高深宽比微纳层次结构的仿壁虎毛优化设计与制作工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以微机电系统(MEMS, Micro Electro Mechanical System)器件可拆卸安装和固定为例的多种潜在应用(如爬壁机器人、微操作、微装配等),迫切需求一种可牢固粘附又能反复使用的粘合方式。目前广泛使用的湿性粘合剂多存在易污染、易脱落、不可重复使用等缺点,因此研制一种克服上述缺点的干性粘合剂将具有十分重要的意义和广阔的应用前景。自然界中壁虎具有非常优秀的爬行能力,无论是水平的天花板还是竖直的墙壁,无论是粗糙的树皮还是光滑的玻璃,壁虎都能快速爬行或纹丝不动,即便是潮湿的环境也能行动自如,这种粘附特性为干性粘合剂的仿生设计与制作提供了极好的范例和启示。壁虎脚毛的分级层次结构,特别是其微米级刚毛/纳米级绒毛的高深宽比微纳层次结构,是保证壁虎既能产生巨大粘附力又能适应不同表面形貌的关键。为此,本学位论文开展高深宽比微纳层次结构的仿壁虎毛优化设计与制作工艺的研究,从壁虎毛粘附机理出发,提出一种基于多约束条件的自底向上的优化设计方法,以及一种基于感应耦合等离子体(ICP, Inductively Coupled Plasma)刻蚀与厚胶光刻工艺的简单低成本的双层阵列制作方法。
     本文首先对壁虎毛粘附机理进行了研究。通过JKR模型和最小势能原理分析了单根绒毛在顶接触状态与边接触状态下的受力情况,研究了单根绒毛的粘附力与脱附角,解释壁虎如何产生巨大粘附力又能快速脱附;通过分别建立粗糙表面模型和多级阵列模型,模拟了壁虎毛在粗糙表面的粘附与脱附过程,研究了结构粘附力与接触面粗糙度、阵列层级的关系,解释壁虎为何能适应不同形貌的粗糙表面;通过Cassie模型分析了壁虎绒毛的疏水性,通过JKR模型分析了灰尘与绒毛阵列的吸附力,解释壁虎如何同时在潮湿和干燥的环境下保持自清洁特性。
     其次对仿壁虎毛结构进行了优化设计。对仿壁虎毛结构的层数进行了分析与选择,从增强粘附、保持稳定与适应环境等角度出发,提出单根纤维的最优粘附约束、单根纤维的稳定性约束、纤维之间的防纠结约束、纤维阵列的表面适应性约束、纤维阵列的疏水性约束、纤维阵列的自清洁约束、多级结构的最大粘附能约束,多数能与实际壁虎结构参数相符合,并在此基础上提出一种基于多约束条件的自底向上的优化设计方法,对仿壁虎毛结构进行了优化设计与分析。
     接下来对仿壁虎毛结构制作工艺进行了探索。研究了基于SU-8胶的厚胶光刻工艺,制作出了最大长径比为6的单层SU-8纤维阵列;研究了基于Bosch技术的ICP刻蚀工艺,制作出了最大长径比为5的单层聚二甲基硅氧烷(PDMS, Polydimethylsiloxane)纤维阵列;在前两个工艺基础上,提出一种结合ICP刻蚀与厚胶光刻的Si/SU-8复合模具模塑成型工艺,制作出了顶层长径比为5、底层长径比为2的双层PDMS纤维阵列。
     最后对仿壁虎毛结构进行了性能测试。对无结构、单层结构、双层结构的多种样品进行了实验检测,包括疏水性能、法向粘附性能和切向粘附性能,并结合前文理论解释实验现象。单层阵列的平均水接触角为143.6°,双层阵列的平均水接触角为150.4°,有结构样品中测得最大法向粘附强度为1.52N/cm2(单层直径5μm间距5μm长度20μm),最大切向粘附强度为0.79N/cm2(单层直径3μm间距3μm长度15μm),通过对比发现双层阵列相较于单层阵列和平面结构具有更好的疏水性和粗糙表面适应性。
It is very urgent to develop a kind of powerful and repeatable adhesive, due to its wide applications in deployment and disassembly of micro electro mechanical system (MEMS) devices such as wall-climbing robots, micro-manipulation, micro-assembly, etc. The commonly used wet adhesives are easy to be contaminated and fall off, and can not be reused, which have unfavorable effect on adhesion. As a result, the developing of a kind of dry adhesive without the above shortcomings would have important significance and wide application prospect. In nature, geckos have developed complex foot-hair structures capable of smart adhesion. They can crawl quickly or keep sill on horizontal cell, vertical wall, rough bark and smooth glass, even in a wet environment. The powerful adhesive characteristics of geckos inspire human for design and fabrication of a new kind of biomimetic dry adhesive. The multiscale hierarchical structure of the gecko foot-hair, especially the high-aspect-ratio structure of its micro-scale seta and nano-scale spatulae is the critical factor of gecko's ability to adopt and stick to any different surfaces with powerful adhesion force. Accordingly, the design and fabrication method mimicking gecko foot-hairs will be investigated in this paper. Starting from the adhesion mechanism of gecko foot-hairs, a bottom-up optimal design method based on various restraining conditions is proposed. Subsequently, a simple and low-cost way to make dual-level microfiber arrays based on inductively coupled plasma (ICP) etching and thick film photolithography is developed. The main contens of this paper are shown in the following.
     Firstly, the adhesion mechanism of gecko foot-hairs has been studied. We analyze the force of a single spatula in top contact and side contact through JKR model and minimum potential energy principle. The adhesion force and the detachment angle are calculated, which can explain why geckos both have stable attachment and easy detachment. By establishing the models of rough surfaces and hierarchical structures, we simulate the processes of attachment and detachment of gecko foot-hairs. The relationships among adhesion force, surface roughness and layer of structures are discussed, which can explain why geckos have excellent adaptability on different surfaces. We analyze the hydrophobicity of spatulae through Cassie model, and compare the adhesion between dirt particle and spatulae through JKR model, which can explain how geckos manage to keep their feet clean while walking both in watery and dry environment.
     Secondly, an optimal design mimicking gecko foot-hairs has been finished. We discuss and select the layer of hierarchical structure. In order to achieve goals of robust adhesion, well stability and excellent adaptability, we propose constraints such as the optimal adhesion and stability of a single fiber, the anti-bunching between adjacent fibers, the adaptability on rough surface, the hydrophobicity and self-cleaning of fiber arrays, and the maximal adhesion work of hierarchical structures. A bottom-up optimal design method for geometrical parameters is proposed based on these constraints, and a procedure is also developed here to find out optimum parameters mimicking gecko foot-hairs with a discussion of the results.
     Thirdly, investigations have been made on the fabrication methods of structures mimicking gecko foot-hairs. The thick film photolithography based on SU-8photoresist is studied, and single-level fiber arrays of SU-8with an aspect ratio of6are fabricated. The ICP etching process based on Bosch technology is also studied, and single-level fiber arrays of Polydimethylsiloxane (PDMS) with an aspect ratio of5are fabricated. Then we propose a process of micromodeling from a composite mold of SU-8photoresist and silicon by using ICP etching and thick film photolithography, and fabricate the dual-level fiber arrays of PDMS with a top aspect-ratio of5and a bottom aspect-ratio of2.
     Finally, the properties of structures mimicking gecko foot hairs have been tested. We compare the hydrophobic properties, the normal and shear stresses among unpatterned, single-level and dual-level structures, and explaine the experimental results with previous theories. The average contact angle of single-level arrays is143.6°, while the dual-level arrays' is150.4°. The maximum normal stress of patterned structures is1.52N/cm2(single-level array with5μm diameter,5μm spacing and20μm height), while the maximum shear stress is0.79N/cm2(single-level array with3μm diameter,3μm spacing and15μm height). It is found that dual-level structures have better hydrophobicity and adaptability on rough surface than single-level and unpatterned ones.
引文
[1]Simmermacher G Untersuchungen uber Haftapparate an Tarsalgliedern von Insekten. Zeitschr Wiss Zooology,1884,40:481-556.
    [2]Shaw P E. Electrical separation between identical solid surfaces. Proceedings of the Physical Society,1927,39:449-452.
    [3]Skinner S M, Savage R L, Rutzler J E. Electrical phenomena in adhesion I:electron atmospheres in dielectrics. Journal of Applied Physics,1953,24:438-450.
    [4]Schmidt H R. Zur Anatomie und Physiologie der Geckzehe. Jena Zeitschrift Naturwiss,1934,68:613-658.
    [5]Hora S L. The adhesive apparatus on the toes of certain geckos and tree frogs. Proceedings of Asiatic Society of Bengal,1923,9:137-145.
    [6]Wahlin A, Backstrom G. Sliding electrification of Teflon by metals. Journal of Applied Physics,1974,45(5):2058-2064.
    [7]Stork N E. Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae, Coleoptera) on a variety of surfaces. Journal of Experimental Biology,1980,88(1): 91-107.
    [8]Ruibal R, Ernst V. The structure of the digital setae of lizards. Journal of Morphology,1965,117(3):271-294.
    [9]Autumn K, Grayish N. Gecko adhesion:Evolutionary nanotechnology. Philosophical Transactions of the Royal Society A,2008,366(1870):1575-1590.
    [10]Hiller U. Studies on fine structure and function of the digital setae of reptiles. Zeitschrift fuer Morphologie der Tiere,1968,62:307-362.
    [11]Autumn K, Liang Y A, Hsieh S T, et al. Adhesive force of a single gecko foot-hair. Nature,2000,405(6787):681-685.
    [12]Liang Y A, Autumn K, Hsia S T, et al. Adhesion force measurements on single gecko setae. Technical Digest of the 2000 Solid-State Sensor and Actuator Workshop,2000,33-38.
    [13]Autumn K, Peattie A. Mechanisms of adhesion in geckos. Integrative and Comparative Biology,2002,42(6):1081-1090.
    [14]Autumn K, Sitti M, Liang Y A, et al. Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences,2002,99(19): 12252-12256.
    [15]Autumn K, Dittmore A, Santos D, et al. Frictional adhesion:a new angle on gecko attachment. Journal of Experimental Biology,2006,209(18):3569-3579.
    [16]Yao H, Gao H. Mechanics of robust and releasable adhesion in biology:bottom-up designed hierarchical structures of gecko. Journal of the Mechanics and Physics of Solids,2006,54(6):1120-1146.
    [17]Hansen W R, Autumn K. Evidence for self-cleaning in gecko setae. Proceedings of the National Academy of the United States of America,2005,102(2):385-389.
    [18]Hui C Y, Shen L, Autumn K, et al. Mechanics of anti-fouling or self-cleaning in gecko setae. In Proceedings of the 29th Annual Meeting of the Adhesion Society, 2006.
    [19]Tsai Y C, Shih P J, Lin T H, et al. Self-cleaning efects of biomimetic dry adhesives. In Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems,2006,1388-1391.
    [20]Autumn K, Majidi C, Groff R E, et al. Effective elastic modulus of isolated gecko setal arrays. Journal of Experimental Biology,2006,209(18):3558-3568.
    [21]Tian Y, Pesika N, Zeng H B. Adhesion and friction in gecko toe attachment and detachment. Proceedings of the National Academy of Sciences,2006,103(51): 19320-19325.
    [22]Michael P M, Burak A, Sitti M. Gecko-inspired directional and controllable adhesion. Small,2009,5(2):170-175.
    [23]Lee J, Majidi C, Schubert B, et al. Sliding induced adhesion of stiff polymer microfiber arrays:I. Macroscale behaviour. Journal of the Royal Society Interface, 2008,5(5):835-844.
    [24]Schubert B, Lee J, Majidi C, et al. Sliding-induced adhesion of stiff polymer microfibre arrays:Ⅱ. Macroscale behaviour. Journal of the Royal Society Interface, 2008,5(25):845-853.
    [25]Shah G J, Sitti M. Modeling and design of biomimetic adhesives inspired by gecko foot-hairs. In Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics,2004,873-878.
    [26]Sitti M, Fearing R S. Synthetic Gecko Foot-Hair Micro/Nano-Structures for Future Wall-Climbing Robots. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation,2003,1055-1073.
    [27]Gao H J, Yao H M. Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proceedings of the National Academy of the United States of America, 2004,101(21):7851-7856.
    [28]Spolenak R, Gorb S, Gao H J, et al. Effects of contact shape on the scaling of biological attachments. Proceedings of the Royal Society of London A,2005, 461(2054):305-319.
    [29]Campo A D, Greiner C, Arzt E. Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir,2007,23(20):10235-10243.
    [30]Campo A D, Greiner C, Alvarez I, et al. Arzt. Patterned surfaces with pillars with controlled 3D tip geometry mimicking bioattachment devices. Advanced Materials, 2007,19(15):1973-1977.
    [31]Gorb S N, Varenberg M, Tuma J. Biomimetic mushroom-shaped fibrillar adhesive microstructure. Journal of the Royal Society Interface,2006,4(13):271-275.
    [32]Gorb S N, Varenberg M. Mushroom-shaped geometry of contact elements in biological adhesive systems. Journal of Adhesion Science and Technology,2007, 21(12):1175-1183.
    [33]Greiner C, Spolenak R, Arzt E. Adhesion design maps for fibrillar adhesives:The effect of shape. Acta Biomaterialia,2009,5(2):597-606.
    [34]Greiner C, Campo A D, Arzt E. Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload. American Chemical Society,2007, 23(7):3495-3502.
    [35]Crosby A J, Hageman M, Duncan A. Controlling Polymer Adhesion with "Pancakes". Langmuir,2005,21(25):11738-11743.
    [36]Sitti M, Fearing R S. Synthetic gecko foot-hair micro/nano-structures as dry adhesives. Journal of Adhesion Science and Technology,2003,17(8):1055-1073.
    [37]Persson B N J, Gorb S. The effect of surface roughness on the adhesion of elastic plates with applications to biological systems. Journal of Chemical Physics,2003, 119(21):11437-11444.
    [38]Bhushan B, Peressadko A G, Kim T W. Adhesion analysis of two-level hierarchical morphology in natural attachment systems for smart adhesion. Journal of Adhesion Science and Technology,2006,20(13):1475-1491.
    [39]Bhushan B. Adhesion of multi-level hierarchical attachment systems in gecko feet. Journal of adhesion science and techonology,2007,21(12):1213-1258.
    [40]Bhushan B, Galasso B, Bignardi C, et al. Adhesion, friction and wear on the nanoscale of MWNT tips and SWNT and MWNT arrays. Nanotechnology,2008, 19(12):165428.
    [41]Lee H, Bhushan B. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces. Journal of Colloid and Interface Science,2012,372: 231-238.
    [42]Glassmaker N J, Jagota A, Hui C Y, et al. Design of biomimetic fibrillar interfaces: 1. making contact. Journal of the Royal Society Interface,2004,1(1):23-33.
    [43]Hui C Y, Glassmaker N J, Tang T, et al. Design of biomimetic fibrillar interfaces:2. mechanics of enhanced adhesion. Journal of the Royal Society Interface,2004,1(1): 35-48.
    [44]Glassmaker N J, Jagota C Y, Hui N J, et al. Biologically inspired crack trapping for enhanced adhesion. Proceedings of the National Academy of Sciences,2007, 104(26):10786-10791.
    [45]Chung J Y, Chaudhury M K. Roles of discontinuities in bio-inspired adhesive pads. Royal Society Interface,2005,2 (2):55-61.
    [46]Spolenak R, Gorb S, Arzt E. Adhesion design maps for bio-inspired attachment systems. Acta Biomaterialia,2005,1(1):5-13.
    [47]Geim A K, Dubonos S V, Grigorieva I V, et al. Microfabricated adhesive mimicking gecko foot-hair. Nature Materials,2003,2(7):461-463.
    [48]Huang J C. Fabrication of a Gecko Seta-like Structure Using Polydimethysiloxane. International Journal of Adhesion and Adhesives,2012,36:25-31.
    [49]Campolo D, Jones S D, Fearing R S. Fabrication of Gecko foot-hair like nano structures and adhesion to random rough surfaces. In Proceedings of IEEE Conference on Nanotechnology,2003,856-859.
    [50]Kim D S, Lee H S, Kwon T H, et al. Replication of high-aspect-ratio nanopillar array for biomimetic gecko foot-hair prototype by UV nano embossing with anodic aluminum oxide mold. Microsyst Technol,2007,13:601-606.
    [51]Kustandi T S, Samper V D, Ng W S, et al. Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template. Journal of Micromechanics and Microengineering,2007,17(10):75-81.
    [52]Qu L, Dai L, Wang Z L, et al. Carbon Nanotube arrays with strong shear binding-on and easy normal lifting-off. Science,2008,322(5899):238-242.
    [53]Qu L, Dai L. Gecko-Foot-Mimetic aligned single-walled carbon nanotube dry adhesives with unique electrical and thermal properties. Advanced Materials,2007, 19(22):3844-3849.
    [54]Yurdumakan B, Raravikar N R, Ajayan P M, et al. Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chemical Communications,2005,30:3799-3801.
    [55]Ge L, Sethi S, Ci L, et al. Carbon Nanotube-Based Synthetic Gecko Tapes. Proceedings of the National Academy of Sciences,2007,104(26):10792-10795.
    [56]Tsai Y C, Shih W P, Wang Y M, et al. E-beam photoresist and carbon nanotubes as biomimetic dry adhesives. In Proceedings of the 19th IEEE International Conference on MEMS,2006,926-929.
    [57]Zhao Y, Tong T, Delzeit L, et al. Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive. Journal of Vacuum Science and Technology B,2006,24(1):331-335.
    [58]Kim S, Sitti M. Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Applied Physics Letters,2006,89(26):261911.
    [59]Kim S, Aksak B, Sitti M. Enhanced friction of elastomer microfiber adhesives with spatulate tips. Applied Physics Letters,2007,91(22):221913.
    [60]Murphy M P, Aksak B, Sitti M. Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with sphericaland spatula tips. Journal of Adhesion Science and Technology,2007,21(12):1281-1296.
    [61]Michael P M, Burak A, Sitti M. Gecko-inspired directional and controllable adhesion. Small,2009,5(2):170-175.
    [62]Aksak B, Murphy M P, Sitti M. Adhesion of biologically inspired vertical and angled polymer microfiber arrays. Langmuir,2007,23(6):3322-3332.
    [63]Yoona E S, Singha R A, Konga H, et al. Tribological properties of bio-mimetic nano-patterned polymeric surfaces on silicon wafer. Tribology Letters,2006,21(1): 31-37.
    [64]Majidi C, Groff R E, Maeno Y, et al. High friction from a stiff polymer using micro-fiber arrays. Physical Review Letters,2006,97(7):076103.
    [65]Boesel L F, Greiner C, Arzt E, et al. Gecko-Inspired Surfaces:A Path to Strong and Reversible Dry Adhesives. Advanced Materials,2010,22(19):1-13.
    [66]Ho A Y Y, Yeo L P, Lam Y C, et al. Fabrication and Analysis of Gecko-Inspired Hierarchical Polymer Nanosetae. ACS Nano,2011,5 (3):1897-1906.
    [67]Northen M T, Turner K L. A batch fabricated biomimetic dry adhesive. Nanotechnology,2005,16(8):1159-1166.
    [68]Northen M T, Turner K L. Meso-scale adhesion testing of integrated micro-and nano-scale structures. Sensors and Actuators A,2006,130(SI):583-587.
    [69]Campo A D, Greiner C. SU-8:a photoresist for high-aspect-ratio and 3D submicron lithography. Journal of Micromechanics and Microengineering,2007,17(6): R81-R95.
    [70]Greiner C, Arzt E, Campo A D. Hierarchical gecko-like adhesives. Advanced Materials,2009,21(4):479-482.
    [71]Murphy M P, Kim S, Sitti M. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. Applied Materials and Interfaces,2009,1(4):849-855.
    [72]Jin K, Tian Y, Erickson J S, et al. The Design and Fabrication of Gecko-inspired Adhesives. Langmuir,2012,28(13):5737-5742.
    [73]Jeong H E, Lee S H, Kim J K, et al. Nanoengineered multiscale hierarchical structures with tailored wetting properties. Langmuir,2006,22(4):1640-1645.
    [74]Jeong H E, Lee J K, Kim H N, et al. A nontransferring dry adhesive with hierarchical polymer nanohairs. The Proceedings of the National Academy of Sciences of the United States of America,2009,106(14):5639-5644.
    [75]Li H K, Dai Z D, Shi A J, et al. Angular observation of joints of geckos moving on horizontal and vertical surfaces. Chinese Science Bulletin,2009,54(4):592-598.
    [76]Ji A H, Han L B, Dai Z D. Adhesive Contact in Animal:Morphology, Mechanism and Bio-Inspired Application. Journal of Bionic Engineering,2011,8(4): 345-356.
    [77]Dai Z D, Wang Z Y, Ji A H. Dynamics of gecko locomotion:a force-measuring array to measure 3D reaction forces. Journal of Experimental Biology,2011,214(5): 703-708.
    [78]Wang Z Y, Wang J T, Ji A H, et al. Behavior and dynamics of gecko's locomotion: The effects of moving directions on a vertical surface. Chinese Science Bulletin, 2011,56(6):573-583.
    [79]张昊,吴连伟,郭东杰等.多组份硅橡胶基末端膨大二级结构粘附性能研究.摩擦学学报,2011,31(3):295-303.
    [80]Zhang H, Wu L W, Jia S X. Fabrication and adhesion of hierarchical micro-seta. Chinese Science Bulletin,2012,57(11):1343-1349.
    [81]Wang H, Chen S, Wang X, et al. Design of a biomimetic gecko adhesion array for microrobots. In Proceedings of the 2005 IEEE International Conference on Robotics and Biomimetics,2005,495-498.
    [82]Ren N, Wang X, Mei T, et al. Detachment control analysis for nanofabricated adhesive mimicking gecko foot-hairs. In Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation,2006,267-271.
    [83]李冰,汪小华,于树林等.仿壁虎柔性脚掌结构及控制系统的研究.中国机械工程,2011,22(8):897-900.
    [84]倪林,梅涛,孔德义.ICP在仿壁虎刚毛硅模版制作中的应用.微细加工技术,2006,6:44-47.
    [85]王辉静.仿壁虎微米阵列的加工及其粘附作用分析.微纳电子技术,2008,45(3):162-165.
    [86]Huber G, Gorb S N, Spolenak R, et al. Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biology Letters,2005,1(1): 2-4.
    [87]Maboudian R. Surface processes in MEMS technology. Surface Science Reports, 1998,30(6):209-268.
    [88]Johnson K L, Kendall K, Roberts A D. Surface Energy and the Contact of Elastic Solids. Proceedings of the Royal Society of London,1971,324(1558):301-313.
    [89]Derjaguin B V, Muller V M, Toporov Y P. Effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface Science,1975,53(2): 314-326.
    [90]Tabor D. Surface forces and surface interactions. Journal of Colloid and Interface Science,1977,58(1):12-13.
    [91]赵亚溥,王立森,孙克豪.Tabor数、粘着数与微尺度粘着弹性接触理论.力学进展,2000,30(4):529-539.
    [92]Chaudhury M K, Timothy W. Adhesive contact of cylindrical lens and a flat sheet. Journal of Applied Physics,1996,80(1):30-37.
    [93]Kendall K. The adhesion and surface energy of elastic solids. Journal of Physics D: Applied Physics,1971,4(8):1186-1195.
    [94]Strus M C, Zalamea L, Raman A, et al. Peeling force spectroscopy:exposing the adhesive nanomechanics of one-dimensional nanostructures. Nano Letters,2008, 8(2):544-550.
    [95]Majidi C S, Groff R E, Fearing R S. Attachment of fiber array adhesive through side contact. Journal of Applied Physics,2005,98(10):103521.
    [96]张毅.广义经典力学系统的第一积分与变分方程特解的联系.物理学报,2001,50(11):2059-2061.
    [97]李忠,周建莹编著.高等数学.北京,北京大学出版社,2004.
    [98]Timoshenko S P著,张福范译.弹性稳定性理论.北京,科学出版社,1965.
    [99]李成贵,李艳宁,刘杰等.表面粗糙度的表征参数分析.实用测试技术,1997,6:27-32
    [100]Porwal P K, Hui C Y. Strength statistics of adhesive contact between a fibrillar structure and a rough substrate. Royal Society Interface,2007,5(21):441-448.
    [101]Persson B N J. On the mechanism of adhesion in biological systems. Journal of Chemical Physics,2003,118(16):22.
    [102]宋俊杰,田爱玲.非高斯随机粗糙表面计算机仿真的研究.计算机仿真.2008,25(6):308-311.
    [103]Autumn K, Hansen W. Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. Journal of Comparative Physiology A,2006,192(11):1205-1212.
    [104]Wenzel R N. Resistance of Solid Surfaces to Wetting by Water. Industrial Engineering Chemistry,1936,28(8):988-994.
    [105]Cassie A B D, Baxter S. Wettability of Porous Surfaces. Journal of the Chemical Society, Faraday Transactions,1944,40:546-551.
    [106]中国航空研究院主编.应力强度因子手册.北京,科学出版社,1981.
    [107]Griffith A A. The phenomena of rupture and flow in solids. Philos. Philosophical Transactions of the Royal Society A,1921,221:163-198.
    [108]倪樵,李国清,钱勤编.材料力学.武汉,华中科技大学出版社,2006.
    [109]Mastrangelo C H, Hsu C H. A simple experimental technique for the measurement of the work of adhesion of microstructures. In Proceedings of the IEEE Solid-State Sensors and Actuators Workshop,1992,208-212.
    [110]Hui, C Y, Lin Y Y, Baney J M, et al. The accuracy of the geometric assumptions in the JKR (Johnson-Kendall-Roberts) theory of adhesion. Journal of Adhesion Science and Technology,2000,14(10):1297-1319.
    [111]唐雄贵.厚胶光学光刻技术研究.博士学位论文,四川大学,2010.
    [112]Michael Quirk, Julian Serda著,韩郑生等译.半导体制造技术.北京,电子工业出版社,2004.
    [113]张金娅,陈迪,朱军等.超厚SU-8负胶高深宽比结构及共艺研究.功能材料与器件学报.2005,11(2):251-254.
    [114]马雅丽.基于UV-LIGA制作细胞培养器微注塑模具型腔的工艺研究.硕士学位论文,大连理工大学,2009.
    [115]吕垚,李宝霞,万里兮.硅深槽ICP刻蚀中刻蚀条件对形貌的影响.微电子学,2009,39(05):729-732.
    [116]展阴浩,宋同晶,皇华等.基于ICP的硅高深宽比沟槽刻蚀技术.电子科技,2012,25(8):77-79.
    [117]张明明,廖聪湘.烘箱HMDS预处理程序优化.电子与封装,2009,9(4):37-39.
    [118]Armani D K, Liu C. Mircofabrication technology for polycaprolactone, a biodegradable polymer. Journal of Micromechanics and Microengineering,2000, 10(1):80-84.
    [119]Choi K M, Rogers J A. A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. Journal of the American Chemical Society,2003,125(14):4060-4061.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700