视神经脊髓炎患者脑部结构和功能的高场和超高场磁共振成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一节视神经脊髓炎患者脑体积变化的研究
     目的:本研究应用基于体素的形态测量学方法(VBM)尝试(1)比较视神经脊髓炎(NMO)患者与健康对照者(HC)的脑灰、白质体积,探讨NMO患者脑灰、白质体积的变化。(2)分析灰、白质体积与临床指标的相关性。
     材料与方法:入组24例NMO患者及24例性别、年龄匹配的健康对照者,数据采集使用3T MR成像系统,扫描序列包括T2WI、FLAIR和全脑三维结构像,应用基于统计参数图(SPM)8软件的VBM8Toolbox工具箱分析NMO组及对照组的数据。两组之间全脑体积的比较使用两独立样本t检验,P<0.05时为差异具有统计学意义。使用SPM8的两独立样本t检验比较两组之间局部脑灰、白质体积变化情况,阈值选择参考既往文献,P<0.005时被认为有显著统计学意义,簇阈值设为30个相邻体素。利用Rest相关分析对NMO患者体积异常脑区与患者的临床病程、复发次数及EDSS评分进行相关性分析,P<0.05时为差异具有统计学意义。
     结果:NMO和HC组的全脑体积没有显著差异(P>0.05)。在基于体素水平,与对照组相比,NMO组小脑、中央前回、中央后回、舌回、颞中回、颞下回、枕叶、楔叶、楔前叶、边缘叶、梭状回、距状裂周围皮层、尾状核、丘脑、视束、Brodmann3、4、6、17、18及19区的多个区域灰质体积减小(P<0.005,非校正)。NMO患者双侧小脑、中脑、边缘叶、顶叶、视束、海马、海马旁回及楔前叶的多个区域白质体积减小(P<0.005,非校正)。NMO患者灰质体积减小脑区的体积与病程呈负相关的区域有小脑、左侧颞叶、右侧丘脑、右侧颞上回、双侧顶叶、中央后回(P<0.05)。NMO患者右侧小脑、左侧颞叶的灰质体积与EDSS评分呈负相关(P<0.05)。NMO患者双侧小脑、双侧颞下回、双侧颞中回、左侧颞极、梭状回、右侧颞上回、右侧中央后回、右侧顶叶、双侧丘脑、左侧顶叶、左侧中央后回、右侧顶上小叶、右侧楔前叶的灰质体积与复发次数呈负相关(P<0.05)。NMO患者白质体积减小脑区的体积与EDSS评分呈负相关的区域有左侧小脑、双侧海马及海马旁回(P<0.05)。NMO患者双侧小脑的白质体积与复发次数呈负相关(P<0.05)。
     结论:NMO患者较健康对照出现多个脑区灰、白质萎缩,多个脑区的灰白质体积减小与临床指标显著相关,提示VBM技术可以灵敏的反应脑体积的变化,并可监测疾病严重程度和病程。
     第二节视神经脊髓炎患者脑部基于体素的扩散张量成像研究
     目的:对视神经脊髓炎患者和健康对照的弥散张量成像(DTI)数据进行基于体素的分析,利用多个弥散参数分析NMO患者全脑弥散的改变,并探讨NMO患者弥散指标改变和临床指标的相关性。
     材料与方法:入组16例NMO患者及16例性别、年龄匹配的健康对照者,分别行全脑结构成像及弥散张量成像,之后对其多个弥散指标,包括各向异性分数(FA)、平均弥散率(MD)、轴向弥散值(AD/λ1)和径向弥散值(RD/λ23)进行基于体素的分析。使用SPM8的两独立样本t检验比较两组之间各弥散指标变化情况,阈值选择参考既往文献,P<0.005时被认为有显著统计学意义,簇阈值设为30个相邻体素。利用Pearson相关分析评价弥散异常与患者临床指标的相关性。
     结果:与对照组相比,NMO组FA值显著减低的区域包括双侧额叶、枕叶、颞叶、丘脑、中脑、视束、小脑(P<0.005,非校正);λ1值升高的区域分布于双侧小脑、枕叶、额叶、顶叶、丘脑、中脑、海马旁回、扣带回、胼胝体、基底节、尾状核、岛叶、边缘叶(P<0.005,非校正);λ2值升高的区域分布于双侧小脑、枕叶、颞叶、额叶、顶叶、丘脑、中脑、海马旁回、扣带回、胼胝体、双侧基底节、尾状核、边缘叶、岛叶(P<0.005,非校正)。λ3值升高的区域分布于小脑、颞叶、额叶、丘脑、苍白球、中脑、扣带回、边缘叶、肼胝体(P<0.005,非校正)。NMO患者MD值升高的区域分布于小脑、枕叶、额叶、丘脑、扣带回、胼胝体、基底节、右侧尾状核、边缘叶(P<0.005,非校正)。NMO患者的各向扩散指标改变和患者的临床各项指标无明显相关关系(P>0.05)。
     结论:NMO患者脑组织存在弥散异常,DTI的AD、RD和MD三个指标可以可靠的反应NMO患者的弥散异常改变,尤其以AD和MD更为敏感。NMO患者皮质损害以轴索损伤为主,而白质纤维损伤则是轴索损伤和髓鞘损伤并存。基于体素的分析方法有助于客观展示全脑受累情况。
     第一节视神经脊髓炎患者脑体积变化的超高场磁共振成像研究
     目的:本研究尝试(1)利用超高场(7T)MR成像系统采集NMO患者和健康对照的数据,(2)应用基于体素的形态测量学方法比较视神经脊髓炎患者(NMO)患者与健康对照者的脑灰、白质体积,分析灰、白质体积与临床指标的相关性,(3)探索7T MRI在NMO脑改变研究中的作用。
     材料与方法:入组12例NMO患者及12例性别、年龄匹配的健康对照者,数据采集使用7T MR成像系统,扫描序列包括T2WI、FLAIR和全脑三维结构像,应用基于统计参数图(SPM)8软件的VBM8Toolbox工具箱分析NMO组及对照组的数据。两组之间全脑体积的比较使用两独立样本t检验,P<0.05为差异具有统计学意义。使用SPM8的两独立样本t检验比较两组之间局部脑灰、白质体积变化情况,阈值选择参考既往文献,P<0.005时被认为有显著统计学意义,簇阂值设为30个相邻体素。利用Rest相关分析对NMO患者体积异常脑区与患者的临床病程、复发次数及EDSS评分进行相关性分析。
     结果:NMO和HC组的全脑体积没有显著差异(P>0.05)。在基于体素水平,与对照组相比,NMO组颞叶、额叶、中央前回、中央后回、Brodmann area6、9、22、顶叶、梭状回、海马旁回及小脑的多个区域灰质体积减小(P<0.005,非校正)。NMO组双侧壳核、枕叶、海马旁回、边缘叶、舌回、Brodmann area6、17、18、19、40、缘上回、杏仁核、中央后回、楔前叶、顶叶、额叶及小脑的多个区域白质体积减小(P<0.005,非校正)。NMO患者灰质体积减小脑区的体积与病程及复发次数呈负相关的区域有左侧中央前回、左侧中央后回、Brodmann area6(P<0.05)NMO患者白质体积减小脑区的体积与EDSS评分呈负相关的区域有右侧缘上回(P<0.05)。
     结论:NMO患者存在弥漫性脑组织损伤,VBM技术可以敏感的反应脑组织隐匿性的结构改变。同时场强的提高能够更敏感的发现脑结构微小的改变,提供更为准确的研究结果。
     第二节视神经脊髓炎患者脑部皮层厚度变化的超高场磁共振成像研究
     目的:本研究利用高场(3T)和超高场(7T)MR成像系统采集NMO患者和健康对照的数据,应用皮层厚度测量分析NMO患者与健康对照者的皮层厚度差异,探索NMO患者皮层损伤的模式,并分析NMO皮层厚度改变与临床指标的相关性。比较3T和7T MRI在脑皮层厚度研究中的价值。
     材料与方法:入组24例NMO患者及24例性别、年龄匹配的健康对照者,使用3T MR成像系统采集被试图像;入组12例NMO患者及12例性别、年龄匹配的健康志愿者,使用7TMR成像系统采集被试图像。所有被试均扫描以下序列,包括T2WI、FLAIR和全脑三维结构像。应用FreeSurfer软件分别分析3T和7T数据,测量NMO患者和健康对照的皮层厚度,然后利用配对t检验从全脑和体素水平分析两组间的皮层厚度差异,P<0.01时被认为有显著统计学差异。对全脑皮层厚度与患者的临床病程、复发次数及EDSS评分进行一元线性回归分析。
     结果:3T研究结果显示,NMO病例组和对照组间全脑皮层厚度无显著统计学差异,在脑区水平皮层厚度也无显著性统计学差异,但NMO组较正常组在局部脑区皮层厚度有变薄的趋势。7T研究结果显示,NMO病例组和对照组间全脑皮层厚度无显著统计学差异(P>0.05),但在脑区水平,NMO患者左侧梭状回(Brodmann area37)、舌回(Brodmann area17、18、19)、左侧颞下回(Brodmann area20)、左侧额上回及额中回(Brodmann area6、8、9)的皮层显著变薄((P<0.01,非校正))。皮层厚度与患者的临床指标未见明显相关。
     结论:NMO患者的视觉、运动及认知相关脑区皮层厚度变薄,进一步证实了NMO患者皮层损伤的存在。皮层厚度测量可以敏感的反应皮层局部微小的损伤,与3MR成像设备相比,7T MRI在NMO皮层厚度分析研究中具有重要价值。
     目的:本研究尝试利用超高场(7T)MR成像系统采集NMO患者和健康对照的静息态功能磁共振数据,分别应用时间域的振幅(Amplitude in the time domain,AM)和局部一致性(egional homogeneity, ReHo)两个指标观察NMO患者的脑基线活动。
     材料与方法:入组12例NMO患者及12例性别、年龄匹配的健康对照者,利用超高场(7T)MR成像系统采集NMO患者和健康对照的静息态功能磁共振数据。分别比较两组间AM和ReHo的差异,观察NMO患者的脑基线活动强度和局部一致性的变化。
     结果:和对照组相比较,NMO组AM值显著增高的区域有左侧额中回、额下回、中央前回、Brodmann area6、左侧岛盖部额下回、Brodmann area44。NMO组未见到有AM值明显减低的区域。NMO组ReHo值有显著降低的区域有右侧颞中回、右侧颞下回和右侧梭状回。NMO组ReHo值显著增高的区域有右侧前额叶内侧面、右侧额中回、右侧三角部额下回、左侧岛盖部额下回、左侧中央前回、中央后回及Brodmann area6。
     结论:NMO患者静息态脑功能的改变与视觉、感觉运动、认知和语言相关,与形态学研究结果相互印证,提示NMO患者神经元活动异常,为NMO患者相应的临床表现提供了功能基础。
1. A Voxel-based Morphometry Study of Brain Tissue Volume Changes in Neuromyelitis Optica Patients Using High filed (3T) MRI Scanner
     Purpose:To explore the brain tissue volume (BTV) changes in neuromyelitis optica (NMO) patients with voxel-based morphometry (VBM) method using high filed (3.0T) MRI Scanner. To investigate the correlations between brain tissue volume changes with clinical variables.
     Materials and Methods:24NMO patients and24gender and age matched healthy controls were scanned at3T MR system with T2WI, FLAIR and sagittal three-dimensional (3D) volumetric T1-weighted fast spoiled gradient echo (FSPGR) sequences. Raw data was processed and analyzed using VBM8toolbox of statistical parametric mapping (SPM)8software. Comparison of focal grey matter volume (GMV) and white matter volume (WMV) between the two groups was analyzed by independent two samples t-test, and statistical maps were thresholded with uncorrected P value,0.005with a minimum cluster size of30voxels according to previous published study. For the patient group, correlation analyses were performed between brain tissue volume loss and clinical variables, including disease duration, relapse and EDSS score.
     Results:For global mean GMV and WMV, there is no significant difference between the two groups (P>0.05). At vertex-wise level, compared with the controls, the GMV decrease was observed in NMO patients in several regions of cerebellum, precentral gyrus, postcentral gyrus, lingual gyrus, middle temporal gyrus, inferior temporal gyrus, occipital lobe, cuneus, precuneus, limbic lobe, fusiform gyrus, calcarine, caudate, thalamus, optic tract and Brodmann area3,4,6,17,8,19(P<0.005, uncorrected). The focal WMV decrease was observed in NMO patients in cerebellum, midbrain, limbic lobe, parietal lobe, optic tract, hippocampus, parahippocampal gyrus and precuneus (P<0.005, uncorrected). The disease duration negatively correlated with GMV in bilateral cerebellum, left temporal lobe, right thalamus, right superior temporal gyrus, bilateral parietal lobe and postcentral gyrus (P<0.05). The EDSS score negatively correlated with GMV in right cerebellum and left temporal lobe (P<0.05). The relapse negatively correlated with GMV in bilateral cerebellum, bilateral inferior temporal gyrus, bilateral middle temporal gyrus, left temporal pole, fusiform gyrus, right superior temporal gyrus, right postcentral gyrus, right parietal lobe, bilateral thalamus, left parietal lobe, left postcentral gyrus, right superior parietal lobule and right precuneus (P<0.05). The EDSS score negatively correlated with WMV in left cerebellum, bilateral hippocampus and parahippocampal gyrus (P<0.05). The WMV in bilateral cerebellum negatively correlated with relapse (P<0.05).
     Conclusions:Regional atrophy of grey matter and white matter was found in NMO patients. Brain tissue volume in several brain areas correlated with clinical variables significantly. VBM can reveal brain volume changes sensitively and could be an imaging biomarker to monitor clinical severity and disease progression.
     2. A Voxel-based Analysis of Diffusion Tensor Imaging in Neuromyelitis Optica Patients
     Purpose: To explore the whole brain diffusion changes in neuromyelitis optica (NMO) patients using voxel-based analysis of diffusion tensor imaging (DTI) by multiple diffusion indices. To investigate the correlations between diffusion indices changes with clinical variables.
     Materials and Methods:Whole brain structural images and diffusion weighted images (DTI) were acquired in16NMO patients and16gender and age matched healthy controls. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD/λ1) and radial diffusivity (RD/λ23) of NMO patients were compared with the controls by voxel-based analysis of DTI data using independent two samples t-test, and statistical maps were thresholded with uncorrected P value,0.005with a minimum cluster size of30voxels according to previous published study. For the patient group, correlation analyses were performed between diffusion indices changes and clinical variables by Pearson correlation analysis.
     Results:Compared with the controls, NMO patients showed significant FA decrease in bilateral frontal lobe, occipital lobe, temporal lobe, thalamus, midbrain, optic tract and cerebellum (P<0.005, uncorrected). λ1increase in NMO patients could be seen in bilateral cerebellum, occipital lobe, frontal lobe, parietal lobe, thalamus, midbrain, parahippocampal gyrus, cingulate cortex, corpus callosum, basal ganglia, caudate nucleus, insula and limbic lobe (P<0.005, uncorrected). λ2increase in NMO patients could be seen in bilateral cerebellum, occipital lobe, temporal lobe, frontal lobe, parietal lobe, thalamus, midbrain, parahippocampal gyrus, cingulate cortex, corpus callosum, basal ganglia, caudate nucleus, limbic lobe and insula (P<0.005, uncorrected). X3increase in NMO patients could be seen in cerebellum, temporal lobe, frontal lobe, thalamus, globus pallidus, midbrain, cingulate cortex, limbic lobe and corpus callosum (P<0.005, uncorrected). MD increase in NMO patients could be seen in cerebellum, occipital lobe, frontal lobe, thalamus, cingulate cortex, corpus callosum, basal ganglia, right caudate nucleus and limbic lobe (P<0.005, uncorrected). No significant correlation was found between diffusion indices changes with clinical variables (P>0.05).
     Conclusions: DTI could reveal the significant diffusion abnormalities in NMO by diffusion indices of AD, RD and MD sensitively, especially AD and MD. This study revealed that the cortical damage in NMO is mainly characterized by axonal injury while the white matter damage is characterized by both axonal injury and demyelination.
     1. A Voxel-based Morphometry Study of Brain Tissue Volume Changes in Neuromyelitis Optica Patients Using Ultra-high filed (7T) MRI System
     Purpose:To explore the brain issue volume (BTV) changes in neuromyelitis optica (NMO) patients with voxel-based morphometry (VBM) method using ultra-high filed (7T) MRI Scanner. To investigate the correlations between brain tissue volume changes with clinical variables. To identify the usefulness of7T MRI in brain structural research.
     Materials and Methods:12NMO patients and12gender and age matched healthy controls were scanned at7T MR system with T2WI, FLAIR and sagittal three-dimensional (3D) volumetric T1-weighted magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequences. Raw data was processed and analyzed using VBM8toolbox of statistical parametric mapping (SPM)8software. Comparison of focal grey matter volume (GMV) and white matter volume (WMV) between the two groups was analyzed by independent two samples t-test, and statistical maps were thresholded with uncorrected P value,0.005with a minimum cluster size of30voxels according to previous published study. For the patient group, correlation analyses were performed between brain tissue volume loss and clinical variables, including disease duration, relapse and EDSS score.
     Results:For global mean GMV and WMV, there is no significant difference between the two groups (P>0.05). At vertex-wise level, compared with the controls, the GMV decrease was observed in NMO patients in several regions of temporal lobe, frontal lobe, precentral gyrus, postcentral gyrus, Brodmann area6,9,22, parietal lobe, fusiform gyrus, parahippocampal gyrus and cerebellum (P<0.005, uncorrected). The focal WMV decrease was observed in NMO patients in bilateral putamen nucleus, occipital lobe, parahippocampal gyrus, limbic lobe, lingual gyrus, Brodmann area6,7,17,18,19,40, supramarginal gyrus, amygdaloid nucleus, postcentral gyrus, precuneus, parietal lobe, frontal lobe and cerebellum (P<0.005, uncorrected). Both disease duration and relapse negatively correlated with GMV in left precentral gyrus, left postcentral gyrus and Brodmann area6(P<0.05). The EDSS score negatively correlated with WMV in right supramarginal gyrus (P<0.05).
     Conclusions:Diffuse atrophy of grey matter and white matter was found in NMO patients. VBM can reveal subtle brain volume changes. Higher field strength MRI scanner could detective the subtle brain damage more sensitively.
     2. Focal Cortical Thinning in Neuromyelitis Optica Using Ultra-high Field (7T) MRI Scanner
     Purpose:The present study is aimed to prospectively evaluate cortical thickness changes of patients with neuromyelitis optica (NMO) without visible lesions in the grey matter using high Field (3T) and ultra-high field (7T) MRI scanner. To investigate the correlations between cortical thickness changes with clinical variables. To identify the usefulness of7T MRI in cortical thickness study.
     Materials and Methods:24NMO patients without visible lesions in the grey matter and24gender and age matched healthy controls were scanned at3T MR system with sagittal three-dimensional (3D) volumetric T1-weighted fast spoiled gradient echo (FSPGR) sequences.12patients with NMO without visible lesions in the grey matter on conventional MRI and12sex-and age-matched healthy control subjects were scanned at7T whole-body human MR system with sagittal three-dimensional (3D) volumetric T1-weighted magnetization-prepared rapid acquisition gradient echo (3D-MPRAGE) sequence. Cortical thickness measurement was performed by FreeSurfer software5.0. Comparison of cortical thickness between the two groups was analyzed by paired t-test, and the significance of the P-value was set at0.01because of the number of statistical tests. For the patient group, correlation analyses were performed between brain cortical thickness changes and clinical variables, including disease duration, relapse and EDSS score.
     Results:There is no significant difference of both global and focal cortical thickness between the two groups by analyzing3T data. As for7T data, no significant difference of global cortical thickness was found between the two groups (P>0.05). However, as compared with the controls, NMO patients showed focal cortical thinning in left middle frontal gyrus (MFGL), left fusiform gyrus (FG.L), left lingual gyrus and left inferior temporal gyrus (P<0.01,uncorrected). No significant correlation was found between cortical thickness changes with clinical variables (P>0.05).
     Conclusion: Significant cortical thinning was identified in NMO patients, involving visual, motor and cognition system, suggesting the presence of occult tissue damage in normal-appearance grey matter in NMO patients. This study also suggests that ultra-high field imaging may be useful for characterizing subtle lesions of the grey matter in NMO.
     Purpose:To prospectively evaluate how brain baseline activity changes in NMO patients using amplitude in the time domain (AM) and regional homogeneity (ReHo) as indices with ultra-high field (7T) MRI system.
     Materials and Methods:12NMO patients and12gender and age matched healthy controls were scanned at7T MR system to collect resting-sate fMRI data. Raw data was preprocessed using statistical parametric mapping (SPM)8software. AM and ReHo were compared between the two groups to investigate the brain baseline activity changes in NMO patients.
     Results: Our results showed that NMO patients had significantly increased AM in left middle frontal gyrus (MFGL), inferior frontal gyrus (IFGL), precentral gyrus (PreCG.L), Brodmann area6, Brodmann area45and Brodmann area44. NMO patients showed no regions with decreased AM. Comparing the NMO group with the healthy controls, we found ReHo decreased in right middle temporal gyrus (MTG/.R), right inferior temporal gyrus (ITG.R), right fusiform gyrus (FuGR); and increased in right medial prefrontal cortex (MPFC.R/Brodmann area9、10), right middle frontal gyrus (MFG.R), bilateral inferior frontal gyrus (IFG), Brodmann area44, Brodmann area45, left precentral gyrus (PreCG.L), postcentral gyrus (PosCG.L) and Brodmann area6.
     Conclusions: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to visual, motor and cognition systems that is consistent with the structural research results. These results demonstrate that neural activity in the resting state changes in patients with NMO.
引文
[1]Wingerchuk DM, Hogancamp WF, O'Brien PC, et al. The clinical course of neuromyelitis optica (Devic's syndrome)[J]. Neurology.1999;53(5):1107-14.
    [2]Asgari N, Lillevang S, Skejoe H, et al. A population-based study of neuromyelitis optica in Caucasians[J]. Neurology.2011;76(18):1589-95.
    [3]Cabre P. Environmental changes and epidemiology of multiple sclerosis in the French West Indies[J]. Journal of the neurological sciences.2009;286(1):58-61.
    [4]Cabrera-Gomez JA, Kurtzke JF, Gonzalez-Quevedo A, et al. An epidemiological study of neuromyelitis optica in Cuba[J]. Journal of neurology.2009;256(1):35-44.
    [5]Cabre P. Migration and multiple sclerosis:the French West Indies experience[J]. Journal of the neurological sciences.2007;262(1):117-21.
    [6]Cossburn M, Tackley G, Baker K, et al. The prevalence of neuromyelitis optica in South East Wales[J]. European Journal of Neurology.2012;19(4):655-9.
    [7]Wingerchuk DM, Lennon VA, Lucchinetti CF, et al. The spectrum of neuromyelitis optica[J]. The Lancet Neurology.2007;6(9):805-15.
    [8]de Seze J. Neuromyelitis optica[J]. Archives of neurology.2003;60(9):1336-8.
    [9]Mealy MA, Wingerchuk DM, Greenberg BM, et al. Epidemiology of neuromyelitis optica in the United States:a multicenter analysis[J]. Archives of neurology.2012;69(9):1176-80.
    [10]Drori T, Chapman J. Diagnosis and classification of neuromyelitis optica (Devic's Syndrome)[J]. Autoimmunity reviews.2014.
    [11]Cabre P, Gonzalez-Quevedo A, Bonnan M, et al. Relapsing neuromyelitis optica:long term history and clinical predictors of death[J]. Journal of neurology, neurosurgery, and psychiatry. 2009;80(10):1162-4.
    [12]Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica:distinction from multiple sclerosis[J]. Lancet.2004;364(9451):2106-12.
    [13]Lennon VA, Kryzer TJ, Pittock SJ, et al. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel[J]. The Journal of experimental medicine.2005;202(4):473-7.
    [14]Misu T, Fujihara K, Kakita A, et al. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis[J]. Brain:a journal of neurology.2007;130(Pt 5):1224-34.
    [15]Kinoshita M, Nakatsuji Y, Moriya M, et al. Astrocytic necrosis is induced by anti-aquaporin-4 antibody-positive serum[J]. Neuroreport.2009;20(5):508-12.
    [16]Wrzos C, Winkler A, Metz I, et al. Early loss of oligodendrocytes in human and experimental neuromyelitis optica lesions[J]. Acta neuropathologica.2013.
    [17]Takano R, Misu T, Takahashi T, et al. Astrocytic damage is far more severe than demyelination in NMO A clinical CSF biomarker study[J]. Neurology.2010;75(3):208-16.
    [18]Wingerchuk DM, Lennon VA, Pittock SJ, et al. Revised diagnostic criteria for neuromyelitis optica[J]. Neurology.2006;66(10):1485-9.
    [19]Takahashi T, Fujihara K, Nakashima I, et al. Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO:a study on antibody titre[J]. Brain:a journal of neurology.2007;130(Pt 5):1235-43.
    [20]孙巧松,刘俊秀,丰岩清NMO-IgG_anti-AQP4+抗体的检测及其特异性的研究[J].中华临床医师杂志,电子版.2010;04(11):2147-52.
    [21]Pittock SJ, Weinshenker BG, Lucchinetti CF, et al. Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression[J]. Archives of neurology.2006;63(7):964-8.
    [22]Wang F, Liu Y, Duan Y, et al. Brain MRI abnormalities in neuromyelitis optica[J]. European journal of radiology.2011;80(2):445-9.
    [23]肖慧,马林,娄昕,等.视神经脊髓炎脑部异常的MRI表现及相关危险因素分析[J].中华放射学杂志.2011;45:240-4.
    [24]Lisanti CJ, Asbach P, Bradley WG The ependymal "Dot-Dash" sign:an MR imaging finding of early multiple sclerosis[J]. American journal of neuroradiology.2005;26(8):2033-6.
    [25]Bichuetti DB, Rivero RLM, Oliveira DM, et al. Neuromyelitis optica:brain abnormalities in a Brazilian cohort[J]. Arquivos de neuro-psiquiatria.2008;66(1):1-4.
    [26]Li Y, Xie P, Lv F, et al. Brain magnetic resonance imaging abnormalities in neuromyelitis optica[J]. Acta neurologica Scandinavica.2008;118(4):218-25.
    [27]Pittock SJ, Lennon VA, Krecke K, et al. Brain abnormalities in neuromyelitis optica[J]. Archives of neurology.2006;63(3):390-6.
    [28]Tallantyre EC, Morgan PS, Dixon JE, et al.3 Tesla and 7 Tesla MRI of multiple sclerosis cortical lesions[J]. Journal of Magnetic resonance imaging.2010;32(4):971-7.
    [29]Mainero C, Benner T, Radding A, et al. In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI[J]. Neurology.2009;73(12):941-8.
    [30]Kister I, Herbert J, Zhou Y, et al. Ultrahigh-Field MR (7 T) Imaging of Brain Lesions in Neuromyelitis Optica[J]. Multiple sclerosis international.2013;2013:398259.
    [31]Pichiecchio A, Tavazzi E, Poloni G, et al. Advanced magnetic resonance imaging of neuromyelitis optica:a multiparametric approach[J]. Multiple sclerosis.2012;18(6):817-24.
    [32]Duan Y, Liu Y, Liang P, et al. Comparison of grey matter atrophy between patients with neuromyelitis optica and multiple sclerosis:a voxel-based morphometry study[J]. European journal of radiology.2012;81(2):e110-4.
    [33]Chanson JB, Lamy J, Rousseau F, et al. White matter volume is decreased in the brain of patients with neuromyelitis optica[J]. European journal of neurology:the official journal of the European Federation of Neurological Societies.2013;20(2):361-7.
    [34]Blanc F, Noblet V, Jung B, et al. White matter atrophy and cognitive dysfunctions in neuromyelitis optica[J]. PloS one.2012;7(4):e33878.
    [35]Mutlu AK, Schneider M, Debbane M, et al. Sex differences in thickness, and folding developments throughout the cortex[J]. NeuroImage.2013;82:200-7.
    [36]Narayana PA, Govindarajan KA, Goel P, et al. Regional cortical thickness in relapsing remitting multiple sclerosis:A multi-center study[J]. NeuroImage Clinical.2012;2:120-31.
    [37]Calabrese M, Rinaldi F, Mattisi I, et al. Widespread cortical thinning characterizes patients with MS with mild cognitive impairment[J]. Neurology.2010;74(4):321-8.
    [38]Ly M, Motzkin JC, Philippi CL, et al. Cortical thinning in psychopathy[J]. American Journal of Psychiatry.2012;169(7):743-9.
    [39]Du A-T, Schuff N, Kramer JH, et al. Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia[J]. Brain:a journal of neurology. 2007;130(4):1159-66.
    [40]Rosas H, Liu A, Hersch S, et al. Regional and progressive thinning of the cortical ribbon in Huntington's disease[J]. Neurology.2002;58(5):695-701.
    [41]Yu CS, Lin FC, Li KC, et al. Diffusion tensor imaging in the assessment of normal-appearing brain tissue damage in relapsing neuromyelitis optica[J]. AJNR American journal of neuroradiology. 2006;27(5):1009-15.
    [42]Yu CS, Zhu CZ, Li KC, et al. Relapsing Neuromyelitis Optica and Relapsing-Remitting Multiple Sclerosis:Differentiation at Diffusion-Tensor MR Imaging of Corpus Callosum 1[J]. Radiology. 2007;244(1):249-56.
    [43]Yu C, Lin F, Li K, et al. Pathogenesis of normal-appearing white matter damage in neuromyelitis optica:diffusion-tensor MR imaging[J]. Radiology.2008;246(1):222-8.
    [44]Liu Y, Duan Y, He Y, et al. A tract-based diffusion study of cerebral white matter in neuromyelitis optica reveals widespread pathological alterations[J]. Multiple sclerosis.2012;18(7):1013-21.
    [45]Gusnard DA, Raichle ME. Searching for a baseline:functional imaging and the resting human brain[J]. Nature Reviews Neuroscience.2001;2(10):685-94.
    [46]Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging[J]. Nature Reviews Neuroscience.2007;8(9):700-11.
    [47]Rombouts SA, Barkhof F, Goekoop R, et al. Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease:an fMRI study[J]. Human brain mapping. 2005;26(4):231-9.
    [48]Liu Y, Liang M, Zhou Y, et al. Disrupted small-world networks in schizophrenia[J]. Brain:a journal of neurology.2008;131(4):945-61.
    [49]Garrity A, Pearlson G, McKiernan K, et al. Aberrant "default mode" functional connectivity in schizophrenia[J]. American journal of psychiatry.2007;164(3):450-7.
    [50]Wang D, Qin W, Liu Y, et al. Altered resting-state network connectivity in congenital blind[J]. Human brain mapping.2013.
    [51]Yu-Feng Z, Yong H, Chao-Zhe Z, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain and Development.2007;29(2):83-91.
    [52]Liu Y, Liang P, Duan Y, et al. Abnormal baseline brain activity in patients with neuromyelitis optica:a resting-state fMRI study[J]. European journal of radiology.2011;80(2):407-11.
    [53]Liang P, Liu Y, Jia X, et al. Regional homogeneity changes in patients with neuromyelitis optica revealed by resting-state functional MRI[J]. Clinical neurophysiology:official journal of the International Federation of Clinical Neurophysiology.2011; 122(1):121-7.
    [54]Khanna S, Sharma A, Huecker J, et al. Magnetic resonance imaging of optic neuritis in patients with neuromyelitis optica versus multiple sclerosis[J]. Journal of neuro-ophthalmology:the official journal of the North American Neuro-Ophthalmology Society.2012;32(3):216-20.
    [55]Saji E, Arakawa M, Yanagawa K, et al. Cognitive impairment and cortical degeneration in neuromyelitis optica[J]. Annals of neurology.2013;73(1):65-76.
    [56]Rocca M, Agosta F, Mezzapesa D, et al. Magnetization transfer and diffusion tensor MRI show gray matter damage in neuromyelitis optica[J]. Neurology.2004;62(3):476-8.
    [57]Calabrese M, Oh MS, Favaretto A, et al. No MRI evidence of cortical lesions in neuromyelitis optica[J]. Neurology.2012;79(16):1671-6.
    [58]Rocca MA, Agosta F, Mezzapesa DM, et al. A functional MRI study of movement-associated cortical changes in patients with Devic's neuromyelitis optica[J]. Neurolmage.2004;21(3):1061-8.
    [59]Rueda Lopes FC, Doring T, Martins C, et al. The role of demyelination in neuromyelitis optica damage:diffusion-tensor MR imaging study[J]. Radiology.2012;263(1):235-42.
    [60]Lucchinetti CF, Popescu BF, Bunyan RF, et al. Inflammatory cortical demyelination in early multiple sclerosis[J]. New England Journal of Medicine.2011;365(23):2188-97.
    [61]Wrzos C, Winkler A, Metz I, et al. Early loss of oligodendrocytes in human and experimental neuromyelitis optica lesions[J]. Acta neuropathologica.2013:1-16.
    [62]Popescu BF, Parisi JE, Cabrera-Gomez JA, et al. Absence of cortical demyelination in neuromyelitis optica[J]. Neurology.2010;75(23):2103-9.
    [63]Chalumeau-Lemoine L, Chretien F, Larbi AGS, et al. Devic disease with brainstem lesions[J]. Archives of neurology.2006;63(4):591-3.
    [64]Ashburner J. Computational anatomy with the SPM software[J]. Magnetic resonance imaging. 2009;27(8):1163-74.
    [65]Ashburner J, Friston KJ. Voxel-based morphometry—the methods[J]. Neurolmage. 2000;11(6):805-21.
    [66]Ashburner J, Friston KJ. Voxel-based morphometry--the methods[J]. NeuroImage.2000; 11 (6 Pt 1):805-21.
    [67]段云云,刘亚欧,梁佩鹏,等.应用基于体素的形态测量学方法分析视神经脊髓炎患者的脑体积变化[J].中华放射学杂志.2012;46(11):983-7.
    [1]Wingerchuk DM, Lennon VA, Pittock SJ, et al. Revised diagnostic criteria for neuromyelitis optica[J]. Neurology.2006;66(10):1485-9.
    [2]Jones DK, Symms MR, Cercignani M, et al. The effect of filter size on VBM analyses of DT-MRI data[J]. NeuroImage.2005;26(2):546-54.
    [3]Ashburner J, Friston KJ. Voxel-based morphometry—the methods[J]. NeuroImage. 2000;11(6):805-21.
    [4]Chanson JB, Lamy J, Rousseau F, et al. White matter volume is decreased in the brain of patients with neuromyelitis optica[J]. European journal of neurology:the official journal of the European Federation of Neurological Societies.2013;20(2):361-7.
    [5]Filippi M, Rocca M. MR imaging of Devic's neuromyelitis optica[J]. Neurological Sciences. 2004;25(4):s371-s3.
    [6]De Seze J, Stojkovic T, Ferriby D, et al. Devic's neuromyelitis optica:clinical, laboratory, MRI and outcome profile[J]. Journal of the neurological sciences.2002; 197(1):57-61.
    [7]Rocca M, Agosta F, Mezzapesa D, et al. Magnetization transfer and diffusion tensor MRI show gray matter damage in neuromyelitis optica[J]. Neurology.2004;62(3):476-8.
    [8]Pichiecchio A, Tavazzi E, Poloni G, et al. Advanced magnetic resonance imaging of neuromyelitis optica:a multiparametric approach[J]. Multiple sclerosis.2012;18(6):817-24.
    [9]Yu CS, Lin FC, Li KC, et al. Diffusion tensor imaging in the assessment of normal-appearing brain tissue damage in relapsing neuromyelitis optica[J]. AJNR American journal of neuroradiology. 2006;27(5):1009-15.
    [10]Yu CS, Zhu CZ, Li KC, et al. Relapsing Neuromyelitis Optica and Relapsing-Remitting Multiple Sclerosis:Differentiation at Diffusion-Tensor MR Imaging of Corpus Callosum 1[J]. Radiology. 2007;244(1):249-56.
    [11]He D, Wu Q, Chen X, et al. Cognitive impairment and whole brain diffusion in patients with neuromyelitis optica after acute relapse[J]. Brain and cognition.2011;77(1):80-8.
    [12]Zaidel DW. The case for a relationship between human memory, hippocampus and corpus callosum[J]. Biological Research.1995;28(1):51-7.
    [13]Kim JH, Park K-Y, Seo SW, et al. Reversible verbal and visual memory deficits after left retrosplenial infarction[J]. Journal of Clinical Neurology.2007;3(1):62-6.
    [14]Yu C, Lin F, Li K, et al. Pathogenesis of normal-appearing white matter damage in neuromyelitis optica:diffusion-tensor MR imaging[J]. Radiology.2008;246(1):222-8.
    [15]Zhao DD, Zhou HY, Wu QZ, et al. Diffusion tensor imaging characterization of occult brain damage in relapsing neuromyelitis optica using 3.0T magnetic resonance imaging techniques[J]. NeuroImage.2012;59(4):3173-7.
    [16]Saji E, Arakawa M, Yanagawa K, et al. Cognitive impairment and cortical degeneration in neuromyelitis optica[J]. Annals of neurology.2013;73(1):65-76.
    [17]Blanc F, Noblet V, Jung B, et al. White matter atrophy and cognitive dysfunctions in neuromyelitis optica[J]. PloS one.2012;7(4):e33878.
    [18]Budde MD, Kim JH, Liang HF, et al. Axonal injury detected by in vivo diffusion tensor imaging correlates with neurological disability in a mouse model of multiple sclerosis[J]. NMR in Biomedicine.2008;21(6):589-97.
    [19]Song S-K, Yoshino J, Le TQ, et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain[J]. NeuroImage.2005;26(1):132-40.
    [20]Sun S-W, Liang H-F, Schmidt RE, et al. Selective vulnerability of cerebral white matter in a murine model of multiple sclerosis detected using diffusion tensor imaging[J]. Neurobiology of disease.2007;28(1):30-8.
    [21]Kinoshita M, Nakatsuji Y, Moriya M, et al. Astrocytic necrosis is induced by anti-aquaporin-4 antibody-positive serum[J]. Neuroreport.2009;20(5):508-12.
    [22]Wrzos C, Winkler A, Metz I, et al. Early loss of oligodendrocytes in human and experimental neuromyelitis optica lesions[J]. Acta neuropathologica.2013:1-16.
    [23]Popescu BF, Parisi JE, Cabrera-Gomez JA, et al. Absence of cortical demyelination in neuromyelitis optica[J]. Neurology.2010;75(23):2103-9.
    [24]Liu Y, Duan Y, He Y, et al. A tract-based diffusion study of cerebral white matter in neuromyelitis optica reveals widespread pathological alterations[J]. Multiple sclerosis.2012; 18(7):1013-21.
    [25]Rueda Lopes FC, Doring T, Martins C, et al. The role of demyelination in neuromyelitis optica damage:diffusion-tensor MR imaging study[J]. Radiology.2012;263(1):235-42.
    [26]Lin F, Yu C, Jiang T, et al. Diffusion tensor tractography-based group mapping of the pyramidal tract in relapsing-remitting multiple sclerosis patients[J]. American journal of neuroradiology. 2007;28(2):278-82.
    [1]Wingerchuk DM, Lennon VA, Pittock SJ, et al. Revised diagnostic criteria for neuromyelitis optica[J]. Neurology.2006;66(10):1485-9.
    [2]Chanson JB, Lamy J, Rousseau F, et al. White matter volume is decreased in the brain of patients with neuromyelitis optica[J]. European journal of neurology:the official journal of the European Federation of Neurological Societies.2013;20(2):361-7.
    [3]Pichiecchio A, Tavazzi E, Poloni G, et al. Advanced magnetic resonance imaging of neuromyelitis optica:a multiparametric approach[J]. Multiple sclerosis.2012;18(6):817-24.
    [4]Duan Y, Liu Y, Liang P, et al. Comparison of grey matter atrophy between patients with neuromyelitis optica and multiple sclerosis:a voxel-based morphometry study[J]. European journal of radiology.2012;81(2):e110-4.
    [5]Blanc F, Noblet V, Jung B, et al. White matter atrophy and cognitive dysfunctions in neuromyelitis optica[J]. PloS one.2012;7(4):e33878.
    [6]Saji E, Arakawa M, Yanagawa K, et al. Cognitive impairment and cortical degeneration in neuromyelitis optica[J]. Annals of neurology.2013;73(1):65-76.
    [7]Chalumeau-Lemoine L, Chretien F, Larbi AGS, et al. Devic disease with brainstem lesions[J]. Archives of neurology.2006;63(4):591-3.
    [8]Khanna S, Sharma A, Huecker J, et al. Magnetic resonance imaging of optic neuritis in patients with neuromyelitis optica versus multiple sclerosis[J]. Journal of neuro-ophthalmology:the official journal of the North American Neuro-Ophthalmology Society.2012;32(3):216-20.
    [9]Calabrese M, Oh MS, Favaretto A, et al. No MRI evidence of cortical lesions in neuromyelitis optica[J]. Neurology.2012;79(16):1671-6.
    [10]Rocca MA, Agosta F, Mezzapesa DM, et al. A functional MRI study of movement-associated cortical changes in patients with Devic's neuromyelitis optica[J]. Neurolmage.2004;21(3):1061-8.
    [11]Yu C, Lin F, Li K, et al. Pathogenesis of normal-appearing white matter damage in neuromyelitis optica:diffusion-tensor MR imaging[J]. Radiology.2008;246(1):222-8.
    [12]Yu CS, Lin FC, Li KC, et al. Diffusion tensor imaging in the assessment of normal-appearing brain tissue damage in relapsing neuromyelitis optica[J]. AJNR American journal of neuroradiology. 2006;27(5):1009-15.
    [13]Zhao DD, Zhou HY, Wu QZ, et al. Diffusion tensor imaging characterization of occult brain damage in relapsing neuromyelitis optica using 3.0T magnetic resonance imaging techniques[J]. NeuroImage.2012;59(4):3173-7.
    [14]Misu T, Fujihara K, Kakita A, et al. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis[J]. Brain:a journal of neurology.2007;130(Pt 5):1224-34.
    [15]Takano R, Misu T, Takahashi T, et al. Astrocytic damage is far more severe than demyelination in NMO A clinical CSF biomarker study[J]. Neurology.2010;75(3):208-16.
    [16]Popescu BF, Parisi JE, Cabrera-Gomez JA, et al. Absence of cortical demyelination in neuromyelitis optica[J]. Neurology.2010;75(23):2103-9.
    [17]Friston KJ, Holmes AP, Worsley KJ. How many subjects constitute a study?[J]. Neurolmage. 1999;10(1):1-5.
    [18]Schafer J, Mostofsky S, Kraut M, et al. How many subjects are enough: Subsampling and consensus in fMRI[J]. Proceedings of the International Society for Magnetic Resonance in Imaging. 2003;11:383.
    [19]Ashburner J. Computational anatomy with the SPM software[J]. Magn Reson Imaging. 2009;27(8):1163-74.
    [20]Ashburner J, Friston KJ. Voxel-based morphometry—the methods[J]. Neurolmage.2000;11(6): 805-21.
    [21]Ashburner J. A fast diffeomorphic image registration algorithm[J]. NeuroImage.2007;38(1):95-113.
    [22]Yassa MA, Stark CE. A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe[J]. NeuroImage.2009;44(2):319-27.
    [23]Klein A, Andersson J, Ardekani BA, et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration[J]. NeuroImage.2009;46(3):786-802.
    [24]Martino D, Draganski B, Cavanna A, et al. Anti-basal ganglia antibodies and Tourette's syndrome:a voxel-based morphometry and diffusion tensor imaging study in an adult population[J]. Journal of Neurology, Neurosurgery & Psychiatry.2008;79(7):820-2.
    [25]Tahmasebi AM, Abolmaesumi P, Zheng ZZ, et al. Reducing inter-subject anatomical variation: effect of normalization method on sensitivity of functional magnetic resonance imaging data analysis in auditory cortex and the superior temporal region[J]. Neurolmage.2009;47(4):1522-31.
    [26]陈志晔,马林.基于体素的形态测量学技术及研究进展[J].功能与分子医学影像学(电子版).2012;1(1):53-5.
    [27]Tardif CL, Collins DL, Pike GB. Sensitivity of voxel-based morphometry analysis to choice of imaging protocol at 3 T[J]. Neurolmage.2009;44(3):827-38.
    [28]段云云,刘亚欧,梁佩鹏,等.应用基于体素的形态测量学方法分析视神经脊髓炎患者的脑体积变化[J].中华放射学杂志.2012;46(11):983-7.
    [1]Wingerchuk DM, Lennon VA, Pittock SJ, et al. Revised diagnostic criteria for neuromyelitis optica[J].Neurology.2006;66(10):1485-9.
    [2]Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images[J]. Proceedings of the National Academy of Sciences.2000;97(20):11050-5.
    [3]Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis:I. Segmentation and surface reconstruction[J]. Neurolmage.1999;9(2):179-94.
    [4]Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis:Ⅱ:Inflation, flattening, and a surface-based coordinate system[J]. NeuroImage.1999;9(2):195-207.
    [5]Fischl B, Sereno MI, Tootell RB, et al. High-resolution intersubject averaging and a coordinate system for the cortical surface[J]. Human brain mapping.1999;8(4):272-84.
    [6]Wingerchuk DM, Lennon VA, Lucchinetti CF, et al. The spectrum of neuromyelitis optica[J]. The Lancet Neurology.2007;6(9):805-15.
    [7]Blanc F, Noblet V, Jung B, et al. White matter atrophy and cognitive dysfunctions in neuromyelitis optica[J]. PloS one.2012;7(4):e33878.
    [8]Saji E, Arakawa M, Yanagawa K, et al. Cognitive impairment and cortical degeneration in neuromyelitis optica[J]. Annals of neurology.2013;73(1):65-76.
    [9]Mutlu AK, Schneider M, Debbane M, et al. Sex differences in thickness, and folding developments throughout the cortex[J]. Neurolmage.2013;82:200-7.
    [10]Narayana PA, Govindarajan KA, Goel P, et al. Regional cortical thickness in relapsing remitting multiple sclerosis:A multi-center study[J]. NeuroImage Clinical.2012;2:120-31.
    [11]Calabrese M, Rinaldi F, Mattisi I, et al. Widespread cortical thinning characterizes patients with MS with mild cognitive impairment[J]. Neurology.2010;74(4):321-8.
    [12]Ly M, Motzkin JC, Philippi CL, et al. Cortical thinning in psychopathy[J]. American Journal of Psychiatry.2012;169(7):743-9.
    [13]Du A-T, Schuff N, Kramer JH, et al. Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia[J]. Brain:a journal of neurology. 2007;l 30(4):1159-66.
    [14]Rosas H, Liu A, Hersch S, et al. Regional and progressive thinning of the cortical ribbon in Huntington's disease[J]. Neurology.2002;58(5):695-701.
    [15]Calabrese M, Oh MS, Favaretto A, et al. No MRI evidence of cortical lesions in neuromyelitis optica[J]. Neurology.2012;79(16):1671-6.
    [16]Saji E, Arakawa M, Yanagawa K, et al. Cognitive impairment and cortical degeneration in neuromyelitis optica[J]. Annals of neurology.2013;73(1):65-76.
    [17]Pichiecchio A, Tavazzi E, Poloni G, et al. Advanced magnetic resonance imaging of neuromyelitis optica:a multiparametric approach[J]. Multiple sclerosis.2012;18(6):817-24.
    [18]Duan Y, Liu Y, Liang P, et al. Comparison of grey matter atrophy between patients with neuromyelitis optica and multiple sclerosis:a voxel-based morphometry study[J]. European journal of radiology.2012;81(2):e 110-4.
    [19]Chanson JB, Lamy J, Rousseau F, et al. White matter volume is decreased in the brain of patients with neuromyelitis optica[J]. European journal of neurology:the official journal of the European Federation of Neurological Societies.2013;20(2):361-7.
    [20]Seewann A, Kooi E-J, Roosendaal S, et al. Postmortem verification of MS cortical lesion detection with 3D DIR[J]. Neurology.2012;78(5):302-8.
    [21]Misu T, Fujihara K, Kakita A, et al. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis[J]. Brain:a journal of neurology.2007;130(Pt 5):1224-34.
    [22]Takano R, Misu T, Takahashi T, et al. Astrocytic damage is far more severe than demyelination in NMO A clinical CSF biomarker study[J]. Neurology.2010;75(3):208-16.
    [23]Popescu BF, Parisi JE, Cabrera-Gomez JA, et al. Absence of cortical demyelination in neuromyelitis optica[J]. Neurology.2010;75(23):2103-9.
    [1]Wingerchuk DM, Hogancamp WF, O'Brien PC, et al. The clinical course of neuromyelitis optica (Devic's syndrome)[J]. Neurology.1999;53(5):1107-14.
    [2]Saji E, Arakawa M, Yanagawa K, et al. Cognitive impairment and cortical degeneration in neuromyelitis optica[J]. Annals of neurology.2013;73(1):65-76.
    [3]Blanc F, Noblet V, Jung B, et al. White matter atrophy and cognitive dysfunctions in neuromyelitis optica[J]. PloS one.2012;7(4):e33878.
    [4]Filippi M, Rocca M. Functional MR imaging in multiple sclerosis[J]. Neuroimaging Clinics of North America.2009;19(1):59-70.
    [5]Mainero C, Pantano P, Caramia F, et al. Brain reorganization during attention and memory tasks in multiple sclerosis:insights from functional MRI studies[J]. Journal of the neurological sciences. 2006;245(1):93-8.
    [6]Rocca MA, Agosta F, Mezzapesa DM, et al. A functional MRI study of movement-associated cortical changes in patients with Devic's neuromyelitis optica[J]. NeuroImage.2004;21(3):1061-8.
    [7]Gusnard DA, Raichle ME. Searching for a baseline:functional imaging and the resting human brain[J]. Nature Reviews Neuroscience.2001;2(10):685-94.
    [8]Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging[J]. Nature Reviews Neuroscience.2007;8(9):700-11.
    [9]Biswal B, Zerrin Yetkin F, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar mri[J]. Magnetic resonance in medicine.1995;34(4):537-41.
    [10]Wang K, Jiang T, Yu C, et al. Spontaneous activity associated with primary visual cortex:a resting-state FMRI study[J]. Cerebral Cortex.2008;18(3):697-704.
    [11]Rombouts SA, Barkhof F, Goekoop R, et al. Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study[J]. Human brain mapping. 2005;26(4):231-9.
    [12]Liu Y, Liang M, Zhou Y, et al. Disrupted small-world networks in schizophrenia[J]. Brain:a journal of neurology.2008;131(4):945-61.
    [13]Garrity A, Pearlson G, McKiernan K, et al. Aberrant "default mode" functional connectivity in schizophrenia[J]. American journal of psychiatry.2007;164(3):450-7.
    [14]Wang D, Qin W, Liu Y, et al. Altered resting-state network connectivity in congenital blind[J]. Human brain mapping.2013.
    [15]Yu-Feng Z, Yong H, Chao-Zhe Z, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain and Development.2007;29(2):83-91.
    [16]Liu Y, Yu C, Zhang X, et al. Impaired long distance functional connectivity and weighted network architecture in Alzheimer's disease[J]. Cerebral Cortex.2013:bhs410.
    [17]Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function[J]. Proceedings of the National Academy of Sciences.2001;98(2):676-82.
    [18]Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network:anatomy, function, and relevance to disease[J]. Ann N Y Acad Sci.2008;1124:1-38.
    [19]Cabeza R, Prince SE, Daselaar SM, et al. Brain activity during episodic retrieval of autobiographical and laboratory events:an fMRI study using a novel photo paradigm[J]. Journal of Cognitive Neuroscience.2004; 16(9):1583-94.
    [20]Gilbert SJ, Simons JS, Frith CD, et al. Performance-related activity in medial rostral prefrontal cortex (area 10) during low-demand tasks[J]. Journal of Experimental Psychology:Human Perception and Performance.2006;32(1):45.
    [21]Spreng RN, Grady CL. Patterns of brain activity supporting autobiographical memory, prospection, and theory of mind, and their relationship to the default mode network[J]. Journal of Cognitive Neuroscience.2010;22(6):1112-23.
    [22]Liu Y, Liang P, Duan Y, et al. Abnormal baseline brain activity in patients with neuromyelitis optica:a resting-state fMRI study[J]. European journal of radiology.2011;80(2):407-11.
    [23]Blanc F, Zephir H, Lebrun C, et al. Cognitive functions in neuromyelitis optica[J]. Archives of neurology.2008;65(l):84-8.
    [24]Liang P, Liu Y, Jia X, et al. Regional homogeneity changes in patients with neuromyelitis optica revealed by resting-state functional MRI[J]. Clinical neurophysiology:official journal of the International Federation of Clinical Neurophysiology.2011;122(1):121-7.
    [1]Wingerchuk DM, Hogancamp WF, O'Brien PC, et al. The clinical course of neuromyelitis optica (Devic's syndrome)[J]. Neurology.1999;53(5):1107-14.
    [2]Devic E. My elite subaigue compliquee de nevrite optique[J]. Bull Med (Paris). 1894;8:1033-4.
    [3]Aoyama T. A case of acute myelitis and blindness[J]. J Tokyo Med Assoc.1891;5:827-30.
    [4]Albutt T. On the ophthalmoscopic signs of spinal disease[J]. Lancet.1870;95:76-8.
    [5]Gault F. De la neuromyelite optique aigue.[J]. Lyon 1894(thesis).
    [6]Marrie RA, Gryba C. The incidence and prevalence of neuromyelitis optica:a systematic review[J]. International journal of MS care.2013;15(3):113-8.
    [7]Asgari N, Lillevang S, Skejoe H, et al. A population-based study of neuromyelitis optica in Caucasians[J]. Neurology.2011;76(18):1589-95.
    [8]Cabre P. Environmental changes and epidemiology of multiple sclerosis in the French West Indies[J]. Journal of the neurological sciences.2009;286(l):58-61.
    [9]Cabrera-Gomez JA, Kurtzke JF, Gonzalez-Quevedo A, et al. An epidemiological study of neuromyelitis optica in Cuba[J]. Journal of neurology.2009;256(1):35-44.
    [10]Cabre P. Migration and multiple sclerosis:the French West Indies experience[J]. Journal of the neurological sciences.2007;262(1):117-21.
    [11]Cossburn M, Tackley G, Baker K, et al. The prevalence of neuromyelitis optica in South East Wales[J]. European Journal of Neurology.2012;19(4):655-9.
    [12]Wingerchuk DM, Lennon VA, Lucchinetti CF, et al. The spectrum of neuromyelitis optica[J]. The Lancet Neurology.2007;6(9):805-15.
    [13]Matiello M, Kim H, Kim W, et al. Familial neuromyelitis optica[J]. Neurology. 2010;75(4):310-5.
    [14]de Seze J. Neuromyelitis optica[J]. Archives of neurology.2003;60(9):1336-8.
    [15]Mealy MA, Wingerchuk DM, Greenberg BM, et al. Epidemiology of neuromyelitis optica in the United States:a multicenter analysis[J]. Archives of neurology.2012;69(9):1176-80.
    [16]Drori T, Chapman J. Diagnosis and classification of neuromyelitis optica (Devic's Syndrome)[J]. Autoimmunity reviews.2014.
    [17]Nagaishi A, Takagi M, Umemura A, et al. Clinical features of neuromyelitis optica in a large Japanese cohort:comparison between phenotypes[J]. Journal of neurology, neurosurgery, and psychiatry.2011;82(12):1360-4.
    [18]Uzawa A, Mori M, Muto M, et al. When is neuromyelitis optica diagnosed after disease onset?[J]. Journal of neurology.2012;259(8):1600-5.
    [19]Cabre P, Gonzalez-Quevedo A, Bonnan M, et al. Relapsing neuromyelitis optica:long term history and clinical predictors of death[J]. Journal of neurology, neurosurgery, and psychiatry. 2009;80(10):1162-4.
    [20]Watanabe S, Nakashima I, Misu T, et al. Therapeutic efficacy of plasma exchange in NMO-IgG-positive patients with neuromyelitis optica[J]. Multiple sclerosis.2007; 13(1):128-32.
    [21]Watanabe S, Misu T, Miyazawa I, et al. Low-dose corticosteroids reduce relapses in neuromyelitis optica:a retrospective analysis[J]. Multiple sclerosis.2007;13(8):968-74.
    [22]Costanzi C, Matiello M, Lucchinetti C, et al. Azathioprine Tolerability, efficacy, and predictors of benefit in neuromyelitis optica[J]. Neurology.2011;77(7):659-66.
    [23]Jacob A, Matiello M, Weinshenker BG, et al. Treatment of neuromyelitis optica with mycophenolate mofetil:retrospective analysis of 24 patients[J]. Archives of neurology. 2009;66(9):1128-33.
    [24]Kim S-H, Kim W, Park MS, et al. Efficacy and safety of mitoxantrone in patients with highly relapsing neuromyelitis optica[J]. Archives of neurology.2011;68(4):473-9.
    [25]Kim S-H, Kim W, Li XF, et al. Repeated treatment with rituximab based on the assessment of peripheral circulating memory B cells in patients with relapsing neuromyelitis optica over 2 years[J]. Archives of neurology.2011;68(11):1412-20.
    [26]Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica:distinction from multiple sclerosis[J]. Lancet.2004;364(9451):2106-12.
    [27]Lennon VA, Kryzer TJ, Pittock SJ, et al. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel[J]. The Journal of experimental medicine.2005;202(4):473-7.
    [28]Kinoshita M, Nakatsuji Y, Moriya M, et al. Astrocytic necrosis is induced by anti-aquaporin-4 antibody-positive serum[J]. Neuroreport.2009;20(5):508-12.
    [29]Wrzos C, Winkler A, Metz I, et al. Early loss of oligodendrocytes in human and experimental neuromyelitis optica lesions[J]. Acta neuropathologica.2013.
    [30]Misu T, Fujihara K, Kakita A, et al. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis[J]. Brain:a journal of neurology.2007;130(Pt 5):1224-34.
    [31]Takano R, Misu T, Takahashi T, et al. Astrocytic damage is far more severe than demyelination in NMO A clinical CSF biomarker study[J]. Neurology.2010;75(3):208-16.
    [32]Wingerchuk DM, Lennon VA, Pittock SJ, et al. Revised diagnostic criteria for neuromyelitis optica[J]. Neurology.2006;66(10):1485-9.
    [33]Takahashi T, Fujihara K, Nakashima I, et al. Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO:a study on antibody titre[J]. Brain:a journal of neurology.2007;130(Pt 5):1235-43.
    [34]孙巧松,刘俊秀,丰岩清.NMO-IgG_anti-AQP4+抗体的检测及其特异性的研究[J].中华临床医师杂志,电子版.2010;04(11):2147-52.
    [35]Kister I, Herbert J, Zhou Y, et al. Ultrahigh-Field MR (7 T) Imaging of Brain Lesions in Neuromyelitis Optica[J]. Multiple sclerosis international.2013;2013:398259.
    [36]Pichiecchio A, Tavazzi E, Poloni G, et al. Advanced magnetic resonance imaging of neuromyelitis optica:a multiparametric approach[J]. Multiple sclerosis.2012;18(6):817-24.
    [37]Rocca M, Agosta F, Mezzapesa D, et al. Magnetization transfer and diffusion tensor MRI show gray matter damage in neuromyelitis optica[J]. Neurology.2004;62(3):476-8.
    [38]Calabrese M, Oh MS, Favaretto A, et al. No MRI evidence of cortical lesions in neuromyelitis optica[J]. Neurology.2012;79(16):1671-6.
    [39]Liu Y, Duan Y, He Y, et al. Altered topological organization of white matter structural networks in patients with neuromyelitis optica[J]. PloS one.2012;7(11):e48846.
    [40]Yu C, Lin F, Li K, et al. Pathogenesis of normal-appearing white matter damage in neuromyelitis optica:diffusion-tensor MR imaging[J]. Radiology.2008;246(1):222-8.
    [41]Zhao DD, Zhou HY, Wu QZ, et al. Diffusion tensor imaging characterization of occult brain damage in relapsing neuromyelitis optica using 3.0T magnetic resonance imaging techniques[J]. Neurolmage.2012;59(4):3173-7.
    [42]Aboul-Enein F, Krssak M, Hoftberger R, et al. Diffuse white matter damage is absent in neuromyelitis optica[J]. AJNR American journal of neuroradiology.2010;31(1):76-9.
    [43]de Seze J, Blanc F, Kremer S, et al. Magnetic resonance spectroscopy evaluation in patients with neuromyelitis optica[J]. Journal of Neurology, Neurosurgery & Psychiatry. 2010;81(4):409-11.
    [44]Bichuetti DB, Rivero RL, de Oliveira EM, et al. White matter spectroscopy in neuromyelitis optica:a case control study[J]. Journal of neurology.2008;255(12):1895-9.
    [45]Duan Y, Liu Y, Liang P, et al. Comparison of grey matter atrophy between patients with neuromyelitis optica and multiple sclerosis: a voxel-based morphometry study[J]. European journal of radiology.2012;81(2):e110-4.
    [46]Chanson JB, Lamy J, Rousseau F, et al. White matter volume is decreased in the brain of patients with neuromyelitis optica[J]. European journal of neurology:the official journal of the European Federation of Neurological Societies.2013;20(2):361-7.
    [47]Pittock SJ, Lennon VA, Krecke K, et al. Brain abnormalities in neuromyelitis optica[J]. Archives of neurology.2006;63(3):390-6.
    [48]Pittock SJ, Weinshenker BG, Lucchinetti CF, et al. Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression[J]. Archives of neurology.2006;63(7):964-8.
    [49]Wang F, Liu Y, Duan Y, et al. Brain MRI abnormalities in neuromyelitis optica[J]. European journal of radiology.2011;80(2):445-9.
    [50]肖慧,马林,娄听,等.视神经脊髓炎脑部异常的MRI表现及相关危险因素分析[J].中华放射学杂志.2011;45:240-4.
    [51]Barkhof F, Filippi M, Miller DH, et al. Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis[J]. Brain:a journal of neurology. 1997;120(11):2059-69.
    [52]Lisanti CJ, Asbach P, Bradley WG. The ependymal "Dot-Dash" sign:an MR imaging finding of early multiple sclerosis[J]. American journal of neuroradiology.2005;26(8):2033-6.
    [53]Bichuetti DB, Rivero RLM, Oliveira DM, et al. Neuromyelitis optica:brain abnormalities in a Brazilian cohort[J]. Arquivos de neuro-psiquiatria.2008;66(1):1-4.
    [54]Li Y, Xie P, Lv F, et al. Brain magnetic resonance imaging abnormalities in neuromyelitis optica[J]. Acta neurologica Scandinavica.2008;118(4):218-25.
    [55]Pittock SJ, Lennon VA, Krecke K, et al. Brain abnormalities in neuromyelitis optica[J]. Archives of neurology.2006;63(3):390-6.
    [56]Chen Z, Feng F, Yang Y, et al. MR imaging findings of the corpus callosum region in the differentiation between multiple sclerosis and neuromyelitis optica[J]. European journal of radiology.2012;81(11):3491-5.
    [57]Tallantyre EC, Morgan PS, Dixon JE, et al.3 Tesla and 7 Tesla MRI of multiple sclerosis cortical lesions[J]. Journal of Magnetic resonance imaging.2010;32(4):971-7.
    [58]Mainero C, Benner T, Radding A, et al. In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI[J]. Neurology.2009;73(12):941-8.
    [59]Tallantyre E, Dixon J, Donaldson I, et al. Ultra-high-field imaging distinguishes MS lesions from asymptomatic white matter lesions[J]. Neurology.2011;76(6):534-9.
    [60]Kollia K, Maderwald S, Putzki N, et al. First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis:comparison of 1.5 T and 7T[J], American Journal of Neuroradiology.2009;30(4):699-702.
    [61]Ge Y, Zohrabian VM, Grossman RI. Seven-Tesla magnetic resonance imaging:new vision of microvascular abnormalities in multiple sclerosis[J]. Archives of neurology.2008;65(6):812-6.
    [62]Ge Y, Zohrabian VM, Grossman RI. Seven-Tesla magnetic resonance imaging:new vision of microvascular abnormalities in multiple sclerosis[J]. Archives of neurology.2008;65(6):812-6.
    [63]Hammond KE, Metcalf M, Carvajal L, et al. Quantitative in vivo magnetic resonance imaging of multiple sclerosis at 7 Tesla with sensitivity to iron[J]. Annals of neurology. 2008;64(6):707-13.
    [64]Blanc F, Noblet V, Jung B, et al. White matter atrophy and cognitive dysfunctions in neuromyelitis optica[J]. PloS one.2012;7(4):e33878.
    [65]Cercignani M, Horsfield MA. The physical basis of diffusion-weighted MRI[J]. Journal of the neurological sciences.2001;186:S11-S4.
    [66]Neil JJ. Diffusion imaging concepts for clinicians[J]. Journal of Magnetic Resonance Imaging.2008;27(1):1-7.
    [67]O'Donnell LJ, Westin C-F. An introduction to diffusion tensor image analysis[J]. Neurosurgery Clinics of North America.2011;22(2):185.
    [68]Tournier JD, Mori S, Leemans A. Diffusion tensor imaging and beyond[J]. Magnetic Resonance in Medicine.2011;65(6):1532-56.
    [69]Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging:concepts and applications[J]. Journal of magnetic resonance imaging.2001;13(4):534-46.
    [70]Horsfield MA, Jones DK. Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases-a review[J]. NMR in Biomedicine.2002; 15(7-8):570-7.
    [71]Chanraud S, Zahr N, Sullivan EV, et al. MR diffusion tensor imaging:a window into white matter integrity of the working brain[J]. Neuropsychology review.2010;20(2):209-25.
    [72]Budde MD, Kim JH, Liang HF, et al. Axonal injury detected by in vivo diffusion tensor imaging correlates with neurological disability in a mouse model of multiple sclerosis[J]. NMR in Biomedicine.2008;21(6):589-97.
    [73]Song S-K, Yoshino J, Le TQ, et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain[J]. NeuroImage.2005;26(1):132-40.
    [74]Sun S-W, Liang H-F, Schmidt RE, et al. Selective vulnerability of cerebral white matter in a murine model of multiple sclerosis detected using diffusion tensor imaging[J]. Neurobiology of disease.2007;28(1):30-8.
    [75]Liu Y, Duan Y, He Y, et al. Whole brain white matter changes revealed by multiple diffusion metrics in multiple sclerosis:a TBSS study[J]. European journal of radiology. 2012;81(10):2826-32.
    [76]Basser PJ, Pajevic S, Pierpaoli C, et al. In vivo fiber tractography using DT-MRI data[J]. Magnetic resonance in medicine.2000;44(4):625-32.
    [77]Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review[J]. NMR in Biomedicine.2002;15(7-8):435-55.
    [78]Ito M, Watanabe H, Kawai Y, et al. Usefulness of combined fractional anisotropy and apparent diffusion coefficient values for detection of involvement in multiple system atrophy[J]. Journal of Neurology, Neurosurgery & Psychiatry.2007;78(7):722-8.
    [79]Lin F, Yu C, Jiang T, et al. Diffusion tensor tractography-based group mapping of the pyramidal tract in relapsing-remitting multiple sclerosis patients[J]. American journal of neuroradiology.2007;28(2):278-82.
    [80]Yu CS, Lin FC, Li KC, et al. Diffusion tensor imaging in the assessment of normal-appearing brain tissue damage in relapsing neuromyelitis optica[J]. AJNR American journal of neuroradiology.2006;27(5):1009-15.
    [81]Yu CS, Zhu CZ, Li KC, et al. Relapsing Neuromyelitis Optica and Relapsing-Remitting Multiple Sclerosis:Differentiation at Diffusion-Tensor MR Imaging of Corpus Callosum 1[J]. Radiology.2007;244(1):249-56.
    [82]Liu Y, Duan Y, He Y, et al. A tract-based diffusion study of cerebral white matter in neuromyelitis optica reveals widespread pathological alterations[J]. Multiple sclerosis. 2012;18(7):1013-21.
    [83]Firbank M, Harrison R, O'Brien J. A comprehensive review of proton magnetic resonance spectroscopy studies in dementia and Parkinson's disease[J]. Dementia and geriatric cognitive disorders.2002;14(2):64-76.
    [84]Brex P, Gomez-Anson B, Parker G, et al. Proton MR spectroscopy in clinically isolated syndromes suggestive of multiple sclerosis[J]. Journal of the neurological sciences. 1999; 166(1):16-22.
    [85]Sarchielli P, Presciutti O, Pelliccioli G, et al. Absolute quantification of brain metabolites by proton magnetic resonance spectroscopy in normal-appearing white matter of multiple sclerosis patients[J]. Brain:a journal of neurology.1999;122(3):513-21.
    [86]Sastre-Garriga J, Ingle G, Chard D, et al. Metabolite changes in normal-appearing gray and white matter are linked with disability in early primary progressive multiple sclerosis[J]. Archives of neurology.2005;62(4):569-73.
    [87]Wattjes M, Harzheim M, Lutterbey G, et al. Axonal damage but no increased glial cell activity in the normal-appearing white matter of patients with clinically isolated syndromes suggestive of multiple sclerosis using high-field magnetic resonance spectroscopy[J]. American Journal of Neuroradiology.2007;28(8):1517-22.
    [88]Gustafsson M, Dahlqvist O, Jaworski J, et al. Low choline concentrations in normal-appearing white matter of patients with multiple sclerosis and normal MR imaging brain scans[J]. American Journal of Neuroradiology.2007;28(7):1306-12.
    [89]Aradi M, Koszegi E, Orsi G, et al. Quantitative MRI analysis of the brain after twenty-two years of neuromyelitis optica indicates focal tissue damage[J]. European neurology. 2013;69(4):221-5.
    [90]Filippi M, Rocca M. Functional MR imaging in multiple sclerosis[J]. Neuroimaging Clinics of North America.2009;19(1):59-70.
    [91]Mainero C, Pantano P, Caramia F, et al. Brain reorganization during attention and memory tasks in multiple sclerosis:insights from functional MRI studies[J]. Journal of the neurological sciences.2006;245(1):93-8.
    [92]Rocca MA, Agosta F, Mezzapesa DM, et al. A functional MRI study of movement-associated cortical changes in patients with Devic's neuromyelitis optica[J]. Neurolmage.2004;21(3):1061-8.
    [93]Gusnard DA, Raichle ME. Searching for a baseline:functional imaging and the resting human brain[J]. Nature Reviews Neuroscience.2001;2(10):685-94.
    [94]Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging[J]. Nature Reviews Neuroscience.2007;8(9):700-11.
    [95]Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function[J]. Proceedings of the National Academy of Sciences.2001;98(2):676-82.
    [96]Rombouts SA, Barkhof F, Goekoop R, et al. Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease:an fMRI study [J]. Human brain mapping. 2005;26(4):231-9.
    [97]Liu Y, Liang M, Zhou Y, et al. Disrupted small-world networks in schizophrenia[J]. Brain:a journal of neurology.2008;131(4):945-61.
    [98]Garrity A, Pearlson G, McKiernan K, et al. Aberrant "default mode" functional connectivity in schizophrenia[J]. American journal of psychiatry.2007;164(3):450-7.
    [99]Wang D, Qin W, Liu Y, et al. Altered resting-state network connectivity in congenital blind[J]. Human brain mapping.2013.
    [100]Yu-Feng Z, Yong H, Chao-Zhe Z, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain and Development.2007;29(2):83-91.
    [101]Rocca M, Valsasina P, Absinta M, et al. Default-mode network dysfunction and cognitive impairment in progressive MS[J]. Neurology.2010;74(16):1252-9.
    [102]Liu Y, Liang P, Duan Y, et al. Abnormal baseline brain activity in patients with neuromyelitis optica:a resting-state fMRI study[J]. European journal of radiology.2011;80(2):407-11.
    [103]Liang P, Liu Y, Jia X, et al. Regional homogeneity changes in patients with neuromyelitis optica revealed by resting-state functional MRI[J]. Clinical neurophysiology:official journal of the International Federation of Clinical Neurophysiology.2011;122(1):121-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700