硅基聚合物平面光波导器件的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近年来各国研究机构对聚合物光集成波导器件的探索,聚合物阵列波导光栅(AWG)、聚合物波导延迟线及聚合物波导高速电光调制器/电光开关等功能元器件的研究越来越受到人们的关注。
     本论文是围绕以上三种典型波导器件的基础研究,其主要工作及创新点:(1)分析了紫外光刻胶SU-8的材料性质,利用编程模拟,优化了41信道AWG器件参数和结构设计,并通过软件对器件性能进行仿真分析,综合器件的模拟和实际参数,获得了器件的重要参数和性能指标。(2)合成P(MMA-GMA)材料,设计出结构新颖紧凑且独特的螺旋型超长阵列波导延迟线,对器件波导弯曲损耗,直-弯,弯-弯波导的模式耦合损耗及偏移进行了分析模拟,同时制备了波导分束器件,测试了器件性能。(3)合成了键合型有机-无机非线性杂化材料;配制了主客掺杂型极化聚合物DR1/SU-8材料,并对两种材料的光学、热学和极化特性进行了表征和分析,根据材料特性,分别利用加载条形结构及热光漂白技术设计、模拟和制备了电光波导调制器/电光开关,获得了所制作器件的调制及开关特性。
     这种低成本、高性能的平面可集成聚合物有源/无源光波导器件在新一代高速、大容量全光信息网络,特别是面向资源与业务的可重构光局域网、城域网和用户接入网中具有广阔的市场应用前景。
Human society is entering into an information age powered by rapidly evolving technologies in areas of microelectronics, optoelectronics, computing and communications. However, as the result of the rapid increase of information, continuous requests have been made for the increase of speed, the enlargement of capacity and the decrease of cost of communications, some traditional communication technologies and devices could not fulfill the demands of applications. Therefore, it is imperious demand to enlarge the speed and capacity for the current fiber network. In recent years, many research groups have been attracted in development of optical integrated devices system densely with the rising of optical network. In order to achieve new functions, optical waveguide can joint light-emitting device, optical receiver and modulator/switch and so on. It is the key component in optical integrated devices. At the same time, there are also structures of waveguide in insides of optical receiver, and optical modulator.
     The material which can be used for fabricating planar optical waveguide may choose the inorganic material such as silicon dioxide, LiNbO_3 and semiconductor, and also adopt organic/polymeric material. Recently, considerable attention and great efforts have been focused on the development of polymer optical waveguide devices, because of their excellent particular features, such as easy fabrication, low propagation loss, small birefringence, and easy control of the refractive index, which is on a good wicket compared to inorganic devices. The new technique will be well suited for fabricating optical integrated circuits (OICS). At present, many developed countries such as Japan, America and Germany have put abundant researchers and money into the study on those devices, and have made great progress. The fabrication of polymer optical waveguide may not need high temperature equipment, the optical waveguide devices with excellent performance can be fabricated by spun coating and RIE etching equipment. So the polymer optical waveguide material and devices with great predominance have been international forward hotspot.
     The research of polymer array waveguide grating (AWG), polymer waveguide delay line and polymer high-speed electro-optic (EO) modulators and switches have been taken more and more attention with exploring polymer integrated waveguide devices by many research groups. The low cost, high-powered polymer optical integrated waveguide devices in high-speed, great capability optical communication network, especially for the optical local area network, also imperious demand of city area and user network, possess wide market application foreground. The main work of this thesis focuses on the design, fabrication and testing of polymer array waveguide grating (AWG), polymer waveguide delay line and polymer high-speed electro-optic (EO) modulators and switches. The content and innovations of the thesis are listed as follows:
     1. The AWG consists of input/output channel waveguides, input/output concave slab waveguides composed of many channel waveguides with a constant path difference between adjacent waveguides. It can work as grating and complete the function of multiplexing and de-multiplexing for light with different wavelength. In this thesis, the configuration, principle, and key parameters are introduced. The characteristics of the polymeric SU-8 2005(MicroChem, MA, USA) are analyzed. By scanning electron microscope (SEM) and microscope photographs, the surface profiles show that the ridge wall is smooth and almost vertical. The characteristic can reduce the scattering loss greatly. The core size can be controlled well. The optimal parameters of single-mode polymeric 41-channel arrayed waveguide grating (AWG) multiplexer are analyzed and simulated by Matlab programming. The performances of the device are also simulated by Rsoft (BeamPROP AWG Utility) and Optiwave (BPM-WDM) software. The near-field guided-mode pattern of the 41 channel AWG device and propagation loss (2.03dB/cm) of optical waveguide by cut-method are measured. The 41 channel AWG device can achieve multiplex/de-multiplex functions well by polishing. By simulating performance parameters, the important parameters of the device can be obtained. The demand designed can be satisfied well, the rate of the finished product can be ensured, this technique is very suit for commercial application.
     2. Ultra long compact optical polymeric array waveguide true-time-delay line devices are demonstrated in the thesis. Cross-linkable poly-methyl-methacrylate–co-glyciclyl methacrylate P(MMA-GMA) as cladding material has been synthesized. The core material is the mixture of P(MMA-GMA) and bis-phonel-A epoxy. The relative refractive of the material can be modified by the different content of bis-phonel-A epoxy. According to the parameter demands of the devices, new types of UV curable polymeric 1×2、1×3、1×5、1×9 ultra-long compact array waveguide true-time-delay (TTD) lines for wideband phased array antennas (PAA) are designed and fabricated using direct UV photolithography process. The unique feature of the approach consists of different 1×N waveguide splitters, low-loss S-bend cosine waveguide connectors, and 180°array bend waveguides with a constant spacing differenceΔR between adjacent waveguides. The waveguide delay line can achieve not only basic equal time delay between adjacent waveguides, but also time-delay increments from ps to ns. Taking advantage of the UV curable SU-8 resist as core and P(MMA-GMA) as cladding to fabricate devices, we obtain good profile of the waveguide, analyze and simulate scattering loss, bend loss, the coupling loss of the overlap integral and offset between the input mode and output mode for straight-curve, curve-curve waveguide junction. The new fabricating technique of the resist can provide a simple, rapid, and controllable process. 1×2, 1×4, 1×8 polymeric star coupler devices are also successfully prepared. The delay increments for each element are calculated. The base time delay incrementΔt is 6.6ps, the maximal range of nΔt can be 46.2-ps. Furthermore, the performance of the max delay line between the first channel and 2-9th channel can be up to 1.3 ns. The experimental setup is used for characterization of the time delay circuit. The photograph and near-infrared field patterns of the device are obtained. The insertion loss of the first channel is about -5dB, and other four values of the loss for array channels are in range from -9dB to-12dB.
     3. EO waveguide modulator based on a new type of organic chromophore group bonded organic-inorganic hybrid material and EO waveguide switch based on host-guest doped polymeric DR1/SU-8 material are researched in this thesis. A new type of organic chromophore group/ SiO2-TiO2 second-order nonlinear optical (NLO) materials has been obtained by sol-gel process from titanium butoxide [Ti(OBu)4] and an alkoxysilane dye (ASD) synthesized by coupling disperse orange-11 (DO-11), disperse red-1(DR1), and disperse red-19(DR19) with (3-glycidoxypropyl) trimethoxysilane ( KH-560). The optics characteristics of the material are investigated. The poled film exhibits good orientation stability by UV-VIS absorbance spectra. A strip-loaded waveguide structure is introduced according to the characteristics of the synthesized organic/inorganic hybrid EO materials. Based on the planar waveguide mode theory, the light field modes are simulated and optimized by OptiBPM software. A polarization-insensitive strip-loaded waveguide structure is obtained by adjusting the propagation constant under different polarization. The optimized sizes and refractive indices of the waveguide are obtained. SU-8 photoresist and P(MMA-GMA) copolymer are selected as the strip waveguide, Aluminum film is utilized as electrode material. By process of spin-coating, photolithography, wet-etching, and corona poling technology, the M-Z poled polymer EO modulator based on strip-loaded waveguide is fabricated. The modulation function is achieved. In order to optimize and enhance the performance of the host-guest doped polymeric DR1/SU-8 material, the appropriate quantity of photoacid generator is added into the material. A new type of single-mode embedded dye-doped polymeric planar waveguide device based on cross-linkable negative photoresist has been successfully designed and fabricated using a thermal UV-bleaching technique. A notable difference in the refractive index of the resist between exposed and un-exposed regions is observed, which is found to be dependent on the curing temperature. The easy-fabricate waveguide structure is suitable for planar light-wave circuit applications. By optimizing the poling temperature and the dopant levels of Disperse Red 1, the material showed excellent photostability and exhibited a electro-optic coefficient,γ33, of 25pm/V. Polymeric EO waveguide switch is fabricated by simulating and optimizing the structure of waveguide, the switch function can be obtained.
     The successful research and fabrication on polymer/Si array waveguide grating (AWG), waveguide delay line, and EO waveguide modulator and switch may not only accumulate experience for other polymer active/passive waveguide devices, but also establish foundation for investigating integrated optical waveguide devices. The work will promote the development of polymeric waveguide devices greatly.
引文
[1]小林功郎.光集成器件[M].北京,科学出版社,2002.
    [2] T. UCHIDA, I. KITANO, et al. SELFOC: A New Light focusing Fiber Guide[C].Japan Electronic Engineering, 1969.
    [3]斋藤富士郎.超高速光器件[M].北京:科学出版社,2002.
    [4] M. KAWACHI: Optical and Quantum Electronics [M].1990.
    [5]雷肇棣.光纤通信基础[M].成都:电子科技大学出版社,1997.
    [6]张劲松,陶智勇.光波分复用技术[M].北京:北京邮电大学出版社,2002.
    [7]孙学康,张金菊.光纤通信技术[M].人民邮电出版社, 2004.
    [8] FRANCISCO MANUEL SOARES. Photonic integrated true-time-delay beamformers in InP technology[D].Technische Universiteit Eindhoven, 2006.
    [9] A.R.VELLEKOOP, M.K.SMIT, et al. Four-channel integrated-optic wavelength demultiplexer with weak polarization dependence[J].J. Lightwave Technol., 1991, 9 (3): 310.
    [10] H.TAKAHASHI, S. SUZUKI, K. KATO, et al. Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution[J]. Electron. Lett., 1990, 26(2): 87.
    [11] C.DrAGONE. An N×N optical multiplexer using a planar arrangement of two star couplers[J]. IEEE Photon. Technol. Lett., 1991, 3: 812.
    [12] K. OKAMOTO, K. SYUTO, H. TAKAHASHI, et al. 16-channel optical add/drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches [J].Electron. Lett., 1996, 32 (16): 1474.
    [13] H.TAKAHASHI, K. ODA, H. TOKA, et al. Transmission characteristics of arrayed waveguide N×N wavelength multiplexer [J]. J. Lightwave Technol., 1995, 13: 447.
    [14] K.OKAMOTO and A.SUGITA. Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns [J].Electron. Lett., 1996, 32: 1661.
    [15] K. OKAMOTO. Eight channel flat spectral response arrayed waveguide grating multiplexer with asymmetrical Mach-Zehnder filters [J].IEEE Photonics Technology Lett., 1996, 8: 373.
    [16] H. TAKAHASHI, Y. HIBINO, I. NISHI, et al. Polarization-insensitive arrayed waveguide grating wavelength multiplexer on silicon [J].Optics Letters, 1992, 17: 449.
    [17] Y. INOUE, et al. Athermal silica-based arrayed waveguide grating multiplexer [J].Electron. Lett., 1997, 33: 1945.
    [18] A.KANEKO, et al. Athermal silica-based arrayed waveguide grating (AWG) multi/demultiplexers with new low loss groove design [J].Electron. Lett., 2000, 36: 318.
    [19] SHIN KAMEI, et al. Crosstalk Reduction in Arrayed-Waveguide Grating Multiplexer/Demultiplexer Using Cascade Connection[J].J. Lightwave Technol., 2005, 23: 1929.
    [20] K. OKAMOTO, et al. Fabrication of 64×64 arrayed-waveguide grating multiplexer of silicon[J].Electron. Lett., 1995, 31: 184.
    [21] K. OKAMOTO, K. SYUTO, et al. Fabrication of 128-channel arrayed-waveguidegrating multiplexer with 25GHz channel spacing[J].Electron. Lett., 1996, 32: 1474.
    [22] Y. HIDA, Y. HIBINO, et al. Fabtication of low-loss and polarization-insensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5%Δwaveguides [J]. Electron. Lett., 2000, 36: 820.
    [23] Y. HIBINO. Fabrication of silica-on-Si waveguide with higher index difference and its application to 256 channel arrayed-waveguide multi/demultiplexer[C].OFC 2000, WH2, Baltimore, MD, 2000.
    [24] Y. HIDA. 400-channel arrayed-waveguide grating with 25 GHz spacing using 1.5%-delta waveguides on 6-inch Si wafer[J].Electron. Lett., 2001, 37: 576.
    [25] K. TAKADA. 10 GHz-spaced 1010-channel Tandem AWG filter consisting of one primary and ten secondary AWGs[J].IEEE PTL, 2001, 13: 577.
    [26] K.TAKADA. 1-GHz-Spaced 16-channel Arrayed-waveguide grating for a wavelength reference standard in DWDM network system[J]. IEEE J. Lightwave Tech., 2002, 20: 850.
    [27] KOICHI MARU, et al. Modeling of Multi-Input Arrayed Waveguide Grating and Its Application to Design of Flat-Passband Response Using Cascaded Mach–Zehnder Interferometers[J].IEEE J. Lightwave Tech., 2007, 25:544.
    [28] YONGBIN LIN, NAZLI RAHMANIAN, et al. Ultracompact AWG Using Air-Trench Bends With Perfluorocyclobutyl Polymer Waveguides[J]. J. Lightw. Technol., 2008, 26: 3062.
    [29] A. YENIAY, R.Y. GAO, K. TAKAYAMA, et al. Ultra-Low-Loss Polymer Waveguides[J]. J. Lightwave Technol. 2004, 22 (1):154.
    [30] H.C. CASEY, M.B. PANISH, et al. Heterostructure Laser, Part A: Fundamental Principles [M].Academic Press, New York, 1978, 76.
    [31] K. OKAMOTO.ECOC’98[C].Matrid, Spain, 1998, 9.
    [32] K. OKAMATO. OFC’98[C]. TuN4, 1998, 80.
    [33] K. OKAMATO. Recent process of integrated optical planar lightwave circuits [J].Opt. Quantum Electron., 1999, 3: 107.
    [34] C. Dragone. An N×N optical multiplexer using a planar arrangement of two star couplers[J].IEEE Photon. Technol. Lett., 1991, 3 (9): 812.
    [35] D. D. MOLA, M. LENZI, A. CARRERA, et al.ECOC’98[C].Matrid, Spain, 1998, 123.
    [36]李远红,杨俊,等.AWG复用器的原理设计以及应用[J].光电子技术与信息,2004.
    [37] HAI-MING ZHANG, CHUN-SHENG MA, Da-Ming Zhang, et al. Reduction of sidewall roughness, insertion loss and crosstalk of polymer arrayed waveguide grating using vapor-redissolution technique[J]. Thin Solid Films, 2007, 515: 7313–7317.
    [38]陈雯路,张汉一,郭奕理等.波分复用全光通信网中的光交叉互连技术[J].红外与激光工程,1997.
    [39] C.R. Doerr, L.W. Stulz, M. Cappuzzo, et al. ECOC’99[C].Nice France, 1999, 46, September, 26.
    [40] H.F. LI, C.H. LEE, S. ZhONG, et al. OFC’98[C].TuN4, 1998, 79.
    [41] JAMES FOSHEE, JENNFER COLEGRROVE, et al. Yuanji Tang, and Suning Tang, Switched optical polymeric waveguide true-time-delay lines for wideband photonics phased array antennas[J]. Proc. SPIE, 2004, 5356: 65-73.
    [42] ZAO SHI, DECHANG AN, RAY T. CHEN, et al. Optical True-time-delay lines usingpolyimide-based waveguides for wideband phased-array antennas[J]. Proc. SPIE, 2000, 3952: 214-221.
    [43] YIHONG CHEN, KEVIN WU, FENG ZHAO, RAY T. CHEN, et al. Reconfigurable True-Time Delay for Wideband Phased-Array Antennas[J].Proc. SPIE, 2004, 5363: 125-130.
    [44] N. A. RIAZA, et al. Analog-Digital Variable Fiber-Optic Delay Line[J]. IEEE/OSA J. Lightw. Technol., 2004, 22(2): 619-624.
    [45] A. P. GOUTZOULIS, D. K. DAVIES, J. M. ZOMP, et al.Prototype binary fiber optic delay line[J]. Opt Eng., 1989, 28(11): 1193-1202.
    [46] R. A. SOREF. Programmable time-delay devices[J].Appl Optics, 1984, 23(21): 3736-3737.
    [47] L. PASTUR, S. TONDA-GOLDSTEIN, D. DOLFT, J. Huignard, et al.Two-Dimensional Optical Architectures for the Receive Mode of Phased-Array Antennas[J].Appl Optics, 1999, 38(14): 3105-3111.
    [48] N. MADAMOPOULOS, N. A. RIZA. Demonstration of an All-Digital 7-Bit 33-Channel Photonic Delay Line for Phased-Array Radars[J].Appl Optics, 2000, 39(23): 4168-4181.
    [49] C. M. WARNKY, R. MITAL, B. L. ANDERSON, et.al. Demonstration of a quartic cell, a freespace true time delay device based on the White cell[J].IEEE J. Lightwave Technol., 2006, 24(10): 3849.
    [50] NIKOLAOS BAMIEDAKIS, et.al. Cost-Effective Multimode Polymer Waveguides for High-Speed On-Board Optical Interconnects[J].IEEE J. Quantum Electron., 2009, 45: 415-424.
    [51] PHASEⅠFINAL REPORT of RADIANT RESEARCH INC. Ultra Long Compact Polymer-based Waveguide Circuit for Multi-link Optical True-Time-Delay Lines Using WDM Technique[R]. U. S. Austin. Texas. 1999.
    [52] BRIE HOWLEY, ZHONG SHI, RAY T. CHEN, et.al. Thermally tuned optical fiber for true time delay generation[J]. OPT LASER TECHNOL, 2004, 37: 29-32.
    [53] XIAOLONG WANG, BRIE HOWLEY, RAY T. CHEN, et al. Phase error corrected 4-bit true time delay module using a cascaded 2×2 polymer waveguide switch array[J]. Appl Optics, 2007, 46: 379-383.
    [54] BRIE HOWLEY, YIHONG CHEN, XIAOLONG WANG, RAY T. CHEN. 2-bit Reconfigurable True Time Delay Line Using 2×2 Polymer Waveguide Switches[J]. IEEE Photon. Technol. Lett. , 2005, 25: 1944-1946.
    [55]陆荣国.有机聚合物光波导延迟线的基础研究[D].成都:电子科技大学,2006.
    [56] WILLE NG, ANDREW A. WALSTON, GREGORY L. TANGONAN, et al. The First Demonstration of an Optically Steered Microwave Phased Array Antenna Using True-Time-Delay[J].J. Lightw. Technol. 1991, 9: 1124-1131.
    [57] G. R. MOHLMAN, et al. Optically nonlinear polymeric switches and modulators [J].Proc. SPIE, 1990, 1337: 215-225.
    [58] D. CHEN, H. R. FETTERMAN, A. CHEN, et al. Demonstration of 110 GHz electro-optic polymer modulators[J].Appl. Phys. Lett., 1997, 70(25): 3335-3337.
    [59] Y. SHI, C. ZHANG, H. ZHANG, et al. Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape[J]. Science, 2000, 288(7): 119-122.
    [60] MARK LEE, HOWARD E. KATZ, CHRTOPH ERBEN, et al. Broadband modulation of light by using an electro-optic polymer[J].Science, 2002, 298(15): 1401-1403.
    [61] W. YUAN, S. KIM, G. SADOWY, C. ZHANG, C. Wang, et al. Polymeric electro-optic digital optical switches with low switching voltage[J].Electronics Letters, 2004, 40(3): 195-197.
    [62] Y. ENAMI. Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm[J].Appl. Phys. Lett., 2007.
    [63] ROSHAN THAPIYA. High Speed Electro-Optic Polymeric Waveguide Devices with Low Switching Voltages and Thermal Drift [C].IEEE Proceedings of OFC/NFOEC, 2008.
    [64] C.T. DEROS. High△n strip-loaded electro-optic polymer waveguide modulator with low insertion loss[J].OPTICS EXPRESS, 2009.
    [65] Y. ENAMI. Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches[J]. Appl. Phys. Lett., 2009.
    [66] SMITH B A, JURICH M, MOERNER W E, et al. Lightwave transmission of multiple television signals using an organic polymer electro-optic phase modulator[J]. Proc. SPIE, 1993, 2025: 499-506.
    [67] WANG W, SHI Y, OLSON D J, et al. Polymer integrated modulators for photonic data link applications[J]. Proc. SPIE. 1997, 2997: 114-125.
    [68] FREDERICK J L. Opto-electronics in Japan and the United States/Guided Wave Devices and Photonic Packaging Technology[EB/OL].Japanese Technology Evaluation Center, 1996[1996-02]. http://www.wtec.org/loyola/welcome.htm.
    [69] LIPSCOMB G F, LYTEL R S, TICKNOR A J., et al. Organic thin films for photonic applications[J].Technical Digest Series, 1993, 17: 70.
    [70] F. WANG, A.Z. LI, W. SUN, Y. ZHAO, D.M. ZHANG, C.S. MA, S.Y. LIU. Polymeric 1 ? 32 array waveguide grating multiplexer using cross-linkable fluorinated poly(ether ether ketone) at 1550nm[J].Optical Material, 2006, 28: 494-497.
    [71] FEI WANG, CHUNSHENG MA, WEI SUN, AIZE LI, YU ZHAO, ZHENHUA JIANG, DAMING ZHANG. Array waveguide grating multiplexer with high thermal stability on silicon[J].Optics&Laser Technology, 2005, 37: 527-531.
    [72] JUNG-GYU LIM, SANG-SHIN LEE, KI-DONG LEE. Polymeric arrayed waveguide grating using imprint method incorporating a flexible PDMS stamps[J].Optics Communications, 2006.
    [73] FEI WANG, KAIXIN CHEN, WEI SUN, HAIMING ZHANG, CHUNSHENG MA, MAOBIN YI, SHIYONG LIU, DAMING ZHANG. 32-channel arrayed waveguide grating multiplexer using low loss fluorinated polymer operating around 1550nm[J].Optics Communications, 2006, 259, 665-669.
    [74] SI LU, CHANGXI YANG, GUOFAN JiIN, ZHAOYING ZHOU. Design and fabrication of a polymeric flat focal field arrayed waveguide grating[J].Optics Express, 2005, 13: 9982-9994.
    [75] JONG-MOO LEE, YONG-SOON BACK, KWANG-RYONG OH, HYUNG-JONG LEE, YONG-SEOK KIM. Temperature dependence of low loss polymeric AWG optics communications[J]. Opt Commun., 2007, 270: 189-194.
    [76] SHENG LI, CARL B FREIDHOFF, ROBERT M YOUNG, REZA GHODSSI. Fabrication of micronozzles using low-temperature wafer-level bonding with SU-8[J].Journal ofmicromechanics and microengineering, 2003, 13: 732-738.
    [77] B. BECHE, N. PELLETIER, E. GAVIOT, R. HIERLE, A. GOULLET, et al. conception of optical integrated circuits on polymers[J].Microelectronics Journal, 2006, 37: 421-427.
    [78] N. PELLETIER, B. BECHE, N. TAHAM, J. ZYSS, L.CAMBERLEIN, et al. SU-8 waveguiding interferometric micro-sensor for gage pressure measurement[J].sensors and Actuators, 2006.
    [79] B BILENBERG, T NIELSEN, et al. PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics[J].J Micromech. Microeng., 2004, 14: 814-818.
    [80] HUANG-CUANG LIN, HSIN-CHUN HUANG, SHYH-LIN TSAO. Tolerance analysis of 4?4 SU-8 polymer array waveguide grating[J]. Optics Communications, 2005, 250: 69-76.
    [81] K.K. TUNG, W.H.WONG, E.Y.B.PUN. Polymeric optical waveguides using direct ultraviolet photolithography process[J].Appl. Phys. A ., 2005, 621-626.
    [82] MicroChem. http://www.microchem.com/.
    [83] MasterBond. http://www.masterbond.com/.
    [84] M.玻恩, E.沃耳夫.光学原理[M].北京:科学出版社, 1978.
    [85] H. TAKAHASHI, S. SUZUKI, I. NISHI, et al. Wavelength multiplexer based on SiO2-Ta2O5 arrayed waveguide grating[J].J. Lightwave Technol., 1994, 12: 989.
    [86]万莉,王跃.阵列波导光栅的最近研究进展[J].真空电子技术,2003.
    [87] A. SUGITA, A. KANEKO, K. OKAMOTO, et al., Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides[J].IEEE Photon. Technol. Lett., 2000, 12(9): 1180.
    [88] H. YAMADA, K. TAKADA, S. MITACHI, et al. Crosstalk reduction in a 10GHz spacing arrayed-waveguide grating by phase-error compensation[J].J. Lightwave Technol., 1998, 16(3): 364.
    [89] N. OOBA, Y. HIBINO, Y. INOUE, et al., Athermal silica-based arrayed-waveguide grating multiplexer using bimetal plate temperature compensator[J].Electron. Lett., 2000, 36(21): 1800.
    [90] M. R. AMERSFOORT, C. R. DEBOER, F. P. G. VAN HAM, et al. Phased-array wavelength demultiplexer with flattened wavelength response[J].Electron. Lett., 1994, 30: 300.
    [91] Y. P. HO, Y. J. CHEN, et al. Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-circle design[J].IEEE Photon. Technol. Lett., 1997, 9(3): 342.
    [92] J. C. CHEN, C. DRAGONE, et al. Waveguide grating routers with greater channel uniformity[J].Electron.Lett., 1997, 33(23): 1951.
    [93]周勤存,戴道锌,潘德荣等.用Stigmatic Points法设计高性能80通道阵列波导光栅器件[J].光子学报,2003.
    [94]郑菊,王菲,赵禹等.用Stigmatic Points法设计低像差平场型33×33通道聚合物阵列波导光栅[C].中国光学学会2004年大会,2004.
    [95]朱军,刘景全,张金娅等.环氧基紫外负性光刻胶的特性、应用工艺与展望[J].高分子材料科学工程,2004.
    [96]张立国,陈迪,杨帆,李以贵. SU - 8胶光刻工艺研究[J].光学精密工程,2002.
    [97]刘景,全朱军,蔡炳初,陈迪,丁桂甫,赵小林,杨春生. SU - 8胶与基底结合特性的实验研究[J].微细加工技术,2002.
    [98]伊福廷,张菊芳,彭良强,韩勇.利用紫外光刻技术进行SU8胶的研究[J].微纳电子技术, 2003.
    [99]郑晓虎,朱荻.模糊神经网络在UV- LIGA工艺优化中的应用[J].光学精密工程, 2006.
    [100]李雯,谭智敏,薛昕,刘理天.紫外线厚胶光刻技术研究及应用[J].微纳电子技术, 2003.
    [101] ASKIN KOCABAS, ATILLA AYDINLI, et al. Polymer waveguide Bragg grating filter using soft lithography [J].Opt Express, 2006.
    [102] ISMAHAYATI ADAM, MOHD HANIFF IBRAHIM, NORAZAN MOHD KASSIM, et al. Design of Arrayed Waveguide Grating (AWG) for DWDM/CWDM Applications Based on BCB Polymer [J].ELEKTRIKA, 2008.
    [103]李正,孙雨南.应用在相控阵雷达上的光学实时延迟线[J].光学技术,2006.
    [104]费旭,胡娟.可交联聚甲基丙烯酸甲酯的合成、表征及在阵列式波导光栅中的应用[J].高等学校化学学报,2006.
    [105] ZHEN HU, YA YAN LU, et al. Computing Optimal Waveguide Bends With Constant Width [J].J. Lightw. Technol., 2007, 25(10): 3161-3167.
    [106] P. GANGULY, J.C. BISWAS, S.K. LAHIRI, et al. Modelling of titanium indiffused lithium niobate channel waveguide bends: a matrix approach [J].OPT COMMUN, 1998, 155:125–134.
    [107] IAN YULIANTI, ABU SAHMAH MOHD.SUPA’AT, SEVIAM.IDRUS, et al. Cosine bend-linear waveguide digital optical switch with parabolic heater[J].OPT LASER TECHNOL, 2010, 42: 180–185.
    [108] IOANNIS PAPAKONSTANTINOU, KAI WANG, et al. Transition, radiation and propagation loss in polymer multimode waveguide bends [J]. Opt Express, 2007, 15: 669-679.
    [109] BORJA VIDAL, JUAN LUIS CORRAL, JAVIER MATRI, et al. Optical Delay Line Employing an Arrayed Waveguide Grating in Fold-Back Configuration[J]. IEEE MICROW WIREL CO., 2003, 13: 238-240.
    [110] BORJA VIDAL, JUAN LUIS CORRAL, MIGUEL ANGEL PIQUERAS, et al. Optical Delay Line Based on Arrayed Waveguide Gratings’Spectral Periodicity and Dispersive Media for Antenna Beamforming Applications[J].IEEE J SEL TOP QUANT., 2002, 8: 1202-1210.
    [111] C. M. CHEN, X. Z. ZHANG, H. M. ZHANG, et al. Research and fabrication of a UV curable polymeric 41×41 array-waveguide grating multiplexer[J].MICROW OPT TECHN LET, 2007, 49: 3040-3044.
    [112] DAN ZHANG, CONG CHEN, CHANGMING CHEN, et al. Optical gain at 1535 nm in LaF3 :Er,Yb nanoparticle-doped organic-inorganic hybrid material waveguide[J].APPL PHYS LETT, 2007, 91: 161109.
    [113] SIVA YEGNANARAVANAN, P. TRINH, F. COPPINGER, et al. Compact silion-based integrated optical time-delay network [J].SPIE, 1997, 3160: 2-10.
    [114] JIAN TONG, J. K. WADE, DUNCAN L. MACFARLANE, et al. Active Integrated Photonic Ture Time Delay Device[J].IEEE Photon. Technol. Lett. , 2006, 18: 1720-1722.
    [115] ENAMI Y. Low half-wave voltage and high electro-optic effect in hybrid polymer/sol-gel waveguide modulator[J].Appl.Phys. lett., 2006, 89: 143506.
    [116] PALOZI GEORGE T. Replica-molded electro-optic polymer Mach-Zehnder modulator[J]. Appl.Phys. lett., 2004,85: 1662.
    [117] BALKRISHNAN M. Electro-optic polymers for high speed modulators[J].Proc Symp IEEE/LEOS Benelux Chapter, 2005, 313-316.
    [118] MIRKO FACCINI, et al. Enhanced poling efficiency in highly thermal and photostable nonlinear optical chromophores[J].J. Mater. Chem., 2008, 18: 2141–2149.
    [119]崔元靖.无机-有机杂化二阶非线性光学材料的设计、合成与性能研究[D].浙江:浙江大学材料与化学工程学院,2005.
    [120]李晟.新型无机-有机杂化非线性光学材料的制备与性能研究[D].安徽:安徽大学高分子化学与物理,2007.
    [121]王传玉.含偶氮材料的非线性光学特性研究[D].上海:上海交通大学物理系,2008.
    [122]奚红霞等.新型有机/无机复合材料的合成及其二阶非线性光学特性[J].高分子材料科学与工程,2002.
    [123] YE C. et al. Efficient frequency doubling by poled annealed films of a chromophore-functionalized poly(p-hydroxystyrene)[J].Macromolecules.1988,21(9): 2899-2901.
    [124]徐建东,鲍信先,李淳飞等.非线性光学聚合物的极化技术[J].高技术通讯,1997.
    [125] SIEGFRIED BAUER, et al. Poled polymers for sensors and photonic applications[J].Journal of Applied Physics, 1996, 80(10): 5531-5558.
    [126]史伟,房昌水,潘奇伟等.简单反射法测量聚合物薄膜线形电光系数的研究[J].物理学报,2000.
    [127] LEI ZHAO, et al. Study on nonlinear optical, dielectric and pyroelectric properties of novel organic–inorganic hybrid material[J]. Materials Letters, 2003, 57: 2116–2119.
    [128]李旭华,何斌等.有机生色团/ SiO2-TiO2二阶非线性光学杂化材料的研究[J].化学学报,2002.
    [129] M. BALAKRISHNAN, et al. Microring resonator based modulator made by direct photodefinition of an electro-optic polymer [J]. Appl.Phys. lett., 2008, 92: 153310.
    [130] EDWARD M. MCKENNA, et al. Comparison of r33 values for AJ404 films prepared with parallel plate and corona poling[J]. J. Opt. Soc. Am. B, 2007, 24(11): 2888-2892.
    [131] Shew BY, et al. UV-LIGA interferometer biosensor based on the SU-8 optical waveguide [J].Sensors Actuators A, 2005, 80: 621-626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700