基于负型光刻胶SU-8的光开关的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光开关在目前全光网络的发展中起着举足轻重的作用,本论文的主要工作是从环氧基紫外负型光刻胶SU-8 2005这种聚合物材料(以下简称SU-8)出发,分别设计制作了热光开关和电光开关,主要工作如下:
     1对负型光刻胶SU-8材料进行一系列表征并对其工艺参数进行探索。利用这种紫外可交联的材料设计并成功制作出了1×N系列的多模干涉型(MMI)分束器。
     2利用紫外可交联的SU-8聚合物材料,设计并制作了一个2×2的MMI-MZI型热光开关。测试得出该光开关的开关功率是7.5mW,开关时间约为0.4ms。然后我们又对光开关的结构进行了改进,增大MMI区域尺寸和调制区两波导之间的间距,改进后的开关功率降至6.9mW。
     3采用不同的电光材料设计了三种电光开关,经过分析选择第三种方案进行试验,通过在SU-8中掺入生色团分散红一(DR1),我们自主合成了DR1/SU-8这种电光材料,结合设计方案我们成功的制作出了电光开关。分别测试得到100KHz、500KHz、1MHz和2MHz的方波信号的响应以及5MHz和10MHz的正弦波响应。测试结果显示开关的上升下降时间分别是36.68ns和66.69ns。
Information technology is the forerunner of today’s industry. Internet is the most important part of the modern information technology. People need more and more bandwidth and capacity with the development of the society. With the development of the bandwidth and capacity, the present network develops towards all optical network ( AON ) . AON is high-speed and wide-bandwidth communication network. Dense wavelength division multiplexing (DWDM) technology is used on the artery to enlarge the capacity. Optical add drop multiplexing (OADM) and optical cross connecting (OXC) are used at the crossing. Among all kinds of AON devices, OXC and OADM are the kernels of the AON. It becomes an urgent task to research the all optical OXC and OADM for performing large capacity communication network. Optical switches and optical switches array are the essential techniques of OXC and OADM. Thus optical switches play a decisive role in the development of present AON.
     Optical switches are widely used in OADM and OXC,monitoring and protecting of the network, testing of optical communication devices. Different applications propose different requirements. This promotes many development directions of optical switches. At present mechanical switches and waveguide switches are commonly used. Waveguide switches will be the leading role in the optical switches market because of its advantages of no moving components, easy integrating, low power consuming and so on. Most polymer organic materials are low cost, easy processing and have higher thermo-optic or electro-optic coefficient compared with inorganic materials. Polymer waveguide devices attract more and more researchers. Many developed countries are now researching polymer waveguide devices and have made some important improvements. Some major characters of these polymer devices are getting ahead of the inorganic ones. At the 2008 OFC conference, Fuji Xerox Corporation reported that their switching speed of a polymer electro-optic switch reached 6ns. At the 2009 OFC conference a polymer 2×2 thermo-optic switch with less than 10mW power consuming is reported. The major work of this paper is the research of polymer thermo-optic and electro-optic switches based on SU-8 2005 (abbreviated to SU-8 afterwards). The main contents of this paper are listed below.
     1 With the planar waveguide theory, the characteristic equation of rectangle waveguide and ridge waveguide are analyzed, the bending waveguide design method is proposed. These can guide the design of the waveguide. The theories of Mach-Zehder interferometer (MZI) and multimode interference - Mach-Zehder interferometer (MMI-MZI) optical switches are introduced. The thermo-optic and electro-optic effects are analyzed. The design methods of coplanar waveguide traveling wave electrode and push-pull micro strip line electrode are proposed. These works lay the theory foundation for structure design and performance testing of thermo-optic switches and electro-optic switches.
     2 The polymer material SU-8 is introduced in detail. It is a kind of ultraviolet cross-linkable photorisist. The absorption spectrum of this material is tested. From the spectrum we can see that there exist two absorption valleys at 1310nm and 1550nm optical communication windows. So SU-8 is suitable for optical communication. As it is a kind of photorisit, it can be used to fabricate waveguide by simple ultraviolet photolithography process. We select SU-8 as the core material and the mixture of poly-methyl-methacrylate–co-glyciclyl methacrylate (PMMA-GMA) and bis-phonel-A epoxy. With this structure, we design 1×N series MMI splitters, optimize the MMI region parameters, and simulate the whole structure by beam propagation method (BPM). Then we optimize the fabrication process of SU-8. Pre-bake: 60℃10minites, 90℃20minites. UV exposed: 4minintes. Post-bake: 65℃10minites 95℃20minites. Development: 40seconds. With these optimized parameters, we successfully fabricated the splitters and tested the output near-field profile. The above work paves way for research of thermo-optic switches and electro-optic switches.
     3 A 2×2 MMI-MZI thermo-optic switch based on SU-8 is designed. By analyzing the characteristics of polarization and coupling loss, we select the waveguide core width and thickness to be both 4μm. By analyzing the influence of the cladding layer thickness to substrate radiation loss, we select the cladding layer thickness to be 3μm. To design the MMI region, firstly, we can obtain the relationship among MMI region length, width and the two input/output waveguides gap by the MMI theory. Then by analyzing the crosstalk between the two input/output waveguides, we select the gap to be 10μm. The MMI region width and length are 30μm and 650μm, respectively. We study the influence factors of the switching power and select the heating electrode to be 5μm wide and 1.2cm long, respectively. The gap between the two arms in the modulating region is 20μm and the lengths of the two arms are 1.2cm. With the optimized parameters above, we simulate the cross and bar states of the thermo-optic switch by 3D-BPM. From the simulation result we can see the two output port crosstalks at the two states are -44.6dB and -37.1dB, respectively. According to the optimized SU-8 fabrication process we fabricate the designed thermo-optic switch successfully. Properly power is applied on the heating electrode and the output near-field profile can be obtained at the cross state and bar state. By testing the output optical power with different heating powers on the electrode, we can obtain that the switching power is 7.5mW and the crosstalks at the two states are-18dB and -20dB, respectively. A 0.4 KHz square wave is applied on the heating electrode to test the switching speed. The tested switching time is about 0.4ms. Then we improve the switch structure. The MMI region length and width are changed to be 45μm and 1427μm, respectively. The gap between the two input waveguides is 15μm. The gap between the two modulating arms is enlarged to be 60μm. The same testing method is used to the improved switch. Its switching power is about 6.9mW. Crosstalks at the two states are -22dB and -18dB, respectively. Switching time is also about 0.4ms. At last we analyze the testing result of the two switches.
     4 Three electro-optic materials, cross-linkable PMMA-AMA doped with chromophore AJC146, organic-inorganic hybrid material and SU-8 doped with chromophore DR1 (DR1/SU-8), are simply introduced. Three different structures electro-optic switches are designed with these three materials. Taking the real situation into account, we select the third design. We synthesize the guest-host electro-optic material by ourselves. From the atomic force microscope (AFM) picture of the spun coated film with DR1/SU-8, we can see that the root-mean-square (rms) roughness is only 2.728nm within 10μm×10μm. By testing its absorption spectrum, we can see that there exist two absorption valleys at 1310nm and 1550nm communication windows. Then the thermogravimetric analysis (TGA) curve is tested and its thermal stability is very good. So this material is very suitable for optical communication devices. We fabricated the electro-optic switch using DR1/SU-8 as the core material, SU-8 as cladding and aluminium as electrode. At first, we fabricate the waveguide by the reactive ion etching (RIE) process. After several experiments, we find it difficult to obtain the designed devices. So we improve the fabrication process. Firstly, An SU-8 groove is fabricated. Secondly, DR1/SU-8 is injected to it. Thirdly, the plane part of DR1/SU-8 is removed by RIE. Fourthly, upper cladding is spun coated. At last CPW electrodes are fabricated. The traveling loss of the waveguide is tested to be 2.0dB/cm by cut-back method. Then we test the switching speed of this device. A 100 KHz square wave signal is applied on the electrode and the response signal shows its rising time and falling time to be 36.68ns and 66.69ns, respectively. Higher frequency such as 500 KHz, 1 MHz, 2 MHz square wave and 5 MHz, 10 MHz sine wave are also tested and the response signals are obtained. But we find that the source square wave has a 40ns rinsing/falling time. In this way, we can deduce that the real switching time is faster than the display value on the oscilloscope.
引文
[1]禹培栋,王国忠,陈明华,谢世钟.光网络中的光开关技术[J].电子产品世界.2001, 6: 63-66.
    [2]谢世钟,王国忠,禹培栋.光联网中的光开关器件[J].世界电子元器件, 2001, (10): 7-9.
    [3]禹培栋,王国忠,陈明华,谢世钟.光开关技术开展[J].半导体光电, 2001, 22(3): 149-154.
    [4] SUMRIDDETCHKAJORN S, CHAITAVON K. A reconfigurable thin film filter-based 2×2 add-drop fiber-optic switch structure [J]. IEEE Photonics Technology Letters, 2003, 15(7): 930-932.
    [5] PRESBY H, NARAYANAN C. Mechanical silica optical circuit switch [J]. Elect.Lett., 1998, 34(5): 484-485.
    [6] KOBAYASHI J, MATDUURA T, SASAKI S, MARUNAO T. Single-mode optical waveguides fabricated from fluorinated polyimides [J].Applied Optics, 1998, 37(6): 1032-1037.
    [7]方俊鑫,曹庄琪,杨傅子.光波导技术物理基础[M].上海交通大学出版社, 1987.
    [8]国分泰雄.光波工程[M].科学出版社, 2002.
    [9]胡作启,李佐宜,缪向水,刘卫忠.磁控溅射薄膜的厚度均匀性理论研究[J].华中理工大学学报, 1996, 24(1): 89-92.
    [10] RIZA N A, YUAN S F. Reconfigurable wavelength add–drop filtering based on a banyan network topology and ferroelectric liquid crystal fiber-optic switches [J].Journal of Lightwave Technology, 1999, 17(9): 1575-1584.
    [11]马慧莲.光开关研究新进展[J].光通信研究, 2003, 3: 51-55.
    [12]刘琳.光开关技术发展及应用[J].光纤与电缆及其应用技术, 2002, 6: 10-13.
    [13]程晓飞,方来付,王健全,顾畹仪.光开关技术综述[J].通讯世界, 2001, 7: 11-16.
    [14] MAKIHARA M, SHIMOKAWA F, KANEKO K. Strictly non-blocking N×Nthermo-capillarity optical matrix switch using silica-based waveguide[C]. Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America), 2000, 1: 207-210.
    [15] KEIL N, YAO H H, ZAWADZKI C, STREBEL B. Rearrangeable nonblocking polymer waveguide thermo-optic 4×4 switching matrix with low power consumption at 1.55μm[J]. Electronics Letters, 1995, 31(5): 403-404.
    [16]隋志成,姜希军,吴志坚.光开关及其在全光网中的应用[J].光通信技术, 2002, 26(3): 27-32.
    [17] Y. HIDA, H. ONOSE AND S. IMAMURA. Polymer waveguide thermooptic switch with low electric power consumption at 1.3μm [J] IEEE Photonics Technology Letters, 1993, 5(7): 782-784.
    [18] KEIL N, YAO H H, ZAWADZKI C. A novel type of 2×2 digital optical switch realized by polymer waveguide technology[C]. 22nd European Conference on Optical Communication, Oslo, 1996, 2: 71-74.
    [19] TICKNOR J, LYTEL R S, LIPSCOMB G. F. Single-mode 1×N solid state optical switches:packaging and applications[C]. SPIE, 1996, Nonlinear Optical Properties of Organic Materials IX, 2852: 270-276.
    [20] BORREMAN A, HOEKSTRA T, DIEMEER M,HOEKSTRA H, LAMBECK P. Polymeric 8×8 digital optical switch matrix[C]. 22nd European Conference on Optical Communication, Oslo, 1996, 5: 59-62.
    [21] MOOSBURGER R, PETERMANN K. 4×4 digital matrix switch using polymeric oversized rib waveguides [J]. IEEE Photonics Technology Letters, 1998, 10(5): 684-686.
    [22] KEIL N, YAO H H, ZAWADZKI C, et al. 4×4 polymer thermo-optic directional coupler switch at 1.55μm [J]. Electronics Letters, 1994, 30(8): 639-640.
    [23] KEIL N, YAO H H, ZAWADZKI C, et al. Rearrangeable nonblocking polymer waveguide thermo-optic 4×4 switching matrix with low power consumption at 1.55μm [J]. Electronics Letters, 1995, 31(5): 403-404.
    [24] HIDA Y, OOBA N, YOSHIMURA R, et al. Influence of humidity on transmission in a Y-branch thermo-optic switch composed of deuterated fluoromethacrylate polymer waveguides [J]. Electronics Letters, 1997, 33(7):626-627.
    [25] OOBA N, TOYODA S, KURIHARA T. Low crosstalk and low loss 1×8 digital optical switch using silicons resin waveguides [J]. Electronics Letters, 1999, 35(16): 1364-1365.
    [26] TABOADA J M, MAKI J J, TANG S N, et al. Thermo-optically tuned cascaded polymer waveguide taps [J]. Applied Physics Letters, 1999, 75(2): 163-165.
    [27] KEIL N, WEINERT C, WIRGES W, et al. Thermo-optic vertical coupler switches using hybrid polymer/silica integration technology [J]. Electronics Letters, 2000, 36(5): 430-431.
    [28] TOYODA S, OOBA N, KATOH Y, et al. Low crosstalk and low loss 2×2 thermo-optic digital optical switch using silicone resin waveguides [J]. Electronics Letters, 2000, 36(21): 1803-1804.
    [29] SOHMA S, GOH T, OKAZAKI H, et al. Low switching power silica-based super high delta thermo-optic switch with heat insulating grooves [J]. Electronics Letters, 2002, 38(3): 127-128.
    [30] CANTORE F, DELLA CORTE F G. 1.55μm silicon-based reflection-type waveguide-integrated thermo-optic switch [J]. Optical Engineering, 2003, 42(10): 2835-2840.
    [31] WANG X J, XU L, LI D X, et al. Thermo-optic properties of sol-gel-fabricated organic-inorganic hybrid waveguides [J]. Journal of Applied Physics, 2003, 94(6): 4228-4230.
    [32] WANG Z T, XIA J S, FAN Z C, et al. Fabrication of thermo-optic switch in silicon-on-insulator [J]. Chinese Physics Letters, 2003, 20(12): 2185-2187.
    [33] HONG J K, LEE S S, SHIN D W. Reduced-power consuming silica-based compact 1×2 MZI thermo-optic switch using MMI couplers [J]. Journal of the Korean Physical Society, 2004, 45(1): 84-87.
    [34] XIA J S, YU J Z, WANG Z T, et al. Low power 2×2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching [J]. Optics Communications, 2004, 232(1-6): 223-228.
    [35] CHEN K X, CHU P L, CHAN H P. A vertically coupled polymer optical waveguide switch [J]. Optics Communications, 2005, 244(1-6): 153-158.
    [36] CHU T, YAMADA H, ISHIDA S, et al. Compact 1×N thermo-optic switches based on silicon photonic wire waveguides [J]. Optics Express, 2005, 13(25): 10109-10114.
    [37] LI Y P, YU J Z, CHEN S W. A silicon-on-insulator-based thermo-optic waveguide switch with low insertion loss and fast response [J]. Chinese Physics Letters, 2005, 22(6): 1449-1451.
    [38] LIU J W, YU J Z, CHEN S W, et al. Fabrication and analysis of 2×2 thermo-optic SOI waveguide switch with low power consumption and fast response by anisotropy chemical etching [J]. Optics Communications, 2005, 245(1-6): 137-144.
    [39] YANG D, LI Y P, CHEN S W, et al. A 4×4 strictly nonblocking silicon-on-insulator thermo-optic switch matrix [J]. Chinese Physics Letters, 2005, 22(6): 1446-1448.
    [40] CHEN Y Y, LI Y P, SUN F, et al. SOI-based 16×16 thermo-optic waveguide switch matrix [J]. Chinese Physics Letters, 2006, 23(7): 1823-1825.
    [41] WANG X L, HOWLEY B, CHEN M Y, et al. 4×4 nonblocking polymeric thermo-optic switch matrix using the total internal reflection effect [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(5): 997-1000.
    [42] YU H, JIANG X, YANG J, et al. 2×3 Thermo-optical switch utilizing total internal reflection [J]. Applied Physics Letters, 2006, 88(1): 011106.
    [43] CHEN K X, CHU P L, CHAN H P, et al. An easily operating polymer 1×4 optical waveguide switch matrix based on vertical couplers [J]. Chinese Physics Letters, 2007, 24(6): 1728-1730.
    [44] LI Y T, YU J Z, CHEN S W, et al. Submicrosecond rearrangeable nonblocking silicon-on-insulator thermo-optic 4×4 switch matrix [J]. Optics Letters, 2007, 32(6): 603-604.
    [45] XIE N, HASHIMOTO T, UTAKA K. Very Low Power Operation of Compact MMI Polymer Thermooptic Switch [J]. IEEE Photonics Technology Letters, 2009, 21(18): 1335-1337.
    [46] XIE N, HASHIMOTO T, UTAKA K. Ultimate-low-power-consumption polarization -independent and high-speed polymer Mach-Zehnder thermo-opticswitch [C]. Proceedings of the Optical Fiber Communication - incudes post deadline papers, 2009 OFC 2009 Conference on, 2009
    [47] THAPLIYA R, NAKAMURA S, KIKUCHI T. High speed electro-optic polymeric waveguide devices with low switching voltages and thermal drift [J]. 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, 2008, 1-8: 1271-3.
    [48] ENAMI Y, MATHINE D, DEROSE C T, et al. Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches [J]. Applied Physics Letters, 2009, 94(21): 213513.
    [49]马春生,刘式墉.光波导模式理论[M].吉林大学出版社, 2006.
    [50]方俊鑫,曹庄琪,杨傅子.光波导技术物理基础[M].上海交通大学, 1987.
    [51]国分泰雄.光波工程[M].科学出版社,共立出版社, 2002.
    [52]马春生,刘式墉.金属包层对脊形波导光学特性的影响, [J].电子学报, 1989, 17(5): 85-89.
    [53]赵策洲,高勇.半导体硅基材料及其光波导[M].电子工业出版社, 1997.
    [54]佘守宪.导波工程物理基础[M].北方交通大学出版社, 2002.
    [55] THACKARA J I, CHON J C, BJORKLUND G C, et al. Polymeric electro-optic Mach--Zehnder switches [J]. Applied Physics Letters, 1995, 67(26): 3874-3876.
    [56] SHI Y, WANG W, LIN W, et al. Double-end crosslinked electro-optic polymer modulators with high optical power handling capability [J]. Applied Physics Letters, 1997, 70(11): 1342-1344.
    [57] CHEN D, FETTERMAN H R, CHEN A, et al. Demonstration of 110 GHz electro-optic polymer modulators [J]. Applied Physics Letters, 1997, 70(25): 3335-3337.
    [58] LEE M H, JU J J, PARK S, et al. Polymer-based devices for optical communications [J]. Etri Journal, 2002, 24(4): 259-269.
    [59] CHIBA A, KAWANISHI T, SAKAMOTO T, et al. Crosstalk suppression of a balanced bridge interferometric-type LiNbO3 optical switch by using Mach-Zehnder structures [J]. IEEE Photonics Technology Letters, 2008, 20(9-12): 872-874.
    [60] CHU T, YAMADA H, ISHIDA S, et al. Thermooptic switch based onphotonic-crystal line-defect waveguides [J]. IEEE Photonics Technology Letters, 2005, 17(10): 2083-2085.
    [61] EARNSHAW M P, SOOLE J B D, CAPPUZZO M, et al. 8×8 optical switch matrix using generalized Mach-Zehnder interferometers [J]. IEEE Photonics Technology Letters, 2003, 15(6): 810-812.
    [62] STUDENKOV P V, GOKHALE M R, WEI J, et al. Monolithic integration of an all-optical Mach-Zehnder demultiplexer using an asymmetric twin-waveguide structure [J]. IEEE Photonics Technology Letters, 2001, 13(6): 600-602.
    [63] UEDA Y, NAKAMURA S, FUJIMOTO S, et al. Polarization-Independent Low-Crosstalk Operation of InAlGaAs-InAlAs Mach-Zehnder Interferometer Type Photonic Switch With Hybrid Waveguide Structure [J]. IEEE Photonics Technology Letters, 2009, 21(16): 1118-1120.
    [64] OKUNO M, KATO K, NAGASE R, et al. Silica-based 8×8 optical matrix switch integrating new switching units with large fabrication tolerance [J]. Journal of Lightwave Technology, 1999, 17(5): 771-781.
    [65] LEE M H, JU J J, PARK S, et al. Polymeric waveguide devices for optical communications [J]. Linear and Nonlinear Optics of Organic Materials Iv, 2004, 5517: 62-72.
    [66] YANG D, LI Y P, SUN F, et al. Fabrication of a 4×4 strictly nonblocking SOI switch matrix [J]. Optics Communications, 2005, 250(1-3): 48-53.
    [67] SUGIMOTO Y, NAKAMURA H, TANAKA Y, et al. High-precision optical interference in Mach-Zehnder-type photonic crystal waveguide [J]. Optics Express, 2005, 13(1): 96-105.
    [68] BACHMANN M, BESSE PA, MELCHIOR H. General self-imaging properties in N×N multi-mode interference couplers including phase relations [J] Appl Opt., 1994, 33: 3905–3911.
    [69] ZHAO JG, WEN A J, LIU Z J, YUE P, Optimal design of multimode interference couplers using an improved self-imaging theory [J] Optics Communications, 2008, 281: 1576-1581.
    [70] SOLDANO L B, PENNINGS E C M. Optical multi-mode interference devices based on self-imaging: principles and application. [J] J Lightwave Technol.,1995, 13: 615-625.
    [71] JENKINS R M, HEATON J M, WIGHT D R, et al. Novel 1×N and N×N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides [J] Appl Phys Lett., 1994, 64: 684-686.
    [72]董孝义.光波电子学[M].南开大学出版社, 1987.
    [73]余辉,江晓清,杨建义,李锡华,王明华.有机聚合物热光器件热场的解析模型[J].半导体学报, 2004, 25(8): 995-999.
    [74]王章涛,樊中朝,夏金松,陈少武,余金中. SOI热光调制器[J].半导体学报, 2004, 25(10): 1315-1318.
    [75] ZHU N H, WEI Q, PUN E Y B. Analysis of velocity-matched Ti:LiNbO3 optical intensity modulators with an extended point-matching method [J]. J. Opt. Quantum Electron., 1996, 28: 137-146.
    [76] RAMER O G. Integrated optic electrooptic modulator electrode analysis [J]. IEEE J. Quantum Electron., 1982, 18: 386-392.
    [77] KIM C M, RAMASWARMY R.V. Overlap integral factors in integrated optic modulators and switches [J]. J Lightwave Technol, 1989, 7: 1063-1070.
    [78] ROEY J V, DONK J V, LAGASSE P E. Beam propagation method: analysis and assessment [J]. J. Opt. Soc. Am., 1981, 71(7): 803-810.
    [79] YOUNGCHUL C, NADIR D. Assessment of finite difference beam propagation method [J]. IEEE. J. Quantum Electron., 1990, 26(8): 1335-1339.
    [80] LEE J M, BACK Y S, OH K R, et al. Temperature dependence of low loss polymeric AWG [J]. Optics Communications, 2007, 27: 189-194.
    [81] LI S, FREIDHOFF C B, YOUNG R M, GHODSSI R. Fabrication of micronozzles using low-temperature wafer-level bonding with SU-8 [J]. Journal of Micromechanics and Microengineering, 2003, 13: 732-738.
    [82] LIN H C, HUANG H C, TSAO S L. Tolerance analysis of 4×4 SU-8 polymer array waveguide grating [J]. Optics Communications, 2005, 250: 69-76.
    [83] PELLETIER N, BECHE B, TAHAM N, et al. SU-8 waveguiding interferometric micro-sensor for gage pressure measurement [J]. Sensors and Actuators A: Physical, 2007, 135(1): 179-184.
    [84] BILENBERG B, NIELSEN T, CLAUSEN B, KRISTENSEN A. PMMA toSU-8 bonding for polymer based lab-on-a-chip systems with integrated optics [J]. J. Micromech Microeng, 2004, 14: 814-818.
    [85] BECHE B, PELLETIER N, GAVIOT E, et al. Conception of optical integrated circuits on polymers [J]. Microelectronics Journal, 2006, 37: 421-427.
    [86] TUNG K K, WONG W H, PUN E Y B. Polymeric optical waveguides using direct ultraviolet photolithography process [J]. Appl.Phys.A, 2005, 80: 621-626.
    [87] LEINSE A, DIEMEER M B J, ROUSSEAU A, et al. A novel high-speed polymeric EO modulator based on a combination of a microring resonator and an MZI [J]. IEEE Photonics Technology Letters, 2005, 17(10): 2074-2076.
    [88] BALAKRISHNAN M, FACCINI M, DIEMEER M B J, et al. Microring resonator based modulator made by direct photodefinition of an electro-optic polymer [J]. Applied Physics Letters, 2008, 92(15): 153310.
    [89]李雯,谭智敏,薛昕,刘理天.紫外线厚胶光刻技术研究及应用[J].微纳电子技术, 2003, (7): 151-153.
    [90]郑晓虎,朱荻.模糊神经网络在UV-LIGA工艺优化中的应用[J].光学精密工程, 2006, 14(1): 139-144.
    [91]杜立群,秦江,刘冲,朱神渺,李园园. SU-8胶紫外光刻的尺寸精度研究[J].光学精密工程, 2007, 15(4): 447-452.
    [92]朱军,刘景全,张金娅等.环氧基紫外负型光刻胶的特性、应用工艺与展望[J].高分子材料科学工程, 2004, 20(4): 59-65.
    [93]张立国,陈迪,杨帆,李以贵. SU-8胶光刻工艺研究[J].光学精密工程, 2002, 10(3): 266-269.
    [94]刘景全,朱军,蔡炳初,陈迪,丁桂甫,赵小林,杨春生. SU-8胶与基底结合特性的实验研究[J].微细加工技术, 2002, (2): 28-32.
    [95]伊福廷,张菊芳,彭良强,韩勇.利用紫外光刻技术进行SU8胶的研究[J].微纳电子技术, 2003, (8): 126-141.
    [96]陈抱雪,袁一方,叽守.新型低损耗氧化硅Y分支光波导[J].光学学报, 2001, 21(5): 552-555.
    [97] HIDA Y, ONOSE H, IMAMURA S. Polymer waveguide thermooptic switch with low electric power consumption at 1.3μm [J]. Photonics Technology Letters, IEEE, 1993, 5(7): 782-784.
    [98] SCHAFFT H A. Thermal analysis of electromigration test structures [J]. Electron Devices, IEEE Transactions on [J]. 1987, 34(3): 664-672.
    [99] ENAMI Y, DEROSE C T, MATHINE D, et al. Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients [J]. Nature Photonics, 2007, 1(3): 180-185.
    [100] LIU Z L, ZHANG D Q. A low-loss electro-optic waveguide polymer modulator and its optimization design [J]. Opt. Quantum Electron. 2005; 37: 949-963.
    [101] ADAMS M J. An Introduction to Optical Waveguides [M]. Vai-Ballou Press Inc., New York, 1981.
    [102] HUNSPERGER R G. Integrated Optics, fifth ed [M]. Springer, Berlin, 2002.
    [103] UNGER H G. Planar Optical Waveguides and Fibres [M]. Clarendon Press, Oxford, 1977.
    [104]廖进昆,唐雄贵,陆荣国,李和平,刘永智.聚合物脊形光波导的变分有效折射率法分析[J].光学学报, 2008, 28(12): 2267-2271.
    [105]徐建锋,薄中阳,白剑等.大规模集成光波导时域有限元差分法仿真的子域合成法[J].光学学报, 2007, 27(1): 5-9.
    [106]张雅丽,张韬,祝宁华等.掩埋型离子交换玻璃光波导的变分分析[J].光学学报, 2007, 27(6): 981-986.
    [107] ZHENG C T, MA C S. Simulation and optimization of a polymer directional coupler electro-optic switch with push–pull electrodes [J]. Optics Communications, 2008, 281: 3695-3702.
    [108] GOPALAKRISHNAN G K, BURNS W K, MCELHANON R W. Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators [J]. J. Lightwave Technol, 1994, LT-12(10): 1807-1819.
    [109] YAN X, ZHENG C T, et al. Design of a polymer directional coupler electro-optic switch with rib waveguide structure [J]. J. Mod. Opt. 2008, 55(12): 1859-1869.
    [110] SONG R, STEIER W H. Overlap integral factor enhancement using buried electrode structure in polymer Mach-Zehnder modulator [J]. Appl. Phys. Lett. 2008, 92(031103): 1-3.
    [111] TERLEVICH L, BALSAMO S, PENSA S. Design and Characterization of a 10-Gb/s Dual-Drive Z-Cut Ti:LiNbO3 Electrooptical Modulator [J]. J. Lightwave Technol. 2006, 24(6): 2355-2361.
    [112] AOKI K, KONDO J, KONDO A. Single-Drive X-Cut Thin-Sheet LiNbO3 Optical Modulator With Chirp Adjusted Using Asymmetric CPW Electrode [J]. J. Lightwave Technol. 2006, 24(5): 2233-2237.
    [113] HONG I P, PARK S K, PARK H K. Quasistatic analysis of coupled coplanar waveguide traveling-wave electrodes for electro-optic modulators [J]. Microwave and Optical Tech. Lett. 1998, 20(4): 284-286.
    [114] KIM C M, RAMASWARMY R V. Overlap integral factors in integrated optic modulators and switches [J]. J. Lightwave Technol. 1989, 7(7): 1063-1070.
    [115] ENOKIHARA A, YAJIMA H, MURATA H. Guided-Wave Electro-Optic Modulators Using Novel Electrode Structure of Coupled Microstrip Line Resonator [J]. IEICE TRANS. ELECTRON., 2005, E88–C(3): 372-378.
    [116] HAN L, JIANG Y, LI W, et al. Fabrication and nonlinear optical properties of polymeric thin films doped with a novel tricyanofuran chromophore [J]. Materials Letters, 2008, 62(10-11): 1495-1498.
    [117] CUI Y, CHEN L, WANG M, et al. Effect of thermal treatment on the nonlinear optical response and stability of hybrid inorganic-organic films [J]. Journal of Physics and Chemistry of Solids, 2006, 67(7): 1590-1594.
    [118] LEE J Y, BANG H B, KANG T S, et al. Molecular design, synthesis and electro-optic properties of novel Y-type polyurethanes with high thermal stability of second harmonic generation [J]. European Polymer Journal, 2004, 40(8): 1815-1822.
    [119] HAN S F, LI Z, JI S X, et al. Nonlinear optical polymer films based on sol-gel derived polysilsesquioxane with pendant chromophoric subunits embedded in size-matched pores [J]. Journal of Sol-Gel Science and Technology, 2000, 18(2): 137-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700