厚层抗蚀剂成像特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从二十世纪九十年代以来,微电子机械系统(MEMS)发展迅速,促进了其加工方法的不断完善和进步。近年来,作为制作优质大高宽比微结构的厚层抗蚀剂光刻术以其工艺简单、制作成本低等优点受到国际上广泛重视。随着MEMS的迅速发展,其结构愈来愈复杂,高深宽比的新型MEMS结构需要被设计和加工,迫切需要对厚胶光刻过程的模拟。但目前关于厚层抗蚀剂光刻方面的研究,主要局限于实验工艺的改进上,对其图形传递机理的研究做得很少,现有的曝光、显影模型均未考虑厚层抗蚀剂光刻成像的一些特殊属性,一定程度上制约了厚胶光刻术的深入发展和应用。本论文以抗蚀剂的曝光显影理论为基础,深入开展了厚层抗蚀剂的成像特性的研究,可为厚胶光刻实验提供指导依据。
     在论文中,基于抗蚀剂的光化学和反应动力学理论,重点研究了一些非线性因素对厚层抗蚀剂光刻带来的影响。针对厚层抗蚀剂在曝光过程中折射率发生了变化以及曝光参数随抗蚀剂厚度变化的特点,改进了原有的曝光模型;针对厚层抗蚀剂显影参数随抗蚀剂厚度变化的特点以及在显影过程中出现的表面抑制效应现象,改进了原有的显影模型。建立了适用于厚层抗蚀剂光刻的成像新模型。
     同时,在论文中还深入讨论了抗蚀剂折射率变化对光场计算带来的误差;模拟了后烘过程对驻波效应的改善作用,论证了采用适当的后烘工艺改善抗蚀剂光刻质量的作用;分析了驻波效应对厚层抗蚀剂显影轮廓的影响,提出了一个可以忽略驻波效应影响的抗蚀剂厚度条件值;最后还模拟和分析了厚层抗蚀剂显影轮廓特点并给出了实验结果。
MEMS applications are growing rapidly in recent years. A lot of micro machining technologies are developed to fabricating MEMSs. Recently, lithograph of thick resist has been regarded as an effective and economical technology for manufacturing excellent high-aspect-ratio microstructures (HARMS). With the development of MEMSs, their structures are more and more complex, and new HARMSs need to be designed and fabricated. So, it is very necessary to simulate the imaging process of thick resist photolithograph. In the past, process controls of thick resist lithograph have been studied extensively. On the contrary, much less investigation has been done concerning its imaging transmission. Unfortunately, the existent exposure and development simulation models are only appropriate for thin film resist. Therefore, the imaging characteristics of thick resist photolithograph are investigated in this paper based on the exposing and developing theories of thin film resists.
    Firstly, the influences of nonlinearities in imaging process of thick resist lithography are studied. Based on the analysis, we find refractive index of resists changes during bleaching process, and the exposure parameters vary with resist thickness, so as the development parameters. Therefore, the Dill exposure model and Mack development model are improved, so that they are suitable for the simulation of thick resist lithography.
    In addition, the calculation errors from refractive index changes are discussed. From the simulation of PEB process, we prove that PEB could reduce standing wave effects and improve resist development profile. After analyzing the effects of standing wave effects on resist profiles, we bring forward a certain thickness and
    these effects could be ignored when resist is beyond that value. Finally, the characters of thick resist profile are analyzed, and experiment results are also given.
引文
1. J. Knutti, Finding markets for microstructures. Micromachining and Fabrication Process Technology Ⅳ Proceedings, SPIE, Vol. 3511,1998, p17-23.
    2. R. Wechsung, N. Unal. Markets analysis for microsystems: an interim report from the nexus task force. Micro System Technologies 98 Proceedings, December 3,1998, p275.
    3. Nexus Report, Market analysis for microsystems 1996-2002. October 1998.
    4. D.J. Nagel M.E. Zaghloul. MEMS: micro technology, mega impact. IEEE Circuits & Device, 2001,17(2): 14-25.
    5. B. Lochel, A. Maciossek, M. Konig, et al. Fabrication of magnetic microstructure by using thick layer resist. Microelectronic Engineering, 1993,Vol.21, p463-466
    6. E.W. Becker, W. Ehrfeld, E Hagmann, and A. Maner. Fabrication of microstructures with extreme structural heights by synchrotron radiation lithography, galvanoforming and plastic forming (LIGA Process). Microelectron. Eng., 1986, Vol. 4, p35-56.
    7. N.C. Labianca, J. D. Gelorme. High aspect ratio resist for thick film applications, SPIE, Vol. 2438, 1995, p846-852.
    8. H. Lorenz, M. Despont, N. C. Labianca. SU-8 a low cost negative resist for MEMS. J.Michromech. Microeng., 1997, Vol.7, p121-124.
    9. J.M. Shaw, J. D. Gelorme, N. C. Labianca, and W. E. Conley, Negative photoresists for optical lithography, IBM.J. Res. Develop., 1997 ,Vol. 41, No.1/2, p81-94, Jan./Mar..
    10. B. Loechel, R. Demmeler, M. Rothe, and W. Bruenger. Application of optical lithography for high aspect ratio microstructures, J. Vac. Sci. Technol. B, 1996, Vol.14, No.6, p4179-4183, Nov./Dec..
    11. Ph. Nussbaum and H. P.Herzig. Refractive and diffractive elements for micro-optical systems, SPIE, 1997, Vol.3226, p32-43.
    12. G. Michael Morris. Recent Advances in Diffractive-and Micro-optics Technology. SPIE, 1998 ,Vol.3573, p370-375.
    13. Jun Yao, Jingqin Su, Jinglei Du, Fuhua Gao, Feng Gao, and Yongkang Guo. Fabrication of hybrid optics element with coding gray-tone mask. Micro- and Nano-Engineering 2000 international Conference, 2000.9
    14. S. Rotich, J. G. Smith, A. G. R. Evans and A. Brunnschweiler. Photoresist parabolas for curved micromirrors. Journal of Micromechanics and Microengineering, vol. 8 No.2, June 1998, p108-110.
    15. Cheng, C. Y. Lin, D. H. Wei. Wall profile of thick photoresist generated via contact printing. IEEE J. Microelectromechanical System, 1999,8(1), p18-26.
    16. Brown, Joe; Hamel, Clifford, et al. Thick resist for MEMS processing. SPIE, 2001, Vol.4592,
    
    p334-346.
    17. F.H. Dill, W. R Hornberger, P.S .Hauge, et al. Characterization of positive photoresist. IEEE Trans. Electron Devices, 1975, ED-22(7),p445~452.
    18. Chris A. Mack. Development of Positive Photoresist. J.Electrochem.Soc., 1987, Vol.A26, p143-149.
    19. Andreas Erdman, Clifford L.Herderson, C.Grant.Willson, et al. Some Aspect of Thick Film Performance and Modeling. SPIE, 1998,Vol.3333, p1201-1210.
    20. J. Helmsen, E.G. Puckett, E Colella and M. Dorr. Two new methods for simulating photolithography development in 3D. SPIE, 1996,Vol.2726, p253-261.
    21. Warren W. Flack, Gary Newman, D. Bernard, et al. Advanced Simulation Technique for Thick Photoresist Lithography. SPIE, 1997, Vol.3049, p789-804.
    22. C.A. Mack. Enhanced Lumped Parameter Model for Photolithography. SPIE, 1994, Vol.2197, p501-510.
    23. F.H. Dill, et al. Optical lithography. IEEE Trans. Electron Devices, 1975, ED-22(7), p440~444.
    24. K.L. Konnerth, F.H. Dill, et al. In-situ measurement of dielectric thickness during etching or developing processes. IEEE Trans. Electron Devices, 1975, ED-22(7), p452~456.
    25. F.H. Dill, A.R. Neureuther, et al. Modeling projection printing of positive photoresists. IEEE Trans. Electron Devices, 1975, ED-22(7),p456~464.
    26. W.G. Oldman, S.N. Nandgaonkar, et al. A general simulator for VLSI lithography and etching processes: Part 1- Application to projection lithography. IEEE Trans. Electron Devices, 1979, ED-26(4),p717~722.
    27. C.A. Mack. PROLITH: A comprehensive optical lithography model. SPIE Vol. 538, 1985, p207-220.
    28. Michael S. Yeung. Photolithography simulation on non-planar substrates. SPIE Vol.1264, 1990, p309-321.
    29. R. Gordon, C.A. Mack. Lithography simulation employing rigorous solutions to Maxwell's equations. SPIE Vol.3334, 1998, p176-196.
    30. Clifford L. Henderson, Sanju N. PanChoil, Sajed A.Chowdury. Photoresist Characterization for Lithography Simulation Part2: Exposure Parameter Measurements. SPIE, 1997, Vol.3049, p816-828.
    31. Clifford L.Henderson, Pavlos C. Tsiartas, Sanju N.PanChoil, et al. Photoresist characterization for lithography simulation Part3: Development parameter measurement. SPIE, 1997, Vol.3049, p805-815.
    32. Clifford L.Henderson, Steven A.Scheer, Pavlos C. Tsiartas. Modeling parameter extraction for DNQ-Novolac thick film resist. SPIE, 1998,Vol.3333, p256-267.
    33.顾振军,孙猛.抗蚀剂及其微细加工技术.上海:上海交通大学出版社,1989.
    34.高延仲.半导体器件制造工艺.天津科学技术出版社,1982.
    
    
    35. C.A.Mack, T.Matsuzawa. Resist metrology for Lithography simulation. Part 1: Exposure parameter measurements. SPIE Vol.2725, 1996, p34-48.
    36. J.Albers, D.B.Novotny. Intensity dependence of photochemical reaction rates for photoresists. J.Electrochem. Soc., Vol. 127, No.6, 1980, p1400-1403.
    37. C.A. Mack. Absorption and exposure in positive photoresist. Applied Optics, Vol.27, No.23, 1988, p4913-4919.
    38. C. A. Mack. Development of positive photoresist. J.Electrochem.Soc.: Solid-State Sci. Technol., 1987, 134(1), p148~152.
    39. http://www.azresist, com
    40. C.A. Mack. A new kinetic model to describe photoresist development. J.Electrochm. Soc., Vol. 139, No.4, 1992, p35-37.
    41. G. Arthur, C. A. Mack. A new development model for lithography simulation. Olin Microlithography Seminar, Interface '97,1997, p55-66.
    42. G. Arthur, G. Martin. Enhancing the development rate model for optimum simulation capability in the sub-hub-micron regime. SPIE, 1997,Vol.3049, p189-200.
    43. G. Arthur, C. Wallace, B. Martin. A comparison of recent development model in optical lithography simulation. SPIE, Vol.3332, 1998, p538-549.
    44. S.H. Thornton, C.A. Mack. Lithography model tuning: Matching simulation to experiment. SPIE, Vol.2726, 1996, p223-235.
    45. J.M. Shaw, M.A. Frisch, EH. Dill. Thermal analysis of positive photoresist films by mass spectrometry. IBM Jour Res. Dev., Vol.21, 1977, p219-226.
    46. D.W. Johnson. Thermolysis of positive photoresists. SPIE, Vol.469, 1984, p72-79.
    47. J.M. Koyler, et al.. Thermal properties of positive photoresist and their relationship to VLSI processing. Kodak Microelectronics Seminar Interface '79, 1979, p150-165.
    48. D.A. Bernard. Simulation of post exposure bake effects on photolithographic performance of a resist film. Philips Journal of research, 1975,Vol.22, No.7, p445-451.
    49. J.E. Korka, Standing wave in photoresist", Applied Optics, Vol.9, No.4, 1970, p969-970.
    50. B. Loechel, M. Rothe, S. Fehlberg. Influence of resist baking on the pattern quality of thick photoresists. SPIE, Vol.2879, 1996, p174-181.
    51. O.C. Lehar, J.P. Sagan, Lizhong Zhang. Solvent content of thick photoresist films. SPIE, Vol.3999, 2000, p442-451.
    52. D.A. Skoog, D.M. West. Fundamentals of analytical chemistry, 3rd edition, Holt, Rinehart, and Winston (New York: 1976), p509-510.
    53. C.A. Mack, D.P. Dewitt. Modeling of solvent evaporation effects for hot plate baking of photoresists. SPIE, Vol.2195, 1994, p584-595.
    54. O.S. Heavens. Optical properties of thin solid films. New York, Dover Publications, Inc., 1991.
    55. P. Yeh. Optical Waves in layered media. New York: John Wiley and Sons, 1988.
    
    
    56. W.W. Flack, G. Newman. Advanced simulation techniques for thick photoresist lithography. SPIE, Vol.3049, 1997, p789-804.
    57. G. Arthur, B. Martin. Enhancing the development rate model in optical lithography simulation of ultra-thick films for applications suck as MEMS and LIGA. SPIE, Vol.4404, 2001, p209-220.
    58. G. Arthur. Modifying the surface inhibition layer of thick resists for Improved process control. SPIE, Vol.4404, 2001, p372-379.
    59. Pampalone, T.R., Novolac resist used in positive resist systems. Solid State Tech., Vol.27, No.6, 1984, p115-218.
    60. Kim, D.J. Oldman, W.G. Neureuther. Development of positive photoresist. IEEE Trans. Electron Dev., Vol.31, No.12, 1984, p1730-1735.
    61. C.A. Mack. Inside PROLITH: a comprehensive guide to optical lithography simulation. FINLE Technologies, Austin, TX, 1997.
    62.范建兴,冯伯儒,张锦,用时间-边界跟踪模型确定抗蚀剂显影后的轮廓分布,光子学报,Vol.26 No.6,p546-549.
    63.范建兴,微细图形光刻中的驻波效应研究,成都:中国科学院光电技术研究所,1997年硕士论文.
    64.沈亦兵,浙江大学博士学位论文,1998.
    65. B. Lochel, A. Maciossek, H. j. Quenzer. UV depth lithography and galvanoforming for micromachining. 2ed International Symposium on Electrochemical Microfabrication, 1994.
    66. S. Nicolas, E. Dufour-Gergam, A. Bosseboeuf. Fabrication of a gray-tone mask and pattern transfer in thick photoresists. Journal of Micromechanics and Microengineering. 1998(8), p95-98.
    67. M. Brunet, T. O. Donnell, J. O. Brien. Thick photoresists development for the fabrication of high aspect ratio magnetic coils. Journal of Micromechanics and Microengineering, 2002(12), p444-449.
    68. E. Lennon, F. Ayela. Elecrtrodeposition through thick photoresists moulds for the fabrication of a sharp chromium microtip. Journal of Micromechanics and Microengineering, 2002(12), p122-127.
    69. J. B. Yoon, Y. Gilbert. Planarization and trench filling on severe surface topography with thick photoresist for MEMS. SPIE, Vol.3511, 1998, p297-306.
    70. N. P. Pham, P. M. Sarro, J. N. Burghartz. IC-compatible process for pattern transfer in deep wells for integration of RF components. SPIE, Vol.4174, p390-397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700