-deoxy-6-(3-methylimidazolium)-β-cyclodextrin tosylate(β-CD-IL), a chiral selector, was synthesized by the modification ofβ-cyclodextrin (β-CD) in this work. The Inclusion phenomena of β-CD and β-CD-IL with different amino acids were investigated, and theinclusion ratio and inclusion constant were obtained by UVspectrophotometry method. The inclusion ratio between β-CD andD,L-Tyr was1:1, while the inclusion constant between β-CD and D-Tyror L-Tyr was214.42or220.40. The inclusion ratio between β-CD andD,L-Trp was still unknown.
     The inclusion compounds between β-CD chiral selectors with aminoacids were prepared using grinding method. The inclusion compoundsprepared were characterized by XRD, FT-IR and NMR, which verifiestheir formation. The saturated solution method was used to investigate theinclusion phenomena between Trp and β-CD based selectors (β-CD andβ-CD-IL), giving the split factor. It was evident that the two selectors hadchiral recognition ability for the enantiomers. Further, the split factorsincreased with the chiral agents concentration increasing. When thereactant ratio of β-CD and D,L-Trp was5:1, the split factor mounted to1.402, while the reactant ratio of β-CD-IL and D,L-Trp was20:1, the splitfactor reached1.558.
     In the solid membrane separation process, moreover, the PANmembrane and N6membrane were used as the basement membranes,while the β-CD-IL and CS were deemed as the chiral selectors. And aseries of the chiral solid membranes were prepared by immobilizingdifferent chrial selectors on different porous support bodies. The solid membranes prepared showed different species and layers by controlingdifferent concentration and proportion. The resulted membrane werecharacterized by FT-IR and SEM to verify the fact that the chiralcompounds were immobilized on the membranes. The membranesobtained were used to separate and adsorb tryptophan (D,L-Trp) racemate.The s highest split factor using PAN basement membranes was1.12, thepermeate flux reduced with the time proceeding. The highest split factorof N6membranes was1.18. The adsorption capacity of solid membranefor tryptophan increased with growing concentraction of the chiral agents.The maximum adsorption capacity mounted to105.53mg/g membrane.
引文
[1]张美娜.手性荧光衍生RP-HPLC分离分析甲状腺素对映体[D].吉林:延边大学,2006.
    [2]叶秀林.立体化学[M].北京:北京大学出版社,1999.
    [3]肖玲.手性离子液体的制备及其用于D,L-色氨酸拆分的研究[D].北京:北京化工大学,2011.
    [4]黄量,戴立信.手性药物的化学与生物学[M].北京:化学工业出版社现代生物技术与医药科技出版中心,2002.
    [5] Martin C R, Jirage K B. New development in membrane-based separation[J]. Tibtech,1999,17:197~200.
    [6] Rosa H H, Pilar C F. Chromatographic separation of chlothalidone enantiomers using β-cyclodextrins as additives[J]. J Chromatogr B,2000,740:169~177.
    [7] Abolfazi S M, Robert T F. Pharmacokinetics of metoprolol enantiomers following single andmultiple administration of racemate in rat[J]. Internal J Pharm,2000,22:97~102.
    [8] Michael J. Single enantiomer drugs: New strategies an directions[J]. Chemistry&Industry,1996,20(5):374~378.
    [9]肖畴阡,宋光泉.有机化学[M].广州:中山大学出版社,1996.
    [10]刘秀明.手性螺环化合物的合成与拆分[D].天津:天津大学,2007.
    [11]胡建强,黄志平,李晶.氨基酸手性拆分研究进展[J].食品与药品,2012,14(1):60~64.
    [12] Wang B, Hu Z W, Xu D H. Enantioseparation of Aromatic Amino Acids Using α-Cyclodextrin-Modified Cellulose Fiber[A].2008,387~391.
    [13]赵磊,赵平.膜分离拆分对映异构体研究进展[J].河北工业科技,2009,26(1):53~57.
    [14]王军.手性拆分膜的制备及性能研究[D].北京:清华大学,2006.
    [15] Jang H K, Jee H K, Jon G L. Optical resolution of α-aminoacids through enantioselectivepolymeric membranes based on polysaccharides[J]. J Membrane Sci,2003,213(273-276).
    [16] Maruyama A, Adachi N, Takatsuka T. Enantioselective permeation of α-amino acidisomers through poly(amino acid)-derived membranes[J]. Macromolecule,1990,23:2748~2752.
    [17] Aoki T, Tomizawa S, Oikawa E. Enantioselective permeation through poly {γ-[3-pentamethyl(disiloxanyl)propyl]-L-glutamate}membranes[J]. J Membrane Sci,1995,99:117~119.
    [18]胡卫国.手性药物的厚体液膜拆分及其动力学研究[D].湖南:中南大学,2007.
    [19] Randon J, Blanc P, Paterson R. Modification of ceramic membrane surfaces using phosphoricacid and alkyl phosphonic acids and its effects on ultrafiltration of BSA protein[J]. JMembrane Sci,1995,98(119-129).
    [20] Lee N H, Frank C W. Separation of chiral molecules using polypeptide-modified poly(vinylidene fluoride) membrane[J]. Polymer,2002,43:6255~6262.
    [21] Higuchi A, Hayashi A, Kanda N. Chiral separation of amino acids in ultrafiltration throughDNA-immobilized cellulose membranes[J]. J Mol Struct,2005,739:145~152.
    [22] Ingole P G, Singh K, Bajaj H. Enantioselective permeation of α-amino acid isomers throughpolymer membrane containing chiral metal-Schiff base complexes[J]. Desalination,2011,281:413~421.
    [23] Jona T R, Aandrew L, Y Z. Chiral separations using ultrafiltration with a stereoselectivebinding agent[J]. Separ Sci Technol,2001,36(7):1575~1594.
    [24]陈扬,吕阳成,骆广生.牛血清白蛋白为分离剂超滤拆分色氨酸的机理和模型(Ⅰ)[J].化工学报,2007,58(1):114~118.
    [25]姜忠义,喻应霞,吴洪.分子印迹聚合物膜的制备及其应用[J].膜科学与技术,2006,26(1):78~84.
    [26] Yoshi K M, Ooi T J. Novel membrane materials having EEE derivatives as a chiralrecognition site[J]. Euro Polym,2001,37:335~342.
    [27]吴洪,赵艳艳,喻应霞.分子印迹壳聚糖膜分离手性苯丙氨酸[J].功能高分子学报,2007,20(3):262~266.
    [28] Kusumocahyo S P, Kanamori T, Sumaru K. Pervaporation of xylene isomer mixture throughcyclodextrins containing polyacrylic acid membranes[J].231,2004,(127-182).
    [29]王东新.能分离手性化合物的固定相—环糊精[J].南京师大学报,2008,31(2):69~74.
    [30]周英珍,王兴涌,张桂森,等.环糊精及其衍生物在手性药物拆分中的应用[J].化学试剂,2006,28(10):590~596.
    [31]张海容.环糊精超分子室温磷光进展[D].山西:山西大学,1999.
    [32] Saenger W R, Jacob J, Gessler K. Structures of the common cyclodextrins and their largeranalogues-beyond the doughnut[J]. Chem. Rev,1988,98(1787-1802).
    [33] Song L X, Bai L, Xu X M. Inclusion complexation, encapsulation interaction and inclusionnumber in cyclodextrin chemistry[J]. Coord Chem Rev,2009,253:1276~1284.
    [34]张境,刘万毅,张霞. β-环糊精-苯甲酰二茂铁缩氨基硫脲包合物特征及微环境效应研究[J].光谱学与光谱分析,2006,26(3):517~521.
    [35] Wang J, Cao Y, Sun B. Characterisation of inclusion complex of trans-ferulic acid andhydroxypropyl-β-cyclodextrin[J]. Food Chem,2011,124:1069~1075.
    [36]帅放文,向峰,章家伟. D(-)-磺苄西林钠的提纯方法[P].中国专利, CN102219793A,2011-10-19.
    [37] Wang H D, Chu L Y. Preparation and enantiomer separation characteristics of chitosan/β-cyclodextrin composite membranes[J]. J Membrane Sci,2007,297:262~270.
    [38] Zhou Z Z, Xiao Y C, Hatton T A. Effects of spacer arm length and benzoation onenantioseparation performance of β-cyclodextrin functionalized cellulose membranes[J]. JMembrane Sci,2009,339:21~27.
    [39]王军,杨许召,吴诗德,等.离子液体制作工艺技术[M].北京:中国纺织出版社,2012.
    [40]张稳. β-环糊精季铵化手性离子液体的合成及其结构表征[D].河南:河南大学,2007.
    [41]陶国宏.绿色功能化离子液体[D].北京:北京大学,2006.
    [42] Tran C D, Mejac I. Chiral Ionic Chiral ionic liquids for enantioseparation of pharmaceuticalproducts by capillary electrophoresis[J]. J Chromatogra A,2008,1204:204~209.
    [43] Bwambok D K, Marwan H M, Fernand V. Synthesis and Characterization of Novel ChiralIonic Liquids and Investigation of their Enantiomeric Recognition Properties[J]. Chirality,2008,20:151~158.
    [44] Ong T T, Wang R Q, Ng S C. Synthesis and application ofmono-6-(3-methylimidazolium)-6-deoxyperphenylcarbamoyl-β-cyclodextrin chloride aschiral stationary phases for high-performance liquid chromatography and supercritical fluidchromatography[J]. J Chromatogra A,2008,1182:126~140.
    [45] Yannis F, Anne V, Emilie J. Evaluation of chiral ionic liquids as additives to cyclodextrinsfor enantiomeric separations by capillary electrophoresis[J]. J Chromatogra A,2007,1155:134~141.
    [46]吕笑梅.基于壳聚糖的质子交换膜制备及性能测试[D].沈阳:东北大学,2008.
    [47] Liu Y, Zou H, Haginaka J. Preparation and evaluation of a novel chiral stationary phasebased on covalently bonded chitosan for ligand-exchange chromatography[J]. J. Sep. Sci,2006,29:1440~1446.
    [48] Chen J L, Syu H J. Immobilization of chitosan in sol-gel phases for chiral open-tubularcapillary electrochromatography[J]. Anal. Chim. acta,2012,718:130~137.
    [49] Prokhorovaa A F, Kuznetsovb M A, N S E. Enantioseparations of aromatic carboxylic acidby capillary electrophoresis using eremomycin as a chiral selector in a chitosan-modifiedcapillary[J].3,2010,(9-13).
    [50] Xiong W W, Wang W F, Zhao L. Chiral separation of (R,S)-2-phenyl-1-propanol throughglutaraldehyde-crosslinked chitosan membranes[J]. J Membrane Sci,2009,328:268~272.
    [51] Jiang Z G, Yu Y Z, Wu H. Preparation of CS/GPTMS hybrid molecularly imprintedmembrane for effcient chiral resolution of phenylalanine isomers[J]. J Membrane Sci,2006,280:876~882.
    [52] Matsuoka Y, Kanda N, Lee Y M. Chiral separation of phenylalanine in ultrafltration throughDNA-immobilized chitosan membranes[J]. J Membrane Sci,2006,280:116~123.
    [53] Monier M, Ayad D M, Wei Y. Preparation of cross-linked chitosan/glyoxal molecularlyimprinted resin for efficient chiral resolution of aspartic acid isomers[J]. Biochem Eng J,2010,51:140~146.
    [54]周立斌. β-环糊精及其聚乳酸接枝共聚物对氨基酸和胰岛素的包络作用[D].天津:天津大学,2003.
    [55] Song L X, Teng H F, Y Y. Preparation and Characterization of the Solid InclusionCompounds of a-, b-Cyclodextrin with Phenylalanine (D-, L-and DL-Phe) and Tryptophan(D-, L-and DL-Trp)[J]. J Incl Phenom Macrocycl Chem,2006,54:221~232.
    [56]孟洪,肖玲,李苏敏.一种手性拆分固膜的制备方法[P].中国专利, CN102179185A.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700