移动多曲线/曲面逼近
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代扫描技术的发展,尽管扫描设备的精度越来越高,但是由于测量误差的存在,还是很难得到精确的点云数据,所以对于扫描数据去噪的研究还是有必要的。移动多曲线/曲面逼近(MMC/SA)方法是一种新的点云数据去噪方法,它可以用来分离来自多个不同曲线或曲面的混合数据,并且得到相对精确的数据点,这是一个重采样的过程。
     本文主要包含三部分内容。首先我们给出了平面曲线的移动多曲线逼近。为了阐述用平面曲线的移动多曲线逼近方法进行数据分离的过程,我们考虑s=2和s=4,即在模型框架中取定两条曲线和取定四条曲线的两种情形。当s=2时,考虑了移动两直线逼近和移动两抛物线逼近,并把相应的逼近模型转化为优化模型来求解。在s=4时,把模型中的曲线取为四条曲线,此时模型也要转化为优化模型来求解。无论s=2还是s=4,我们都给出了优化模型的初值取法及实现过程。通过一些实例可以看出,平面曲线的移动多曲线逼近能很好地把来自平面曲线的混合数据分离开来。
     其次,我们还考虑了空间曲面的移动多曲面逼近。主要针对来自两个曲面的两片混合数据,我们提出了s=2时的移动多曲面逼近,分别给出了移动两平面逼近和移动两抛物面逼近,并建立了相应的优化模型。通过求解优化模型,得到需要的两类目标曲面,最终得到目标点。利用移动两平面逼近,处理了来自两平面的精确数据和混合数据以及来自两球面的精确数据和混合数据。利用移动两抛物面逼近,处理了来自椭圆抛物面和它对应的offset曲面的精确数据和混合数据,以及来自双曲抛物面和它对应的offset曲面的精确数据和混合数据。对于上述八种数据,我们分别给出了对应的误差结果。除此之外,我们还测试了来自圆柱型物体内外壁的实际混合数据等。
     最后,我们关注来自空间曲线的混合数据。为了实现这类数据的分离,首先需要建立一个基准平面,再把相关的数据点投影到这个基准平面上,最后利用平面曲线的移动多曲线逼近分离投影数据。我们通过测试一些混合数据来证实算法的有效性。
With the development of modern scanning technology, the scanner is with higher accuracy. However, because of measurement error, it is still difficult to obtain exact point cloud data. So, it is necessary to do some research on denosing. Moving Multiple Curves/Surfaces Approximation is a new method for point cloud denoising. It can be used to separate mixed point data received from many different curves and surfaces and obtain relatively accurate data. This is a process of re-sampling.
     The paper mainly consists of three parts. We first present Moving Multiple Curves Approximation(MMCA) for plane curves. In order to elaborate the process of separating mixed point clouds using MMC A for plane curves, we consider the cases of s=2and s=4respectively, i.e. there will be two and four curves in a model. In the case of s=2, we focus on moving two straight lines and two parabolas approximation. For the sake of solving the two models, their corresponding models are converted to optimization models. In the case of s=4, the number of curves in a model is4. We also need to change the model to an optimal model. Both s=2and s=4, we present how to choose initial values and the details of implementation. According to the results of some examples, we will discover that it is effective for MMC A to separate mixed data received from multiple plane curves.
     We also propose Moving Multiple Surfaces Approximation (MMSA) for sur-faces in3D. Considering two pieces of mixed data from two surfaces, we provide MMS A with the model of s=2. Moving two planes approximation and moving two paraboloids approximation and their corresponding optimization models are presented. When a model is solved, we will get two target surfaces and then two target points are obtained. Using moving two planes approximation, we separate the exact and mixed data received from two planes and two spheres. By moving two paraboloids approximation, we deal with the exact and mixed data obtained from an elliptic paraboloid and its offset surface, hyperboloid paraboloid and its offset surface. The error estimation of the above eight cases are provided. Besides, we test the real data from the inner and outer walls of a part of cylindrical object and so on.
     Finally, we focus on the mixed data from space curves. In order to separate the mixed data, firstly, we need to establish a reference plane. Secondly, we project the related data points to the reference plane. Thirdly, we separate the projected points using the moving multiple curves approximation method. We will test some examples to show the effectiveness of our algorithm.
引文
[1]M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade and D. Fulk. The digital Michelangelo project:3D scanning of large statues. Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Pub-lishing Co.,131-144,2000.
    [2]F. Berryman, F. Pynsent, J. Fairbank and S. Disney. A new system for measuring three-dimensional back shape in scoliosis. European Spine Journal,17(5):663-672, 2008.
    [3]W. Glinkowski, R. Sitnik, H. Kocon, P. Bolewicki, A. Gorecki and M. Witkowski. Method of pectus excavatum measurement based on structured light technique. Journal of biomedical optics,14(4),2009.
    [4]S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstadt and J. Ennen. Rapid in vivo measurement of the topography of human skin by active image tri-angulation using a digital micromirror device. Skin Research and Technology,5(3): 195-207,1999.
    [5]J. M. Lagarde, C. Rouvrais, D. Black, S. Diridollou and Y. Gall. Skin topography measurement by interference fringe projection:a technical validation. Skin Research and Technology,7(2):112-121,2001.
    [6]U. Jacobi, M. Chen, G. Frankowski, R. Sinkgraven, M. Hund, B. Rzany, W. Sterry and J. Lademann. In vivo determination of skin surface topography using an optical 3D device. Skin Research and Technology,10(4):207-214,2004.
    [7]C. Rocchini, P. Cignoni, C. Montani, P. Pingi and R. Scopigno. A low cost 3D scanner based on structured light. Computer Graphics Forum, Blackwell Publishers Ltd,20(3):299-308,2001.
    [8]F. Bernardini and H. Rushmeier. The 3D model acquisition pipeline. Computer graphics forum, Blackwell Publishers Ltd,21(2):149-172,2002.
    [9]S. Rusinkiewicz, O. Hall-Holt and M. Levoy. Real-time 3D model acquisition. ACM Transactions on Graphics,21(3):438-446,2002.
    [10]C. R. Popescu and A. Lungu. Real-time 3D reconstruction using a Kinect Sensor. 2014.
    [11]P. Liepa. Filling holes in meshes. Proceedings of the 2003 Eurographics/ACM SIG-GRAPH symposium on Geometry processing,200-205,2003.
    [12]J. Wang and M. M. Oliveira. Filling holes on locally smooth surfaces reconstructed from point clouds. Image and Vision Computing,25(1):103-113,2007.
    [13]J. Davis, S. R. Marschner, M. Garr and M. Levoy. Filling holes in complex surfaces using volumetric diffusion.3D Data Processing Visualization and Transmission,428-441,2002.
    [14]G. Taubin. A signal processing approach to fair surface design. Proceedings of the 22nd annual conference on Computer graphics and interactive techniques,351-358, 1995.
    [15]M. Desbrun, M. Meyer, P. Schroder and A. H. Barr. Implicit fairing of irregular meshes using diffusion and curvature flow. Proceedings of the 26th annual conference on Computer graphics and interactive techniques, ACM Press,317-324,1999.
    [16]I. Guskov, W. Sweldens and P. Schroder. Multiresolution signal processing for meshes. Proceedings of the 26th annual conference on Computer graphics and in-teractive techniques, ACM Press,325-334,1999.
    [17]S. Fleishman, I. Drori and D. Cohen-Or. Bilateral mesh denoising. ACM Transac-tions on Graphics,22(3):950-953,2003.
    [18]T. R. Jones, F. Durand and M. Desbrun. Non-iterative, feature-preserving mesh smoothing. ACM Transactions on Graphics,22(3):943-949,2003.
    [19]A. F. El Ouafdi, D. Ziou and H. Krim. A smart stochastic approach for manifolds smoothing. Computer Graphics Forum,27(5):1357-1364,2008.
    [20]G. Taubin. Linear anisotropic mesh filtering[P].2002.
    [21]H. Yagou, Y. Ohtake and A. Belyaev. Mesh smoothing via mean and median filtering applied to face normals. Geometric Modeling and Processing,124-131,2002.
    [22]H. Yagou, Y. Ohtake and A. G. Belyaev. Mesh denoising via iterative alpha-trimming and nonlinear diffusion of normals with automatic thresholding. Computer Graphics International,28-34,2003.
    [23]Y. Shen and K. E. Barner. Fuzzy vector median-based surface smoothing. Visual-ization and Computer Graphics, IEEE Transactions on,10(3):252-265,2004.
    [24]K. W. Lee and W. P. Wang. Feature-preserving mesh denoising via bilateral normal filtering. Computer Aided Design and Computer Graphics,2005. Ninth International Conference on, IEEE,6,2005.
    [25]X. Sun, P. L. Rosin, R. R. Martin and F. C. Langbein. Fast and effective feature-preserving mesh denoising. Visualization and Computer Graphics, IEEE Transac-tions on,13(5):925-938,2007.
    [26]H. Fan, Y. Yu and Q. Peng. Robust feature-preserving mesh denoising based on consistent subneighborhoods. Visualization and Computer Graphics, IEEE Trans-actions on,16(2):312-324,2010.
    [27]X. Sun, P. L. Rosin, R. R. Martin and F. C. Langbein. Random walks for feature-preserving mesh denoising. Computer Aided Geometric Design,25(7):437-456, 2008.
    [28]C. C. L. Wang. Bilateral recovering of sharp edges on feature-insensitive sampled meshes. Visualization and Computer Graphics, IEEE Transactions on,12(4):629-639,2006.
    [29]Y. Zheng, H. Fu, O. K. C. Au and C. L. Tai. Bilateral normal filtering for mesh denoising. Visualization and Computer Graphics, IEEE Transactions on,17(10): 1521-1530,2011.
    [30]L. He and S. Schaefer. Mesh denoising via L0 minimization. ACM Transactions on Graphics,32(4):64,2013.
    [31]李庆扬,王能超.数值分析.清华大学出版社有限公司,2001.
    [32]D. R. Kincaid and E. W. Cheney. Numerical analysis:mathematics of scientific computing. American Mathematical Soc.,2002.
    [33]G. E. Farin. Curves and surfaces for CAGD:a practical guide. Morgan Kaufmann, 2002.
    [34]R. L. Harder and R. N. Desmarais. Interpolation using surface splines. Journal of Aircraft,9(2):189-191,1972.
    [35]H. Akima. A method of bivariate interpolation and smooth surface fitting for irregu-larly distributed data points. ACM Transactions on Mathematical Software(TOMS), 4(2):148-159,1978.
    [36]J. G. Hayes and J. Halliday. The least-squares fitting of cubic spline surfaces to general data sets. IMA Journal of Applied Mathematics,14(1):89-103,1974.
    [37]J. Hoschek. Smoothing of curves and surfaces. Computer Aided Geometric Design, 2(1):97-105,1985.
    [38]M. Von Golitschek and L. L. Schumaker. Data fitting by penalized least squares. Algorithms for approximation II, Springer US,210-227,1990.
    [39]E. Kaufmann and R. Klass. Smoothing surfaces using reflection lines for families of splines. Computer-Aided Design,20(6):312-316,1988.
    [40]G. Farin and N. Sapidis. Curvature and the fairness of curves and surfaces. Computer Graphics and Applications, IEEE,9(2):52-57,1989.
    [41]B. Sarkar and C. H. Menq. Smooth-surface approximation and reverse engineering. Computer-Aided Design,23(9):623-628,1991.
    [42]H. Hagen and P. Santarelli. Variational design of smooth B-spline surfaces. Topics in geometric modeling,85-94,1992.
    [43]M. Eck and J.Hadenfeld. Local energy fairing of B-spline curves. Geometric Mod-elling, Springer Vienna,129-147,1995.
    [44]T. Hermann, Z. Kovacs and T. Varady. Special applications in surface fitting. Geo-metric Modeling:Theory and Practice, Springer Berlin Heidelberg,14-31,1997.
    [45]G. Greiner and K. Hormann. Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines. Proceedings of Chamonix,1,1996.
    [46]V. Weiss, L. Andor, G. Renner and T. Varady. Advanced surface fitting techniques. Computer Aided Geometric Design,19(1):19-42,2002.
    [47]H. Lin, G. Wang and C. Dong. Constructing iterative non-uniform B-spline curve and surface to fit data points. Science in China Series:Information Sciences,47(3): 315-331,2004.
    [48]H. W. Lin, H. J. Bao and G. J. Wang. Totally positive bases and progressive iteration approximation. Computers & Mathematics with Applications,50(3):575-586,2005.
    [49]D. Qi, Z. Tian, Y. Zhang and J. B. Zheng. The method of numeric polish in curve fitting. Acta Mathematica Sinica,18(3):173-184,1975.
    [50]C. de Boor. How does Agee's smoothing method work. Proceedings of the 1979 army numerical analysis and computers conference, ARO Report,79-3,1979.
    [51]S. Limin and W. Renhong. An iterative algorithm of NURBS interpolation and approximation. Journal of mathematical research and exposition-chinese edition, 26(4):735,2006.
    [52]L. Lu. Weighted progressive iteration approximation and convergence analysis. Com-puter Aided Geometric Design,27(2):129-137,2010.
    [53]H. Lin. Local progressive-iterative approximation format for blending curves and patches. Computer Aided Geometric Design,27(4):322-339,2010.
    [54]J. Chen and G. J. Wang. Progressive iterative approximation for triangular Bezier surfaces. Computer-Aided Design,43(8):889-895,2011.
    [55]H. Lin and Z. Zhang. An extended iterative format for the progressive-iteration approximation. Computers & Graphics,35(5):967-975,2011.
    [56]C. Deng and H. Lin. Progressive and iterative approximation for least squares B-spline curve and surface fitting. Computer-Aided Design,47:32-44,2014.
    [57]J. Wang, Z. Yang, L. Jin, J. Deng and F. Chen. Parallel and adaptive surface reconstruction based on implicit PHT-splines. Computer Aided Geometric Design, 28(8):463-474,2011.
    [58]D. Levin. Mesh-independent surface interpolation. Geometric modeling for scientific visualization, Springer Berlin Heidelberg,37-49,2004.
    [59]D. Levin. The approximation power of moving least-squares. Mathematics of Com-putation of the American Mathematical Society,67(224):1517-1531,1998.
    [60]M. Pauly. Point primitives for interactive modeling and processing of 3D geometry. Hartung-Gorre,2003.
    [61]T. K. Dey and J. Sun. An adaptive MLS surface for reconstruction with guarantees. Symposium on Geometry Processing,43-52,2005.
    [62]H. Wang, C. E. Scheidegger and C. T. Silva. Optimal bandwidth selection for mls surfaces. Shape Modeling and Applications,2008. SMI 2008. IEEE International Conference on. IEEE,111-120,2008.
    [63]N. Amenta and Y. J. Kil. Defining point-set surfaces. ACM Transactions on Graph-ics,23(3):264-270,2004.
    [64]G. Guennebaud and M. Gross. Algebraic point set surfaces. ACM Transactions on Graphics,26(3):23,2007.
    [65]A. Adamson and M. Alexa. Anisotropic point set surfaces. Computer Graphics Fo-rum, Blackwell Publishing Ltd,25(4):717-724,2006.
    [66]M. Alexa and A. Adamson. Interpolatory point set surfaces-convexity and Hermite data. ACM Transactions on Graphics (TOG),28(2):20,2009.
    [67]A. C. Oztireli, G. Guennebaud and M. Gross. Feature preserving point set sur-faces based on non-linear kernel regression. Computer Graphics Forum, Blackwell Publishing Ltd,28(2):493-501,2009.
    [68]S. Fleishman, D. Cohen-Or and C. T. Silva. Robust moving least-squares fitting with sharp features. ACM Transactions on Graphics (TOG),24(3):544-552,2005.
    [69]M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin and C. T. Silva. Comput-ing and rendering point set surfaces. Visualization and Computer Graphics, IEEE Transactions on,9(1):3-15,2003.
    [70]S. Schaefer, T. McPhail and J. Warren. Image deformation using moving least squares. ACM Transactions on Graphics (TOG),25(3):533-540,2006.
    [71]M. Oudjene, L. Ben-Ayed, A. Delameziere and J. L. Batozc. Shape optimization of clinching tools using the response surface methodology with Moving Least-Square approximation. Journal of materials processing technology,209(1):289-296,2009.
    [72]M. Muller, R. Keiser, A. Nealen, M. Pauly, M. Gross and M. Alexa. Point based animation of elastic, plastic and melting objects. Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics As-sociation,141-151,2004.
    [73]Z. Yang and T. Kim. Moving parabolic approximation of point clouds. Computer-Aided Design,39(12):1091-1112,2007.
    [74]D. A. Keim and A. Herrmann. The gridfit algorithm:An efficient and effective approach to visualizing large amounts of spatial data. Visualization'98, Proceedings, IEEE,181-188,1998.
    [75]G. Taubin. An improved algorithm for algebraic curve and surface fitting. Com-puter Vision,1993. Proceedings., Fourth International Conference on, IEEE,658-665,1993.
    [76]F. L. Bookstein. Fitting conic sections to scattered data. Computer Graphics and Image Processing,9(1):56-71,1979.
    [77]G. Taubin. Nonplanar curve and surface estimation in 3-space. Robotics and Au-tomation,1988, Proceedings.,1988 IEEE International Conference on, IEEE,644-645,1988.
    [78]G. Taubin. Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence,13(11):1115-1138,1991.
    [79]P. D. Sampson. Fitting conic sections to "very scattered" data:An iterative refine-ment of the Bookstein algorithm. Computer graphics and image processing,18(1): 97-108,1982.
    [80]M. P. Do Carmo. Differential geometry of curves and surfaces. Englewood Cliffs: Prentice-Hall,1976.
    [81]彭家贵,陈卿等.微分几何.高等教育出版社,2010.
    [82]吕林根,许子道等.解析几何(第三版).高等教育出版社,2003.
    [83]A. Nealen. An as-short-as-possible introduction to the least squares, weighted least squares and moving least squares methods for scattered data approximation and interpolation. URL:http://www. nealen. com/projects,130:150,2004.
    [84]T. P. Fries and H. G. Matthies. Classification and overview of meshfree methods. Scientific. Computing, Informatikbericht,2003.
    [85]H. Wendland. Piecewise polynomial, positive definite and compactly supported ra-dial functions of minimal degree. Advances in computational Mathematics,4(1): 389-396,1995.
    [86]P. Lancaster and K. Salkauskas. Surfaces generated by moving least squares meth-ods. Mathematics of computation,37(155):141-158,1981.
    [87]J. C. Gilbert and C. Lemarechal. Numerical optimization:theoretical and practical aspects, Springer,2006.
    [88]J. Wang, D. Gu, Z. Yu, C. Tan and L. Zhou. A framework for 3D model reconstruc-tion in reverse engineering. Computers & Industrial Engineering,63(4):1189-1200, 2012.
    [89]J. Wang, Z. Yu, W. Zhu and J. Cao. Feature-preserving surface reconstruction from unoriented, noisy point data. Computer Graphics Forum, Blackwell Publishing Ltd, 32(1):164-176,2013.
    [90]T. K. Dey and P. Kumar. A simple provable algorithm for curve reconstruction. Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics,893-894,1999.
    [91]T. K. Dey, K. Mehlhorn and E. A. Ramos. Curve reconstruction:Connecting dots with good reason. Proceedings of the fifteenth annual symposium on Computational geometry, ACM,197-206,1999.
    [92]S. Funke and E. A. Ramos. Reconstructing a collection of curves with corners and endpoints. Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics,344-353,2001.
    [93]E. Althaus and K. Mehlhorn. Traveling salesman-based curve reconstruction in poly-nomial time. SIAM Journal on Computing,31(1):27-66,2001.
    [94]T. K. Dey and R. Wenger. Fast reconstruction of curves with sharp corners. In-ternational Journal of Computational Geometry & Applications,12(05):353-400, 2002.
    [95]S. W. Cheng, S. Funke, M. Golin, P. Kumar, S. H. Poon and E. Ramos. Curve reconstruction from noisy samples. Proceedings of the nineteenth annual symposium on Computational geometry, ACM,302-311,2003.
    [96]A. Mukhopadhyay and A. Das. Curve reconstruction in the presence of noise. CGIV, 7:177-182,2007.
    [97]D. Krasnoshchekov and V. Polishchuk. Robust curve reconstruction with k-order α-shapes. Shape Modeling and Applications,279-280,2008.
    [98]L. Fang and D. C. Gossard. Multidimensional curve fitting to unorganized data points by nonlinear minimization. Computer-Aided Design,27(1):48-58,1995.
    [99]G. Taubin and R. Ronfard. Implicit simplicial models for adaptive curve recon-struction. Pattern Analysis and Machine Intelligence, IEEE Transactions on,18(3): 321-325,1996.
    [100]H. Pottmann and T. Randrup. Rotational and helical surface approximation for reverse engineering. Computing,60(4):307-322,1998.
    [101]A. A. Goshtasby. Grouping and parameterizing irregularly spaced points for curve fitting. ACM Transactions on Graphics (TOG),19(3):185-203,2000.
    [102]I. K. Lee. Curve reconstruction from unorganized points. Computer aided geometric design,17(2):161-177,2000.
    [103]S. H. Poon. Curve and surface reconstruction from noisy samples. The Hong Kong University of Science and Technology,2004.
    [104]H. Lin, W. Chen and G. Wang. Curve reconstruction based on an interval B-spline curve. The Visual Computer,21(6):418-427,2005.
    [105]Y. F. Wu, Y. F. Zhang, Y. S. Wong and H. T. Loh. Constructing 2D curves from scanned data points using B-spline wavelets. Computer-Aided Design & Applica-tions,1,2004.
    [106]F. De Goes, D. Cohen-Steiner, P. Alliez and M. Desbrun. An optimal transport ap-proach to robust reconstruction and simplification of 2d shapes. Computer Graphics Forum, Blackwell Publishing Ltd,30(5):1593-1602,2011.
    [107]J. Wang, Z. Yu, W. Zhang, M. Wei, C. Tan, N. Dai and X. Zhang. Robust recon-struction of 2D curves from scattered noisy point data. Computer-Aided Design, 2014.
    [108]T. Hastie and W. Stuetzle. Principal curves. Journal of the American Statistical Association,1989,84(406):502-516.
    [109]J. J. Verbeek, N. Vlassis and B. Krose. A k-segments algorithm for finding principal curves. Pattern Recognition Letters,23(8):1009-1017,2002.
    [110]D. R. Kincaid and E. W. Cheney. Numerical analysis:mathematics of scientific computing. Pacific Grove, CA:Brooks/Cole,2002.
    [111]M. Pauly, R. Keiser, L. P. Kobbelt and M. Gross. Shape modeling with point-sampled geometry. ACM Transactions on Graphics (TOG),22(3):641-650,2003.
    [112]吴光磊,田畴.解析几何简明教程.高等教育出版社,2008.
    [113]N. Amenta, S. Choi and R. K. Kolluri. The power crust. Proceedings of the sixth ACM symposium on Solid modeling and applications, ACM,249-266,2001.
    [114]H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle. Surface recon-struction from unorganized points. ACM,1992.
    [115]J. D. Boissonnat and F. Cazals. Smooth surface reconstruction via natural neighbour interpolation of distance functions. Proceedings of the sixteenth annual symposium on Computational geometry, ACM,223-232,2000.
    [116]R. Kolluri, J. R. Shewchuk and J. F. O'Brien. Spectral surface reconstruction from noisy point clouds. Proceedings of the 2004 Eurographics/ACM SIGGRAPH sym-posium on Geometry processing, ACM,11-21,2004.
    [117]M. Pauly, N. J. Mitra and L. Guibas. Uncertainty and variability in point cloud surface data. Symposium on point-based graphics,9,2004.
    [118]Y. Ohtake, A. Belyaev and H. P. Seidel. An integrating approach to meshing scat-tered point data. Proceedings of the 2005 ACM symposium on Solid and physical modeling, ACM,61-69,2005.
    [119]A. Hornung and L. Kobbelt. Robust reconstruction of watertight 3D models from non-uniformly sampled point clouds without normal information. Proceedings of the fourth Eurographics symposium on Geometry processing, Eurographics Association, 41-50,2006.
    [120]P. Alliez, D. Cohen-Steiner, Y. Tong, and M. Desbrun. Voronoi-based variational reconstruction of unoriented point sets. Symposium on Geometry processing,7:39-48,2007.
    [121]J. Siissmuth, Q. Meyer and G. Greiner. Surface reconstruction based on hierarchical floating radial basis functions. Computer Graphics Forum, Blackwell Publishing Ltd, 29(6):1854-1864,2010.
    [122]Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H. P. Seidel. Multi-level partition of unity implicits. ACM SIGGRAPH 2005 Courses, ACM,173,2005.
    [123]Y. Nagai, Y. Ohtake and H. Suzuki. Smoothing of partition of unity implicit sur-faces for noise robust surface reconstruction. Computer Graphics Forum, Blackwell Publishing Ltd,28(5):1339-1348,2009.
    [124]M. Kazhdan. Reconstruction of solid models from oriented point sets. Proceedings of the third Eurographics symposium on Geometry processing, Eurographics Asso-ciation,73,2005.
    [125]M. Kazhdan, M. Bolitho and H. Hoppe. Poisson surface reconstruction. Proceedings of the fourth Eurographics symposium on Geometry processing,2006.
    [126]N. Salman, M. Yvinec and Q. Merigot. Feature preserving mesh generation from 3d point clouds. Computer graphics forum, Blackwell Publishing Ltd,29(5):1623-1632, 2010.
    [127]H. Avron, A. Sharf, C. Greif and D. Cohen-Or. l1-Sparse reconstruction of sharp point set surfaces. ACM Transactions on Graphics (TOG),29(5):135,2010.
    [128]I. Kanaya, Q. Chen, Y. Kanemoto and K. Chihara. Three-dimensional modeling for virtual relic restoration. Multimedia, IEEE,7(2):42-44,2000.
    [129]T. Hastie. Principal curves and surfaces. Stanford univ ca lab for computational-statistics,1984.
    [130]C. M. Bishop. M. Svensen and C. K. I. Williams. GTM:The generative topographic mapping. Neural computation,10(1):215-234,1998.
    [131]F. P. Preparatat and M. I. Shamos. Computational geometry:an introduction, Springer-Verlag,1985.
    [132]A. Gueziec and N. Ayache. Smoothing and matching of 3D space curves. Interna-tional Journal of Computer Vision,12(1):79-104,1994.
    [133]C. C. Hsieh, Y. C. Fang, M. E. Wang, C. K. Wang, M. J. Kim, S. Y. Shin and T. C. Woo. Noise smoothing for VR equipment in quaternions. IIE transactions,30(7): 581-587,1998.
    [134]L. S. Tekumalla and E. Cohen. Smoothing space curves with the mls projection. Geometric Modeling, Vizualization and Graphics,2005.
    [135]M. Feiszli and P. W. Jones. Curve denoising by multiscale singularity detection and geometric shrinkage. Applied and Computational Harmonic Analysis,31(3):392-409,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700