陕西黄土沟壑区开采沉陷规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陕西黄土沟壑采煤矿区地貌复杂,黄土层厚度大,由地下开采引起的地表变形具有特殊性,对其采煤沉陷规律进行研究,在西部矿区安全采煤中具有重要的意义。
     本文以渭北黄土覆盖矿区地表沉陷实测资料为依据,通过相似材料模拟实验和FLAC数值模拟揭示了黄土覆盖矿区采煤沉陷的基本规律及其特殊性,并着重研究了黄土层的开采沉陷机理及黄土沟壑区地表采动滑移的特征。
     论文的主要研究结果如下:
     (1)厚黄土层矿区地表移动变形具有发展快、稳定快、活跃期短的特征;黄土层厚度是影响地表动态移动规律的重要因素,并与地表移动参数之间存在一定的相关性;黄土沟壑区采煤沉陷引起的山坡侧向滑移变形是渭北矿区地表移动变形的重要特征。
     (2)在薄基岩厚黄土层开采条件下,黄土层的沉陷变形与基岩沉陷保持同步移动。与基岩层相比,黄土层中的开采影响传播速度要明显快于岩层,而且下沉系数要大于基岩中的下沉系数,下沉衰减和竖向离层发育较低,在煤柱上方和采空区上方地表移动分布呈非对称特征。
     (3)黄土层对于基岩开采具有荷载效应,其等效荷载一般小于其自重荷载,并随着开采宽深比(采动程度)及黄土层自重(土层厚度)而变化。通过数值模拟构建了黄土层厚度、开采宽深比与等效荷载之间的量化关系。
     (4)在黄土山区条件下,斜坡体各部分受到开采影响的强度和时间不同,所产生的开采沉陷及其引起的斜坡塑性滑移也不同。在地表倾向与开采沉陷倾斜方向一致的“正向坡”条件下,山坡的侧向滑移增大了斜坡体的开采沉陷变形,而在地表倾向与开采沉陷倾斜方向相反的“反向坡”条件下,山坡的侧向滑移减小了斜坡体的开采沉陷变形。
In the loess gully coal mining area of Shaanxi, as the topography is complex and the thickness of loess layer is great, the ground deformation has special properties by underground mining. Thorough researches on mining subsidence laws have significant value for the safe coal mining in western mining areas.
     Based on the surface subsidence observed data of Weibei mining area, the mining subsidence laws and particularity is revealed through similar material model experiment and Flac numerical simulation. This paper mainly studies the mining subsidence laws in the soil layers and the features about the surface mining slip in loess gully region.
     The main achievements of this paper are shown as follows:
     (1) Surface movement and deformation in loess mining area has the main characteristics of fast development, fast stability and short active period. The thickness of loess layer is the most important factor in the laws of surface dynamic movement, and has certain relevance with surface movement parameters. The lateral slipping of slope by mining in loess gully region is the important feature of the surface movement and deformation in Weibei mining area.
     (2) In the mining areas of thick loess layer and thin bedrock layer, the subsidence deformation of loess layer will keep synchronous movement with the bedrock subsidence. Compared with the bedrock layers, mining impacting rate in loess layer is obviously fast than the rate in bedrock layer, subsidence factor is larger than the factor in bedrock layer, subsidence attenuation and vertical separation have the growth degree to be low, and surface movement appears asymmetric above the coal pillars and the mined-out area.
     (3) Generally, the loess has an affection of equivalent load effect to the bedrock mining, which is smaller than gravity load of loess and changes with width depth ratio of mining (mining degree) and gravity of loess layer (thickness of loess layer). Meanwhile, this paper composes a quantitative relationship between the equivalent load with the thickness of loess layer and the width depth ratio of mining.
     (4) In the areas of Loess Mountains, the effect of the mining intensity and time is different at the slope’s different parts, which has different affects on mining subsidence and slope plastic sliding. Under the direction of positive slope conditions that the direction of surface tendency is consistent with the slope direction of the mining subsidence, sliding deformation will increase the slope’s mining subsidence deformation, but under the reverse slope’s direction conditions that the direction of surface tendency is opposite to the slope direction of the mining subsidence, sliding deformation will decrease the slope’s mining subsidence deformation.
引文
[1]韩克勇,张建亮.矿山开采沉陷灾害防治与水环境保护研究[J].太原科技,2008:1006~4887.
    [2]郭广礼,王悦汉,马占国.煤矿开采沉陷有效控制的新途径[J].中国矿业大学学报,2004:1000~1964.
    [3]栾元重,吕法奎,班训海.动态变形观测与预报[M].北京:中国农业科学出版社,2007.
    [4]H.J. Qian, Z.G. Lin. Engineering problems due to underground mining in China [A]. Proceedings of the International Conference on Engineering Problems of Regional Soils[C]. Beijing: International Academic Publishers, 1988.136-153.
    [5]李文秀,王晶,梁旭黎,等.山区采矿岩体移动的Fuzzy测度分析[J].矿业安全与环保. 2005, 32(6): 11-14.
    [6]李增琪,杨硕著.建构筑物下开采集中位移应变漏与大变形[M].北京:科学出版社, 2003.176-182.
    [7]Ghose A.K.. Green mining-a unifying concept for mining industry [J]. Journal of Mines, Metals & Fuels, 2004, 52(12): 393-395.
    [8]Greco V.R.. Efficient Monte Carlo Technique for locating critical slip surface [J]. Journal of Geotechnical Engineering, 1996, 122(7): 517-520.
    [9]Homoud A.I.. Studying theory of displacement and deformation in the mountain areas under the influence of underground exploitation [D]. Krakow in Poland: AGH University of Science and Technology, 1999.
    [10]Chamine H.L., Bravo Silva P.. Geological contribution towards the study of mining subsidence at the Germunde coal mine (NW Portugal) [J]. Cudernos do Laboratorio de Laxe, 2003, (18): 281-287.
    [11]Luo Y., Peng S.S.. Integrated Approach for Predicting Mining Subsidence in Hilly Terrain [J]. Mining Engineering, 1999, 51(6): 100-104.
    [12]张建,林在贯,张茂省.中国黄土与黄土滑坡[J].岩石力学与工程学报, 2007, 26(7): 1297-1312.
    [13]DUAN Yonghou. Geohazard present situation, Development tendencies and countermeasures in Western China [J].Review of Economic Research, 2005, 58(2): 12-18.
    [14]王金庄,李永树,周雄.巨厚松散层下采煤地表移动规律的研究[J].煤炭学报, 1997, 22(1): 18-21.
    [15]WU Lixin. A new method for mining influence based on fine geologic model [A].21thAPCOM [C]. Beijing: Science and Technology Press, 2001, 05.273-277.
    [16]余学义.西部巨厚湿陷性黄土层开采损害程度分析[J].中国矿业大学学报, 2008, 37(1): 43-47.
    [17]梁明,王成绪.厚黄土覆盖山区开采沉陷预计[J].煤田地质与勘探, 2001, 29(2): 44-47.
    [18]汤伏全.厚黄土层矿区地表移动预计方法[J].西安科技大学学报, 2005, 25(3), 317-321.
    [19]李德海.厚松散层下开采地表移动预计及岩移参数分析[J].焦作工学院学报, 2002, (1): 90-93.
    [20]余学义,张恩强.开采损害学[M].北京:煤炭总也出版社,2004.
    [21]何国清,杨伦,贾凤彩等.开采沉陷学[M].北京:中国矿业大学出版社,1991
    [22]胡友健,吴北平,戴华阳等.山区地下开采影响下地表移动规律[J].焦作工学院学报, 1999, 18(4): 243-247.
    [23]余学义,尹士献,赵兵朝.采动厚湿陷性黄土破坏数值模拟研究[J].西安科技大学学报, 2005, 25(2): 135-138.
    [24]王贵荣.厚黄土薄基岩地区开采沉陷规律探讨[J].西安科技大学学报, 2006, 26(4): 443-445.
    [25]陈祥恩等.巨厚松散层下开采及地表移动[M].徐州:中国矿业大学出版社, 2001. 245-247.
    [26]谢洪彬.厚冲积层薄基岩下采煤地表移动变形规律[J].矿山压力与顶板管理, 2001, (1): 57-63.
    [27]崔希民,缪协兴,苏德国,马伟民.岩层与地表移动相似材料模拟实验的误差分析[J].岩石力学与工程学表,2002,21(12):1827-1830.
    [28]关英斌,李海梅,范志平.煤层底板破坏规律的相似材料模拟[J].煤矿安全,2008,(02):0067-03
    [29]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002
    [30]刘波,韩彦辉(美国). FLAC原理、实例与应用指南[M].北京:人民交通出版社,20005.
    [31]彭文斌. FLAC 3D使用教程[M].北京:机械工业出版社,2007.
    [32]廉海,魏秀泉等.地下开采引起地表沉陷的数值模拟[J].西部探矿工程,2006,(128):299~301.
    [33]李示波,高永涛. FLAC和数值微分在地表变形观测中的应用[J].中国矿业,2008:1004~4051.
    [34]李围.隧道及地下工程FLAC解析方法[M].北京:中国水利水电出版社,2009.
    [35]夏玉成.构造环境对煤矿区采动损害的控制机理研究[J].西安科技大学.2003:23-25.
    [36]刘东生.黄土与环境[M].北京:科学出版社, 1985.85-88.
    [37]吴正.现代地貌学概论[M].北京:科学出版社, 2009. 144-149.
    [38]沈珠江.理论土力学[M].北京:中国水利水电出版社, 2000.65-110.
    [39]Balasubramanian A.S.. Behaviour of a normally consolidated clay in stress ratio strain space[J]. Symp.Recent Development in the Analysis of Soil Behaviour and their Application to Geotechnical Sructure, July, 1995, 275-287.
    [40]Janbu N.. Soil compressibility as determined by oedometer and triaxial test [A]. Europen Conference Proceedings of SMFE[C]. Wiesbaden, 1963, (1): 19-25.
    [41]黄森林,余学义,赵雪,范凯.湿陷性黄土开采损害规律及控制方法研究[J].矿业安全与环保, 2006, 33(5):11-15.
    [42]Darve F.. An incrementally non-linear constitutive law: Assumption and predictions [J]. Int. Work-shop on Constintive Relation for Soils, Grenolbe, 2002.385-404.
    [43]余学义,党天虎.采动地表动态沉陷的流变特性[J].西安科技学院学报, 2003, 23(2) :131-134.
    [44]Nova R.. A model of soil behaviour in plastic and hysteretic range [J]. Int. Workshop on Constitutive Relations for Soils, Grenoble, 2006, (289): 289-330.
    [45]Bauer E.. Calibration of a comprehensive hypoplasic model for granular materids [J]. Soils and foundations, 1966, 36 (1): 13-26.
    [46]张建全,戴华阳.采动覆岩应力发展规律的相似模拟实验研究[J].矿山测量, 2003, (4): 49-51.
    [47]康建荣,王金庄,温泽民.采动覆岩动态下沉速度规律的相似模拟研究[J].太原理工大学学报, 2000, 31(4): 364-371.
    [48]任伟中,白世伟,孙桂凤,葛修润.厚覆盖岩层条件下地下采矿的地表及围岩变形破坏特性模型试验研究[J].岩石力学与工程学报, 2005, 21(11): 3935-3941.
    [49]李围.隧道及地下工程FLAC解析方法[M].北京:中国水利水电出版社,2009.
    [50]Cundall P A. A simple hysteretic damping formulation for dynamic continuum simulations [A]. 4th International FLAC Symposium on Numerical Modeling in Geomechanics[C]. Madrid, Spain: Itasca Consulting Group, 2006. 7-14.
    [51]Han Y., Hart R.. Application of a simple hysteretic damping formulation for dynamic continuum simulations [A]. 4th International FLAC Symposium on Numerical Modeling in Geomechanics [C]. Madrid, Spain: Itasca Consulting Group, 2006. 104-110.
    [52]Byrne P.M., Park S.S.. Seismic liquefaction: centrifuge and numerical modeling in Geomachanics [M]. Ontario, Canada: 2003.117-124.
    [53]康建荣.山区采动裂缝对地表移动变形的影响分析[J].岩石力学与工程学报, 2008,1(1): 59-64.
    [54]马超,何万龙,康建荣.山区采动滑移向量模型中参数的多元线性回归分析[J].矿山测量, 2000, (4): 32-36.
    [55]马超,康建荣,何万龙.山区典型地貌表土层采动滑移规律的数值模拟分析[J].太原理工大学学报, 2001, 32(3): 222-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700