永生化人肝星状细胞系的建立及其对肝细胞功能与肝祖细胞分化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     各种原因引起的肝衰竭病死率高达70%~80%。以肝细胞为生物活性成分的生物型人工肝(bioartificial liver, BAL)成为肝衰竭治疗研究的热点和发展方向。
     基于原代人肝细胞、原代猪肝细胞、C3A肝肿瘤细胞的三种类型肝细胞的BAL临床试验治疗显示,BAL具有很好的疗效和应用前景。但是,肝细胞源的短缺等问题,依然阻碍着BAL的临床应用和发展。
     肝脏干细胞可诱导分化为功能成熟的肝细胞,被认为是非常有前景的细胞源。目前,肝脏干细胞在体外诱导分化是受到多种因素影响和调控,分化后的肝细胞尚难达到生物人工肝临床治疗的数量。因此,需要进一步探索肝脏干细胞的规模化培养和诱导分化的新方式和新方法。
     肝细胞永生化是解决肝细胞来源困难的重要可行性途径之一。然而,永生化人肝细胞的基因表达和细胞功能,与原代人肝细胞功能存在一定的差异。因此,必须在解决肝细胞数量的同时,需要进一步提高永生化人肝细胞的分化程度和细胞功能。
     细胞与细胞间相互作用在保持和促进细胞功能中起着非常重要作用。在各种共培养体系中,肝细胞与肝非实质细胞之间的相互作用为肝细胞生长提供了微环境,有助于肝细胞保持其结构稳定和细胞功能。肝星状细胞是肝脏中非常重要的非实质细胞。然而,原代肝星状细胞存在着分离繁琐,分离成本较高,容易失去生物学特性和功能等问题。
     综上所述,我们从以下几个方面进行研究,建立高活性和功能的永生化人肝星状细胞系,探索永生化人肝星状细胞与永生化人肝细胞共培养对肝细胞功能的影响,以及探索永生化人肝星状细胞对肝祖细胞向肝细胞分化的影响。为优化和完善永生化人肝细胞培养的微环境和建立肝祖细胞向肝细胞分化的新方法提供实验依据,将为生物型人工肝提供更高质量的肝细胞奠定基础。
     第一部分永生化人肝星状细胞系的建立及其鉴定
     目的:建立高活性和功能的永生化人肝星状细胞系,为肝非实质细胞与肝细胞、肝祖细胞共培养研究提供理想的细胞模型。
     方法:采用SV40LT重组反转录病毒感染原代人肝星状细胞,获得永生化人肝星状细胞系。采用电镜技术、RT-PCR等分析永生化人肝星状细胞的形态学、生物学特性和功能等。
     结果:建立一株永生化人肝星状细胞系,命名为HSC-Li。该细胞系具有典型的肝星状细胞形态学特征;HSC-Li细胞的Ⅰ、Ⅱ型胶原、HGF等mRNA表达为阳性;HSC-Li细胞的a-SMA、Vimentin、GFAP和SV40LT蛋白表达为阳性。HSC-Li细胞分泌VEGF、HGF、IL-6、TGF-betal等多种细胞因子和炎症因子。
     结论:建立了一株永生化人肝星状细胞系HSC-Li,该细胞系具有人肝星状细胞的生物学特性和功能;可为肝细胞与肝星状细胞、肝祖细胞与肝星状细胞共培养研究提供理想的细胞模型。
     第二部分永生化人肝星状细胞与永生化人肝细胞共培养对肝细胞功能的影响
     目的:探索永生化人肝星状细胞与永生化人肝细胞共培养对永生化人肝细胞功能的影响;为优化和完善永生化人肝细胞培养的微环境提供实验依据。
     方法:首先采用SV40LT重组反转录病毒感染原代人肝细胞,获得一株永生化人肝细胞系;通过直接接触共培养、间接接触共培养方式进行永生化人肝细胞与永生化人肝星状细胞共培养研究,测定永生化人肝细胞共培养24h、48h、72h后ALB、 CYP3A5、CYP2E1、UGT2b7等基因的表达水平,以及测定CYP1A2活力。
     结果:建立了一株永生化人肝细胞系HepLi5,HepLi5细胞的ALB、GS、CYP2E1、 CYP3A5等基因的mRNA表达均为阳性,具有分泌白蛋白等原代人肝细胞的生物学特性和功能。HSC-Li细胞与HepLi5细胞直接接触和间接接触共培养研究结果显示,HepLi5细胞在共培养24h、48h、72h后ALB、CYP3A5、CYP2E1、UGT2b7等基因表达显著增强,以及CYP1A2活力显著增强。与单独培养组相比较,直接接触共培养方式和间接接触共培养方式均显著增强肝细胞基因表达和功能。
     结论:建立了一株永生化人肝细胞系HepLi5,HepLi5细胞具有分泌白蛋白等原代人肝细胞的生物学特性和功能。直接接触共培养和间接接触共培养方式均可显著增强HepLi5细胞的基因表达和细胞功能。为优化和完善永生化人肝细胞培养的微环境提供实验依据,将为生物型人工肝提供更高质量的肝细胞奠定基础。
     第三部分永生化人肝星状细胞对肝祖细胞向肝细胞分化的影响
     目的:探索永生化人肝星状细胞对肝祖细胞BMEL-TAT分化为肝细胞的影响;为建立肝祖细胞向肝细胞分化的新方法提供实验依据。
     方法:通过永生化人肝星状细胞与肝祖细胞间接接触共培养方式诱导肝祖细胞分化为肝细胞,检测肝祖细胞BMEL-TAT共培养前、后细胞表型和功能。
     结果:HSC-Li星状细胞与肝祖细胞BMEL-TAT间接接触共培养方式可以诱导肝祖细胞分化为功能成熟的肝细胞。以单独培养BMEL-TAT细胞作为对照,与HSC-Li细胞共培养3天后,BMEL-TAT细胞在细胞形态上开始向肝样细胞转变;与HSC-Li细胞共培养7、14、21天后,BMEL-TAT细胞的ALB、CK18、TAT、G6P等基因表达逐渐增强;细胞免疫荧光染色显示:共培养21天后BMEL-TAT细胞的ALB、CK18表达显著增强,CK19、AFP表达下降。共培养21天后BMEL-TAT细胞的X-gal染色、PAS染色和Dil-LDL吸收实验均为阳性,以及CYP1A2活力和尿素合成也显著增强。
     结论:建立了肝祖细胞向肝细胞分化的新方法;永生化人肝星状细胞与肝祖细胞间接接触共培养方式可以诱导肝祖细胞BMEL-TAT向肝细胞分化;可为生物型人工肝提供新型、高质量的肝细胞奠定基础。
Background
     Fulminant hepatic failure (FHF) has very high mortality rates approaching70-80%. Considering the potential of the liver to regenerate, Liver support system has been considered to the alternative therapy for liver failure in clinical trial as a bridge to orthotropic liver transplantation(OLT) or avoiding liver transplantation. To date, several kind of bioartificial liver (BAL) using primary porcine hepatocyte, primary human hepatocytes and C3A liver tumor cells have been submitted for clinical trials. However, no BAL has been approved by government for clinical treatment, because suitable sources of liver cells are not available. So, it is very urgent and important to find new type of hepatocytes for application in BAL as the biological component of BAL.
     The immortalized human hepatocytes with indefinitive expansion in vitro and allogenic cells are an ideal suitable for application in BAL. However, its functionality and differentiation is lower than that in primary human hepatocytes. Liver progenitor cells can be expanded and differentiated into functional hepatocytes that are urgently required as potentially alternatives to hepatocytes.
     Cell-cell interactions such as hepatocytes and stellate cells play a very important role in the stability of liver function of primary hepatocytes. However, human hepatic stellate cells (HSC) are terminally differentiated liver cells, which have a limited proliferation and do not passage in vitro for long term time. Moreover, isolation of HSC is extremely time-consuming and laborious works, their yields are commonly even lower.
     Here, we aimed to establish an immortalized human hepatic stellate cells line, and to evaluate the effects of co-culture with the immortalized human hepatic stellate cells on hepaocyte functions of immortalized human hepatocytes and differentiation of liver progenitor cells into functional hepatocytes.
     Part I Establishment and characterization of an immortalized human hepatic stellate cells line
     Objective:To establish an immortalized human hepatic stellate cells Line for either co-culture of hepatcotyes and human hepatic stellate cells or co-culture of liver progenitor cells with human hepatic stellate cells in vitro as an ideal cells line.
     Methods:Primary human Hepatic stellate cells were transfected with recombinant retrovirus containing simian virus40large T antigen (SV40LT). Subsequently, the characteristics of immortalized human hepatic stellate cells was characterized by reverse transcription polymerase chain reactions (RT-PCR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), immunofluorescent cytochemistry staining, and so on.
     Results:An immortalized human hepatic stellate cells Line, HSC-Li, was harvested after infection of primary human hepatic stellate cells with recombinant retrovirus containing SV40LT. Under phase contrast microscope and electronic microscope, the immortalized human hepatic stellate cells showed classical appearance of hepatic stellate cells. The mRNA expression of human Collagen type I, Collagen type Ⅱ、HGF and SV40LT was observed by RT-PCR in HSC-Li cells. The results of immunofluorescent cytochemistry staining showed that HSC-Li cells expressed α-smooth muscle actin (a-SMA), Vimentin, and glial fibrillary acid protein (GFAP). The cytokines such as HGF, VEGF, IL-6, and TGF-betal were determined in the culture supernatant of HSC-Li cells by ELIS A and protein array.
     Conclusions:The immortalized human hepatic stellate cells, HSC-Li cells, have the biological and functional characteristics of human hepatic stellate cells, which may be an ideal cells line for either co-culture of hepatocytes with hepatic stellate cells or co-culture of liver progenitor cells with hepatic stellate cells in vitro.
     Part II Effects of co-culture with immortalized human hepatic stellate cells on the hepatocyte function of immortalization human hepatocytes
     Objective:To evaluate the effects of co-culture with immortalized human hepatic stellate cells on hepaocyte function of immortalized human hepatocytes for application in bioartificial liver.
     Methods:Immortalized human Hepatocytes were established by transfection of primary human hepatocytes with recombinant retrovirus containing SV40LT. Characteristics of immortalized human hepatocytes were evaluated by analysis of gene expression and functional characteristics in vitro. After co-culture with the HSC-Li cells employing mixed co-culture and separated co-culture, the mRNA expression of metabolizing enzymes and CYP1A2activity of immortalized human hepatocytes was evaluated.
     Results:An immortalized human hepatocytes cell line, HepLi5, was successfully established. The expression of SV40LT in HepLi5cells could be detected by RT-PCR and Western blot. The mRNA expression of liver-enriched genes and human cytochrome P450was detectable by RT-PCR in HepLi5cells.
     When HepLi5cells were co-cultured with HSC-Li cells in either separated co-culture or mixed co-culture, the CYP1A2activity was significantly enhanced. The mRNA expression levels of metabolizing enzymes such as CYP3A5, CYP2E1and UGT2b7of HepLi5cells were significantly improved in both separated co-culture and mixed co-culture with HSC-Li cells.
     Conclusions:we have successfully established an immortalized human hepatocytes cell line, HepLi5. Our results suggested that co-culture of HepLi5cells with HSC-Li cells significantly improved the gene expression and functional characteristics of HepLi5cells. The hepatocyte function of immortalized human hepatocytes could be enhanced in separated co-culture and in mixed co-culture with HSC-Li cells, which may be greatly helpful for use in BAL in future.
     Part Ⅲ Effects of co-culture with immortalized human hepatic stellate cells on the differentiation of liver progenitor cells into functional hepatocytes
     Objective:To evaluate the effects of co-culture with the immortalized human hepatic stellate cells on the differentiation of liver progenitor cells into functional hepatocytes in vitro.
     Methods:liver progenitor cells, BMEL-TAT, and the immortalized human hepatic stellate cells, HSC-Li cells, were used in this study. The separated co-culture of BMEL-TAT with HSC-Li cells was established for analyzing the effects of co-culture with immortalized human hepatic stellate cells on the differentiation of liver progenitor cells into functional hepatocytes. The cell morphology of BMEL-TAT cells was observed by light microscope and laser confocal microscope. The mRNA expression of ALB, CK18, TAT and G6P in the BMEL-TAT cells was detected by RT-PCR after co-culture with HSC-Li cells. The CYP1A2activity, Dil-LDL uptake, and urea secretion were also determined in both BMEL-TAT control and after21days co-culture of BMEL-TAT, etc. The BMEL-TAT cultured on normal medium served as control.
     Results:co-culture with HSC-Li cells significantly enhanced the differentiation of liver progenitor cells into functional hepatocytes. The cell morphology of BMEL-TAT cells was changed to hepatocyte-like cells from days3to days21after co-culture with HSC-Li cells. The mRNA expression of ALB, CK18, TAT and G6P in the BMEL-TAT cells was significantly improved by RT-PCR after co-culture with HSC-Li cells. The results of immunofuorescent cytochemistry staining showed the expression of ALB, CK18was significantly enhanced in BMEL-TAT after21days co-culture with HSC-Li cells, whereas the expression of CK19and AFP apparently decreased. The CYP1A2activity, Dil-LDL uptake, urea secretion was also increased significantly after21days co-culture of BMEL-TAT with HSC-Li cells. X-gal staining and PAS staining in BMEL-TAT after21days co-culture with HSC-Li cells were apparently positive, whereas the BMEL-TAT control was negative.
     Conclusion:Separated co-culture with HSC-Li cells could successfully induce the differentiation of liver progenitor cells into functional hepatocytes, which may be very important for generation of functional hepatocytes from liver progenitor cells for use in BAL in future.
引文
[1]Mas A and Rodes J. Fulminant hepatic failure. Lancet 1997; 349:1081-1085.
    [2]Court FG, Wemyss-Holden SA, Dennison AR, et al. Bioartificial liver support devices:historical perspectives. ANZ J Surg 2003; 73:739-748.
    [3]Carpentier B, Gautier A, Legallais C. Artificial and bioartificial liver devices: present and future. Gut 2009; 58:1690-1702.
    [4]Strain AJ, Neuberger JM. A bioartificial liver--state of the art. Science 2002; 295:1005-1009.
    [5]Ellis AJ, Hughes RD, Wendon JA, et al. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology 1996;24:1446-1451
    [6]Sauer IM, Zeilinger K, Obermayer N, et al. Primary human liver cells as source for modular extracorporeal liver support--a preliminary report. Int J Artif Organs 2002; 25:1001-1005.
    [7]Demetriou AA, Brown RS Jr, Busuttil RW, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg 2004; 239:660-667.
    [8]Dalgetty DM, Medine CN, Iredale JP, et al. Progress and future challenges in stem cell-derived liver technologies. Am J Physiol Gastrointest Liver Physiol 2009; 297:G241-248.
    [9]Ding YT, Shi XL. Bioartificial liver devices:Perspectives on the state of the art. Front Med 2011; 5:15-19.
    [10]Streetz KL. Bio-artificial liver devices--tentative, but promising progress. J Hepatol 2008; 48:189-191.
    [11]Poyck PP, van Wijk AC, van der Hoeven TV, et al. Evaluation of a new immortalized human fetal liver cell line (cBAL111) for application in bioartificial liver. J Hepatol 2008; 48:266-275.
    [12]Okamoto M, Ishida Y, Keogh A, et al. Evaluation of the function of primary human hepatocytes co-cultured with the human hepatic stellate cell (HSC) line LI90. Int J Artif Organs 1998; 21:353-359
    [13]Auth MK, Woitaschek D, Beste M, et al. Preservation of the synthetic and metabolic capacity of isolated human hepatocytes by coculture with human biliary epithelial cells. Liver Transpl 2005; 11:410-419.
    [14]Khetani SR, Szulgit G, Del Rio JA, et al. Exploring interactions between rat hepatocytes and nonparenchymal cells using gene expression profiling. Hepatology 2004; 40:545-554.
    [15]Murakami S, Ijima H, Ono T, et al. Development of co-culture system of hepatocytes with bone marrow cells for expression and maintenance of hepatic functions. Int J Artif Organs 2004; 27:118-126.
    [16]Uyama N, Shimahara Y, Kawada N, et al. Regulation of cultured rat hepatocyte proliferation by stellate cells. Journal of hepatology 2002; 36(5):590-599.
    [17]Soto-Gutierrez A, Kobayashi N, Rivas-Carrillo JD, et al. Reversal of mouse hepatic failure using an implanted liver-assist device containing ES cell-derived hepatocytes. Nat Biotechnol 2006; 24(11):1412-9.
    [18]Schnabl B, Choi YH, Olsen JC, et al. Immortal activated human hepatic stellate cells generated by ectopic telomerase expression. Lab Invest 2002,82:323-33.
    [19]Aboagye-Mathiesen G, Zdravkovic M, Toth FD, et al. Altered expression of the tumor suppressor/oncoprotein p53 in SV40 Tag-transformed human placental trophoblast and malignant trophoblast cell lines. Early Pregnancy 1996, 2:102-112.
    [20]Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998,279:349-352.
    [21]Pan X, Du W, Yu X, et al. Establishment and characterization of immortalized porcine hepatocytes for the study of hepatocyte xenotransplantation. Transplant Proc 42:1899-1906.
    [22]Li J, Li L, Yu H, et al. Growth and metabolism of human hepatocytes on biomodified collagen poly (lactic-co-glycolic acid) three-dimensional scaffold. Asaio J 2006; 52:321-327.
    [23]Friedman SL, Rockey DC, McGuire RF, et al. Isolated hepatic lipocytes and Kupffer cells from normal human liver:morphological and functional characteristics in primary culture. Hepatology 1992; 15(2):234-43.
    [24]Watanabe T, Shibata N, Westerman KA, et al. Establishment of immortalized human hepatic stellate scavenger cells to develop bioartificial livers. Transplantation 2003,75:1873-80.
    [25]Rao HY, Wei L, Wang JH, et al. Inhibitory effect of human interferon-beta-la on activated rat and human hepatic stellate cells. J Gastroenterol Hepatol 2010, 25:1777-84.
    [26]Gu J, Shi X, Zhang Y, et al. Heterotypic interactions in the preservation of morphology and functionality of porcine hepatocytes by bone marrow mesenchymal stem cells in vitro. J Cell Physiol 2009,219:100-8.
    [27]Miura N, Kanayama Y, Nagai W, et al. Characterization of an immortalized hepatic stellate cell line established from metallothionein-null mice. J Toxicol Sci 2006,31:391-8.
    [28]Pan Q, Li DG, Lu HM, et al. A new immortalized rat cell line, hepatic stellate cell-PQ, exhibiting characteristics of hepatic stellate cell. Hepatobiliary Pancreat Dis Int 2005; 4(2):281-4.
    [29]Xu L, Hui AY, Albanis E, et al. Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut 2005,54:142-51.
    [30]Guoliang Lv, Anye Zhang, Lifu Zhao, et al. Effects of Plasma from acute on chronic liver failure patients on immortalized human hepatocytes (HepLL) in vitro. Hepato-Gastroenterology2011,58(109):1328-1333
    [31]Du WB, Pan XP, Yu XP, et al. Effects of plasma from patients with acute on chronic liver failure on function of cytochrome P450 in immortalized human hepatocytes. Hepatobiliary Pancreat Dis Int 2010; 9(6):611-4
    [32]Yu CB, Lv GL, Pan XP, et al. In vitro large-scale cultivation and evaluation of microencapsulated immortalized human hepatocytes (HepLL) in roller bottles. Int J Artif Organs 2009; 32:272-281.
    [33]Abu-Absi SF, Hansen LK, Hu WS. Three-dimensional co-culture of hepatocytes and stellate cells. Cytotechnology 2004; 45(3):125-140.
    [34]Totsugawa T, Yong C, Rivas-Carrillo JD, et al. Survival of liver failure pigs by transplantation of reversibly immortalized human hepatocytes with Tamoxifen-mediated self-recombination. J Hepatol 2007; 47(1):74-82.
    [35]Bergheim I, Wolfgarten E, Bollschweiler E, et al. Cytochrome P450 levels are altered in patients with esophageal squamous-cell carcinoma. World J Gastroenterol 2007; 13:997-1002.
    [36]Choi S, Sainz B, Jr., Corcoran P, et al. Characterization of increased drug metabolism activity in dimethyl sulfoxide (DMSO)-treated Huh7 hepatoma cells. Xenobiotica 2009; 39:205-217.
    [37]Pan X, Li J, Du W, et al. Establishment and characterization of immortalized human hepatocyte cell line for applications in bioartificial livers. Biotechnol Lett 2012; 34(12):2183-90.
    [38]Kobayashi N, Fujiwara T, Westerman KA, et al. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 2000; 287:1258-1262.
    [39]Fukaya K, Asahi S, Nagamori S, et al. Establishment of a human hepatocyte line (OUMS-29) having CYP 1A1 and 1A2 activities from fetal liver tissue by transfection of SV40 LT. In Vitro Cell Dev Biol Anim 2001,37:266-269.
    [40]Li J, Li LJ, Cao HC, et al. Establishment of highly differentiated immortalized human hepatocyte line with simian virus 40 large tumor antigen for liver based cell therapy. ASAIO J 2005,51(3):262-268.
    [41]Du WB, Li LJ, Huang JR, et al. Effects of artificial liver support system on patients with acute or chronic liver failure. Transplant Proc 2005; 37:4359-4364.
    [42]Laleman W, Wilmer A, Evenepoel P, et al. Effect of the molecular adsorbent recirculating system and Prometheus devices on systemic haemodynamics and vasoactive agents in patients with acute-on-chronic alcoholic liver failure. Crit Care 2006; 10:R108.
    [43]Hassanein TI, Tofteng F, Brown RS, et al. Randomized controlled study of extracorporeal albumin dialysis for hepatic encephalopathy in advanced cirrhosis. Hepatology 2007; 46:1853-1862.
    [44]Zhang W, Li W, Liu B, et al. Efficient generation of functional hepatocyte-like cells from human fetal hepatic progenitor cells in vitro. J Cell Physiol 2012; 227:2051-2058.
    [45]Snykers S, De Kock J, Rogiers V, et al. In vitro differentiation of embryonic and adult stem cells into hepatocytes:state of the art. Stem Cells 2009; 27:577-605.
    [46]Basma H, Soto-Gutierrez A, Yannam GR, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology 2009; 136:990-999.
    [47]Woo DH, Kim SK, Lim HJ, et al. Direct and indirect contribution of human embryonic stem cell-derived hepatocyte-like cells to liver repair in mice. Gastroenterology 2012; 142:602-611.
    [48]Si-Tayeb K, Noto FK, Nagaoka M, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 2010; 51:297-305.
    [49]Sugimoto S, Mitaka T, Ikeda S, et al. Morphological changes induced by extracellular matrix are correlated with maturation of rat small hepatocytes. J Cell Biochem 2002; 87(1):16-28.
    [50]Semino CE, Merok JR, Crane GG, et al. Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 2003; 71(4-5):262-70.
    [51]Abdallah BM and Kassem M. Human mesenchymal stem cells:from basic biology to clinical applications. Gene Ther 2008; 15:109-116.
    [52]Barry FP and Murphy JM. Mesenchymal stem cells:clinical applications and biological characterization. Int J Biochem Cell Biol 2004; 36:568-584.
    [53]Semino CE, Merok JR, Crane GG, et al. Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 2003; 71(4-5):262-70.
    [54]Cheng N, Wauthier E, Reid LM. Mature human hepatocytes from ex vivo differentiation of alginate-encapsulated hepatoblasts. Tissue Eng Part A 2008; 14(1):1-7.
    [55]Strick-Marchand H, Weiss MC. Inducible differentiation and morphogenesis of bipotential liver cell lines from wild-type mouse embryos. Hepatology 2002; 36(4 Pt 1):794-804.
    [56]Tirnitz-Parker JE, Tonkin JN, Knight B, et al. Isolation, culture and immortalisation of hepatic oval cells from adult mice fed a choline-deficient, ethionine-supplemented diet. Int J Biochem Cell Biol 2007; 39(12):2226-39.
    [57]Machimoto T, Yasuchika K, Komori J, et al. Improvement of the survival rate by fetal liver cell transplantation in a mice lethal liver failure model. Transplantation 2007,84(10):1233-1239.
    [58]Underhill GH, Chen AA, Albrecht DR, et al. Assessment of hepatocellular function within PEG hydrogels. Biomaterials 2007,28(2):256-270.
    [59]Wang Y, Cui CB, Yamauchi M, et al. Lineage Restriction of Human Hepatic Stem Cells to Mature Fates Is Made Efficient by Tissue-Specific Biomatrix Scaffolds. Hepatology 2011,53(1):293-305.
    [60]Oh SH, Miyazaki M, Kouchi H, et al. Hepatocyte growth factor induces differentiation of adult rat bone marrow cells into a hepatocyte lineage in vitro. Biochem. Biophys. Res. Commun 2000,279,500-504.
    [61]Jung J, Zheng M, Goldfarb M, et al. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 1999; 284(5422):1998-2003.
    [62]Serra R, Isom HC. Stimulation of DNA synthesis and protooncogene expression in primary rat hepatocytes in long-term DMSO culture. J Cell Physiol 1993; 154(3):543-53.
    [63]Maruyama M, Kobayashi N, Westerman KA, et al. Establishment of a highly differentiated immortalized human cholangiocyte cell line with SV40T and hTERT. Transplantation 2004; 77(3):446-51.
    [64]Matsumura T, Takesue M, Westerman KA, et al. Establishment of an immortalized human-liver endothelial cell line with SV40T and hTERT. Transplantation 2004; 77(9):1357-65.
    1. Court FG, Wemyss-Holden SA, Dennison AR and Maddern GJ. Bioartificial liver support devices:historical perspectives. ANZ J Surg 2003;73:739-748. PMD:12956791
    2. Mas A and Rodes J. Fulminant hepatic failure. Lancet 1997;349:1081-1085. PMID: 9107258
    3. Michalopoulos GK and DeFrances MC. Liver regeneration. Science 1997; 276: 60-66. PMD:9082986
    4. Columbano A and Shinozuka H. Liver regeneration versus direct hyperplasia. Faseb J 1996;10:1118-1128. PMID:8751714
    5. Steer CJ. Liver regeneration. Faseb J 1995;9:1396-1400. PMID:7589980
    6. Du WB, Li LJ, Huang JR, Yang Q, Liu XL, Li J, et al. Effects of artificial liver support system on patients with acute or chronic liver failure. Transplant Proc 2005;37:4359-4364. PMID:16387120
    7. Laleman W, Wilmer A, Evenepoel P, Elst IV, Zeegers M, Zaman Z, et al. Effect of the molecular adsorbent recirculating system and Prometheus devices on systemic haemodynamics and vasoactive agents in patients with acute-on-chronic alcoholic liver failure. Crit Care 2006;10:R108. PMID:16859530
    8. Hassanein TI, Tofteng F, Brown RS, Jr., McGuire B, Lynch P, Mehta R, et al. Randomized controlled study of extracorporeal albumin dialysis for hepatic encephalopathy in advanced cirrhosis. Hepatology 2007;46:1853-1862. PMID: 17975845
    9. Carpentier B, Gautier A and Legallais C. Artificial and bioartificial liver devices: present and future. Gut 2009;58:1690-1702. PMID:19923348
    10. Allen JW, Hassanein T and Bhatia SN. Advances in bioartificial liver devices. Hepatology 2001;34:447-455. PMID:11526528
    11. Kumar A, Tripathi A and Jain S. Extracorporeal bioartificial liver for treating acute liver diseases. J Extra Corpor Technol 2011;43:195-206.
    12. Fisher RA and Strom SC. Human hepatocyte transplantation:worldwide results. Transplantation 2006;82:441-449. PMD:16926585
    13. Pietrosi G, Vizzini GB, Gruttadauria S and Gridelli B. Clinical applications of hepatocyte transplantation. World J Gastroenterol 2009; 15:2074-2077. PMID: 19418578
    14. Bilir BM, Guinette D, Karrer F, Kumpe DA, Krysl J, Stephens J, et al. Hepatocyte transplantation in acute liver failure. Liver Transpl 2000;6:32-40. PMID: 10648575
    15. Sgroi A, Serre-Beinier V, Morel P and Buhler L. What clinical alternatives to whole liver transplantation? Current status of artificial devices and hepatocyte transplantation. Transplantation 2009;87:457-466. PMID:19307780
    16. Mitzner SR, Stange J, Klammt S, Risler T, Erley CM, Bader BD, et al. Improvement of hepatorenal syndrome with extracorporeal albumin dialysis MARS:results of a prospective, randomized, controlled clinical trial. Liver Transpl 2000;6:277-286. PMID:10827226
    17. Stadlbauer V, Krisper P, Aigner R, Haditsch B, Jung A, Lackner C, et al. Effect of extracorporeal liver support by MARS and Prometheus on serum cytokines in acute-on-chronic liver failure. Crit Care 2006;10:R169. PMID:17156425
    18. Abe T, Kobata H, Hanba Y, Kitabata Y, Narukawa N, Hasegawa H, et al. Study of plasma exchange for liver failure:beneficial and harmful effects. Ther Apher Dial 2004;8:180-184. PMID:15154867
    19. Yoshiba M, Sekiyama K, Iwamura Y and Sugata F. Development of reliable artificial liver support (ALS)--plasma exchange in combination with hemodiafiltration using high-performance membranes. Dig Dis Sci 1993; 38: 469-476. PMID:8444078
    20. Inoue K, Kourin A, Watanabe T, Yamada M, Yasuda H and Yoshiba M. Plasma exchange in combination with online-hemodiafiltration as a promising method for purifying the blood of fulminant hepatitis patients. Hepatol Res 2008;38:S46-S51. PMID:19125952
    21. Ellis AJ, Hughes RD, Wendon JA, Dunne J, Langley PG, Kelly JH, et al. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology 1996;24:1446-1451. PMID:8938179
    22. Mazariegos GV, Kramer DJ, Lopez RC, Shakil AO, Rosenbloom AJ, DeVera M, et al. Safety observations in phase I clinical evaluation of the Excorp Medical Bioartificial Liver Support System after the first four patients. Asaio J 2001; 47: 471-475. PMID:11575820
    23. van de Kerkhove MP, Di Florio E, Scuderi V, Mancini A, Belli A, Bracco A, et al. Phase I clinical trial with the AMC-bioartificial liver. Int J Artif Organs 2002; 25: 950-959. PMID:12456036
    24. Sauer IM, Kardassis D, Zeillinger K, Pascher A, Gruenwald A, Pless G, et al. Clinical extracorporeal hybrid liver support--phase I study with primary porcine liver cells. Xenotransplantation 2003; 10:460-469. PMID:12950989
    25. Morsiani E, Pazzi P, Puviani AC, Brogli M, Valieri L, Gorini P, et al. Early experiences with a porcine hepatocyte-based bioartificial liver in acute hepatic failure patients. Int J Artif Organs 2002;25:192-202. PMID:11999191
    26. Sauer IM, Zeilinger K, Obermayer N, Pless G, Grunwald A, Pascher A, et al. Primary human liver cells as source for modular extracorporeal liver support--a preliminary report. Int J Artif Organs 2002;25:1001-1005. PMID:12456042
    27. Demetriou AA, Brown RS, Jr., Busuttil RW, Fair J, McGuire BM, Rosenthal P, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg 2004;239:660-667; discussion 667-670. PMID:15082970
    28. Qian Y, Lanjuan L, Jianrong H, Jun L, Hongcui C, Suzhen F, et al. Study of severe hepatitis treated with a hybrid artificial liver support system. Int J Artif Organs 2003;26:507-513. PMID:12866656
    29. Snykers S, De Kock J, Rogiers V and Vanhaecke T. In vitro differentiation of embryonic and adult stem cells into hepatocytes:state of the art. Stem Cells 2009;27:577-605. PMID:19056906
    30. Shiota G and Yasui T. Progress in stem cell biology in regenerative medicine for liver disease. Hepatol Res 2012;42:15-21. PMID:21951276
    31. Basma H, Soto-Gutierrez A, Yannam GR, Liu L, Ito R, Yamamoto T, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology 2009;136:990-999. PMID:19026649
    32. Wu DC, Boyd AS and Wood KJ. Embryonic stem cell transplantation:potential applicability in cell replacement therapy and regenerative medicine. Front Biosci 2007; 12:4525-4535. PMID:17485394
    33. Woo DH, Kim SK, Lim HJ, Heo J, Park HS, Kang GY, et al. Direct and indirect contribution of human embryonic stem cell-derived hepatocyte-like cells to liver repair in mice. Gastroenterology 2012;142:602-611. PMID:22138358
    34. Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 2010;51:297-305. PMID:19998274
    35. Song Z, Cai J, Liu Y, Zhao D, Yong J, Duo S, et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res 2009; 19:1233-1242. PMID:19736565
    36. Zhang W, Li W, Liu B, Wang P, Li W and Zhang H. Efficient generation of functional hepatocyte-like cells from human fetal hepatic progenitor cells in vitro. J Cell Physiol 2012;227:2051-2058. PMID:21751216
    37. Aurich H, Sgodda M, Kaltwasser P, Vetter M, Weise A, Liehr T, et al. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 2009;58:570-581. PMID:19022918
    38. Dalgetty DM, Medine CN, Iredale JP and Hay DC. Progress and future challenges in stem cell-derived liver technologies. Am J Physiol Gastrointest Liver Physiol 2009; 297:G241-248. PMID:19520740
    39. Abdallah BM and Kassem M. Human mesenchymal stem cells:from basic biology to clinical applications. Gene Ther 2008;15:109-116. PMID:17989700
    40. Barry FP and Murphy JM. Mesenchymal stem cells:clinical applications and biological characterization. Int J Biochem Cell Biol 2004;36:568-584. PMID: 15010324
    41. Yu CB, Pan XP and Li LJ. Progress in bioreactors of bioartificial livers. Hepatobiliary Pancreat Dis Int 2009;8:134-140. PMID:19357025
    42. Liu J, Pan J, Naik S, Santangini H, Trenkler D, Thompson N, et al. Characterization and evaluation of detoxification functions of a nontumorigenic immortalized porcine hepatocyte cell line (HepLiu). Cell Transplant 1999;8:219-232. PMID: 10442735
    43. Meng FY, Chen ZS, Han M, Hu XP, He XX, Liu Y, et al. Porcine hepatocyte isolation and reversible immortalization mediated by retroviral transfer and site-specific recombination. World J Gastroenterol 2010; 16:1660-1664. PMID: 20355246
    44. Pan X, Du W, Yu X, Sheng G, Cao H, Yu C, et al. Establishment and characterization of immortalized porcine hepatocytes for the study of hepatocyte xenotransplantation. Transplant Proc 2010;42:1899-1906. PMID:20620546
    45. Specke V, Rubant S and Denner J. Productive infection of human primary cells and cell lines with porcine endogenous retroviruses. Virology 2001;285:177-180. PMID:11437652
    46. Martin U, Winkler ME, Id M, Radeke H, Arseniev L, Takeuchi Y, et al. Productive infection of primary human endothelial cells by pig endogenous retrovirus (PERV). Xenotransplantation 2000;7:138-142. PMID:10961298
    47. Martin U, Kiessig V, Blusch JH, Haverich A, von der Helm K, Herden T, et al. Expression of pig endogenous retrovirus by primary porcine endothelial cells and infection of human cells. Lancet 1998;352:692-694. PMID:9728985
    48. Irgang M, Sauer IM, Karlas A, Zeilinger K, Gerlach JC, Kurth R, et al. Porcine endogenous retroviruses:no infection in patients treated with a bioreactor based on porcine liver cells. J Clin Virol 2003;28:141-154. PMID:12957184
    49. Di Nicuolo G, van de Kerkhove MP, Hoekstra R, Beld MG, Amoroso P, Battisti S, et al. No evidence of in vitro and in vivo porcine endogenous retrovirus infection after plasmapheresis through the AMC-bioartificial liver. Xenotransplantation 2005;12:286-292. PMID:15943777
    50. van de Kerkhove MP, Di Florio E, Scuderi V, Mancini A, Belli A, Bracco A, et al. Bridging a patient with acute liver failure to liver transplantation by the AMC-bioartificial liver. Cell Transplant 2003; 12:563-568. PMID:14579924
    51. Di Nicuolo G, D'Alessandro A, Andria B, Scuderi V, Scognamiglio M, Tammaro A, et al. Long-term absence of porcine endogenous retrovirus infection in chronically immunosuppressed patients after treatment with the porcine cell-based Academic Medical Center bioartificial liver. Xenotransplantation 2010;17:431-439. PMID: 21158944
    52. Fruhauf JH, Mertsching H, Giri S, Fruhauf NR and Bader A. Porcine endogenous retrovirus released by a bioartificial liver infects primary human cells. Liver Int 2009;29:1553-1561.PMID:19686312
    53. Yang Q, Liu F, Pan XP, Lv G, Zhang A, Yu CB, et al. Fluidized-bed bioartificial liver assist devices (BLADs) based on microencapsulated primary porcine hepatocytes have risk of porcine endogenous retroviruses transmission. Hepatol Int 2010;4:757-761. PMID:21286347
    54. Chamuleau RA, Poyck PP and van de Kerkhove MP. Bioartificial liver:its pros and cons. Ther Apher Dial 2006;10:168-174. PMID:16684219
    55. Baccarani U, Sanna A, Cariani A, Sainz-Barriga M, Adani GL, Zambito AM, et al. Isolation of human hepatocytes from livers rejected for liver transplantation on a national basis:results of a 2-year experience. Liver Transpl 2003;9:506-512. PMID:12740795
    56. Terry C, Mitry RR, Lehec SC, Muiesan P, Rela M, Heaton ND, et al. The effects of cryopreservation on human hepatocytes obtained from different sources of liver tissue. Cell Transplant 2005;14:585-594. PMID:16355567
    57. Hughes RD, Mitry RR, Dhawan A, Lehec SC, Girlanda R, Rela M, et al. Isolation of hepatocytes from livers from non-heart-beating donors for cell transplantation. Liver Transpl 2006;12:713-717. PMID:16528714
    58. Hang H, Shi X, Gu G, Wu Y and Ding Y. A simple isolation and cryopreservation method for adult human hepatocytes. Int J Artif Organs 2009;32:720-727. PMID: 19943233
    59. Alexandrova K, Griesel C, Barthold M, Heuft HG, Ott M, Winkler M, et al. Large-scale isolation of human hepatocytes for therapeutic application. Cell Transplant 2005;14:845-853. PMID:16454359
    60. Page JL, Johnson MC, Olsavsky KM, Strom SC, Zarbl H and Omiecinski CJ. Gene expression profiling of extracellular matrix as an effector of human hepatocyte phenotype in primary cell culture. Toxicol Sci 2007;97:384-397. PMID:17329237
    61. Lang R, Stern MM, Smith L, Liu Y, Bharadwaj S, Liu G, et al. Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials 2011;32:7042-7052. PMID:21723601
    62. Torok E, Lutgehetmann M, Bierwolf J, Melbeck S, Dullmann J, Nashan B, et al. Primary human hepatocytes on biodegradable poly(1-lactic acid) matrices:a promising model for improving transplantation efficiency with tissue engineering. Liver Transpl 2011;17:104-114. PMID:21280182
    63. Goral VN, Hsieh YC, Petzold ON, Clark JS, Yuen PK and Faris RA. Perfusion-based microfluidic device for three-dimensional dynamic primary human hepatocyte cell culture in the absence of biological or synthetic matrices or coagulants. Lab Chip 2010;10:3380-3386. PMID:21060907
    64. Nishimura M, Hagi M, Ejiri Y, Kishimoto S, Horie T, Narimatsu S, et al. Secretion of albumin and induction of CYP1A2 and CYP3A4 in novel three-dimensional culture system for human hepatocytes using micro-space plate. Drug Metab Pharmacokinet2010;25:236-242. PMID:20610882
    65. Bhatia SN, Balis UJ, Yarmush ML and Toner M. Effect of cell-cell interactions in preservation of cellular phenotype:cocultivation of hepatocytes and nonparenchymal cells. Faseb J 1999;13:1883-1900. PMID:10544172
    66. Salerno S, Campana C, Morelli S, Drioli E and De Bartolo L. Human hepatocytes and endothelial cells in organotypic membrane systems. Biomaterials 2011; 32:8848-8859. PMID:21871658
    67. Soto-Gutierrez A, Navarro-Alvarez N, Yagi H, Nahmias Y, Yarmush ML and Kobayashi N. Engineering of an hepatic organoid to develop liver assist devices. Cell Transplant 2010;19:815-822. PMID:20573303
    68. Okamoto M, Ishida Y, Keogh A and Strain A. Evaluation of the function of primary human hepatocytes co-cultured with the human hepatic stellate cell (HSC) line LI90. Int J Artif Organs 1998;21:353-359. PMID:9714031
    69. Auth MK, Woitaschek D, Beste M, Schreiter T, Kim HS, Oppermann E, et al. Preservation of the synthetic and metabolic capacity of isolated human hepatocytes by coculture with human biliary epithelial cells. Liver Transpl 2005;11:410-419. PMID:15776438
    70. Gomez-Aristizabal A, Keating A and Davies JE. Mesenchymal stromal cells as supportive cells for hepatocytes. Mol Ther 2009;17:1504-1508. PMID:19584815
    71. Salerno S, Piscioneri A, Laera S, Morelli S, Favia P, Bader A, et al. Improved functions of human hepatocytes on NH3 plasma-grafted PEEK-WC-PU membranes. Biomaterials 2009;30:4348-4356. PMID:19500831
    72. De Bartolo L, Morelli S, Gallo MC, Campana C, Statti G, Rende M, et al. Effect of isoliquiritigenin on viability and differentiated functions of human hepatocytes maintained on PEEK-WC-polyurethane membranes. Biomaterials 2005; 26: 6625-6634. PMID:15927248
    73. Millis JM, Cronin DC, Johnson R, Conjeevaram H, Conlin C, Trevino S, et al. Initial experience with the modified extracorporeal liver-assist device for patients with fulminant hepatic failure:system modifications and clinical impact. Transplantation 2002;74:1735-1746. PMID:12499890
    74. Ito A, Jitsunobu H, Kawabe Y and Kamihira M. Construction of heterotypic cell sheets by magnetic force-based 3-D coculture of HepG2 and NIH3T3 cells. J Biosci Bioeng 2007;104:371-378. PMID:18086436
    75. Ohno M, Motojima K, Okano T and Taniguchi A. Up-regulation of drug-metabolizing enzyme genes in layered co-culture of a human liver cell line and endothelial cells. Tissue Eng Part A2008;14:1861-1869. PMID:18847370
    76. Ohno M, Motojima K, Okano T and Taniguchi A. Maturation of the extracellular matrix and cell adhesion molecules in layered co-cultures of HepG2 and endothelial cells. J Biochem 2009; 145:591-597. PMID:19174545
    77. Ohno M, Motojima K, Okano T and Taniguchi A. Induction of drug-metabolizing enzymes by phenobarbital in layered co-culture of a human liver cell line and endothelial cells. Biol Pharm Bull 2009;32:813-817. PMID:19420747
    78. Kinasiewicz A, Gautier A, Lewiska D, Smietanka A, Legallais C and Werynski A. Three-dimensional growth of human hepatoma C3A cells within alginate beads for fluidized bioartificial liver. Int J Artif Organs 2008;31:340-347. PMID:18432591
    79. Gautier A, Carpentier B, Dufresne M, Vu Dinh Q, Paullier P and Legallais C. Impact of alginate type and bead diameter on mass transfers and the metabolic activities of encapsulated C3A cells in bioartificial liver applications. Eur Cell Mater 2011;21:94-106. PMID:21267945
    80. Laurent T, Murase D, Tsukioka S, Matsuura T, Nagamori S and Oda H. A novel human hepatoma cell line, FLC-4, exhibits highly enhanced liver differentiation functions through the three-dimensional cell shape. J Cell Physiol 2012; 227: 2898-2906. PMID:21960466
    81. Gotoh Y, Ishizuka Y, Matsuura T and Niimi S. Spheroid formation and expression of liver-specific functions of human hepatocellular carcinoma-derived FLC-4 cells cultured in lactose-silk fibroin conjugate sponges. Biomacromolecules 2011;12:1532-1539. PMID:21449575
    82. Enosawa S, Miyashita T, Suzuki S, Li XK, Tsunoda M, Amemiya H, et al. Long-term culture of glutamine synthetase-transfected HepG2 cells in circulatory flow bioreactor for development of a bioartificial liver. Cell Transplant 2000; 9: 711-715. PMID:11144971
    83. Tang NH, Wang XQ, Li XJ and Chen YL. Ammonia metabolism capacity of HepG2 cells with high expression of human glutamine synthetase. Hepatobiliary Pancreat Dis Int 2008;7:621-627. PMID:19073408
    84. Omasa T, Kim K, Hiramatsu S, Katakura Y, Kishimoto M, Enosawa S, et al. Construction and evaluation of drug-metabolizing cell line for bioartificial liver support system. Biotechnol Prog 2005;21:161-167. PMID:15903254
    85. Wang N, Tsuruoka S, Yamamoto H, Enosawa S, Omasa T, Sata N, et al. The bioreactor with CYP3A4-and glutamine synthetase-introduced HepG2 cells: treatment of hepatic failure dog with diazepam overdosage. Artif Organs 2005; 29: 681-684. PMID:16048486
    86. Terada S, Kumagai T, Yamamoto N, Ogawa A, Ishimura J, Fujita T, et al. Generation of a novel apoptosis-resistant hepatoma cell line. J Biosci Bioeng 2003; 95:146-151. PMID:16233383
    87. Tang N, Wang Y, Wang X, Zhou L, Zhang F, Li X, et al. Stable overexpression of arginase I and ornithine transcarbamylase in HepG2 cells improves its ammonia detoxification. J Cell Biochem 2012;113:518-527. PMID:21938740
    88. Nibourg GA, Huisman MT, van der Hoeven TV, van Gulik TM, Chamuleau RA and Hoekstra R. Stable overexpression of pregnane X receptor in HepG2 cells increases its potential for bioartificial liver application. Liver Transpl 2010; 16:1075-1085. PMID:20818746
    89. Naiki T, Nagaki M, Shidoji Y, Kojima H and Moriwaki H. Functional activity of human hepatoma cells transfected with adenovirus-mediated hepatocyte nuclear factor (HNF)-4 gene. Cell Transplant 2004;13:393-403. PMID:15468681
    90. Harimoto N, Taketomi A, Kitagawa D, Kuroda Y, Itoh S, Gion T, et al. The newly established human hepatocyte cell line:application for the bioartificial liver. J Hepatol 2005;42:557-564. PMID:15763342
    91. Kobayashi N, Miyazaki M, Fukaya K, Inoue Y, Sakaguchi M, Noguchi H, et al. Treatment of surgically induced acute liver failure with transplantation of highly differentiated immortalized human hepatocytes. Cell Transplant 2000;9:733-735. PMID:11144975
    92. Tsuruga Y, Kiyono T, Matsushita M, Takahashi T, Kasai H, Matsumoto S, et al. Establishment of immortalized human hepatocytes by introduction of HPV16 E6/E7 and hTERT as cell sources for liver cell-based therapy. Cell Transplant 2008; 17:1083-1094. PMID:19177844
    93. Li J, Li LJ, Cao HC, Sheng GP, Yu HY, Xu W, et al. Establishment of highly differentiated immortalized human hepatocyte line with simian virus 40 large tumor antigen for liver based cell therapy. Asaio J 2005;51:262-268. PMID: 15968957
    94. Chen Y, Li J, Liu X, Zhao W, Wang Y and Wang X. Transplantation of immortalized human fetal hepatocytes prevents acute liver failure in 90% hepatectomized mice. Transplant Proc 2010;42:1907-1914. PMID:20620547
    95. Deurholt T, van Til NP, Chhatta AA, ten Bloemendaal L, Schwartlander R, Payne C, et al. Novel immortalized human fetal liver cell line, cBALl 11, has the potential to differentiate into functional hepatocytes. BMC Biotechnol 2009;9:89. PMID: 19845959
    96. Smalley M, Leiper K, Tootle R, McCloskey P, O'Hare MJ and Hodgson H. Immortalization of human hepatocytes by temperature-sensitive SV40 large-T antigen. In Vitro Cell Dev Biol Anim 2001;37:166-168. PMID:11370807
    97. Kobayashi N, Miyazaki M, Westerman KA, Noguchi H, Sakaguchi M, Totsugawa T, et al. Construction of a differentiated human hepatocyte cell line expressing the herpes simplex virus-thymidine kinase gene. Asaio J 2001;47:476-480. PMID: 11575821
    98. Totsugawa T, Yong C, Rivas-Carrillo JD, Soto-Gutierrez A, Navarro-Alvarez N, Noguchi H, et al. Survival of liver failure pigs by transplantation of reversibly immortalized human hepatocytes with Tamoxifen-mediated self-recombination. J Hepatol 2007;47:74-82. PMID:17434229
    99. Nguyen TH, Mai G, Villiger P, Oberholzer J, Salmon P, Morel P, et al. Treatment of acetaminophen-induced acute liver failure in the mouse with conditionally immortalized human hepatocytes. J Hepatol 2005;43:1031-1037. PMID:16169114
    100. Kobayashi N, Fujiwara T, Westerman KA, Inoue Y, Sakaguchi M, Noguchi H, et al. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 2000;287:1258-1262. PMID:10678831
    101. Zhao L, Li J, Lv G, Zhang A, Zhou P, Yang Y, et al. Evaluation of a reversibly immortalized human hepatocyte line in bioartificial liver in pigs. African Journal of Biotechnology 2012;11:4116-4126.
    102. Yu CB, Lv GL, Pan XP, Chen YS, Cao HC, Zhang YM, et al. In vitro large-scale cultivation and evaluation of microencapsulated immortalized human hepatocytes (HepLL) in roller bottles. Int J Artif Organs 2009;32:272-281. PMID:19569036
    103. Watanabe T, Shibata N, Westerman KA, Okitsu T, Allain JE, Sakaguchi M, et al. Establishment of immortalized human hepatic stellate scavenger cells to develop bioartificial livers. Transplantation 2003;75:1873-1880. PMID:12811248
    104. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145-1147.PMID:9804556
    105. Reubinoff BE, Pera MF, Fong CY, Trounson A and Bongso A. Embryonic stem cell lines from human blastocysts:somatic differentiation in vitro. Nat Biotechnol 2000;18:399-404. PMID:10748519
    106. Behbahan IS, Duan Y, Lam A, Khoobyari S, Ma X, Ahuja TP, et al. New approaches in the differentiation of human embryonic stem cells and induced pluripotent stem cells toward hepatocytes. Stem Cell Rev 2011;7:748-759. PMID: 21336836
    107. Rambhatla L, Chiu CP, Kundu P, Peng Y and Carpenter MK. Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant 2003;12:1-11. PMID:12693659
    108. Takayama K, Inamura M, Kawabata K, Katayama K, Higuchi M, Tashiro K, et al. Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4alpha transduction. Mol Ther 2012;20:127-137.PMID:22068426
    109. Duan Y, Ma X, Zou W, Wang C, Bahbahan IS, Ahuja TP, et al. Differentiation and characterization of metabolically functioning hepatocytes from human embryonic stem cells. Stem Cells 2010;28:674-686. PMID:20135682
    110. Hay DC, Zhao D, Fletcher J, Hewitt ZA, McLean D, Urruticoechea-Uriguen A, et al. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells 2008;26:894-902. PMID:18238852
    111. Touboul T, Hannan NR, Corbineau S, Martinez A, Martinet C, Branchereau S, et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 2010;51:1754-1765. PMID:20301097
    112. Nagamoto Y, Tashiro K, Takayama K, Ohashi K, Kawabata K, Sakurai F, et al. The promotion of hepatic maturation of human pluripotent stem cells in 3D co-culture using type I collagen and Swiss 3T3 cell sheets. Biomaterials 2012. PMID:22445253
    113. Baharvand H, Hashemi SM, Kazemi Ashtiani S and Farrokhi A. Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int J Dev Biol 2006;50:645-652. PMID:16892178
    114. Sharma R, Greenhough S, Medine CN and Hay DC. Three-dimensional culture of human embryonic stem cell derived hepatic endoderm and its role in bioartificial liver construction. J Biomed Biotechnol 2010;2010:236147. PMID:20169088
    115. Miki T, Ring A and Gerlach J. Hepatic differentiation of human embryonic stem cells is promoted by three-dimensional dynamic perfusion culture conditions. Tissue Eng Part C Methods 2011; 17:557-568. PMID:21210720
    116. Farzaneh Z, Pournasr B, Ebrahimi M, Aghdami N and Baharvand H. Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Rev 2010;6:601-610. PMID: 20694582
    117. Schmelzer E, Wauthier E and Reid LM. The phenotypes of pluripotent human hepatic progenitors. Stem Cells 2006;24:1852-1858. PMID:16627685
    118. Fausto N. Liver regeneration and repair:hepatocytes, progenitor cells, and stem cells. Hepatology 2004;39:1477-1487. PMID:15185286
    119. Alison MR, Vig P, Russo F, Bigger BW, Amofah E, Themis M, et al. Hepatic stem cells:from inside and outside the liver? Cell Prolif 2004;37:1-21. PMID: 14871234
    120. Malhi H, Irani AN, Gagandeep S and Gupta S. Isolation of human progenitor liver epithelial cells with extensive replication capacity and differentiation into mature hepatocytes. J Cell Sci 2002;115:2679-2688. PMID:12077359
    121. Wang P, Zhang H, Li W, Zhao Y and An W. Promoter-defined isolation and identification of hepatic progenitor cells from the human fetal liver. Histochem Cell Biol 2008;130:375-385. PMID:18478249
    :22. Duret C, Gerbal-Chaloin S, Ramos J, Fabre JM, Jacquet E, Navarro F, et al. Isolation, characterization, and differentiation to hepatocyte-like cells of nonparenchymal epithelial cells from adult human liver. Stem Cells 2007; 25: 1779-1790.
    123. Herrera MB, Bruno S, Buttiglieri S, Tetta C, Gatti S, Deregibus MC, et al. Isolation and characterization of a stem cell population from adult human liver. Stem Cells 2006; 24:2840-2850. PMID:17412893
    124. Stachelscheid H, Urbaniak T, Ring A, Spengler B, Gerlach JC and Zeilinger K. Isolation and characterization of adult human liver progenitors from ischemic liver tissue derived from therapeutic hepatectomies. Tissue Eng Part A 2009; 15: 1633-1643. PMID:19108677
    125. Fonsato V, Herrera MB, Buttiglieri S, Gatti S, Camussi G and Tetta C. Use of a rotary bioartificial liver in the differentiation of human liver stem cells. Tissue Eng Part C Methods 2010;16:123-132. PMID:19397473
    126. Parent R, Marion MJ, Furio L, Trepo C and Petit MA. Origin and characterization of a human bipotent liver progenitor cell line. Gastroenterology 2004; 126: 1147-1156. PMID:15057753
    127. Hoekstra R, Nibourg GA, van der Hoeven TV, Ackermans MT, Hakvoort TB, van Gulik TM, et al. The HepaRG cell line is suitable for bioartificial liver application. Int J Biochem Cell Biol 2011;43:1483-1489. PMID:21726661
    128. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-872. PMID:18035408
    129. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008;451:141-146. PMID:18157115
    130. Zaehres H and Scholer HR. Induction of pluripotency:from mouse to human. Cell 2007; 131:834-835. PMID:18045526
    131. Asgari S, Pournasr B, Salekdeh GH, Ghodsizadeh A, Ott M and Baharvand H. Induced pluripotent stem cells:a new era for hepatology. J Hepatol 2010; 53: 738-751. PMID:20621379
    132. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917-1920. PMID:18029452
    133. Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichisaka T, et al. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glisl. Nature 2011;474:225-229. PMID:21654807
    134. Inamura M, Kawabata K, Takayama K, Tashiro K, Sakurai F, Katayama K, et al. Efficient generation of hepatoblasts from human ES cells and iPS cells by transient overexpression of homeobox gene HEX. Mol Ther 2011;19:400-407. PMID:21102561
    135. Sullivan GJ, Hay DC, Park IH, Fletcher J, Hannoun Z, Payne CM, et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology 2010;51:329-335. PMID:19877180
    136. Chen YF, Tseng CY, Wang HW, Kuo HC, Yang VW and Lee OK. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology 2012;55:1193-1203. PMID: 22095466
    137. Takayama K, Inamura M, Kawabata K, Tashiro K, Katayama K, Sakurai F, et al. Efficient and directive generation of two distinct endoderm lineages from human ESCs and iPSCs by differentiation stage-specific SOX17 transduction. PLoS One 2011;6:e21780. PMID:21760905
    138. Asgari S, Moslem M, Bagheri-Lankarani K, Pournasr B, Miryounesi M and Baharvand H. Differentiation and Transplantation of Human Induced Pluripotent Stem Cell-derived Hepatocyte-like Cells. Stem Cell Rev 2011. PMID:22076752
    139. Kern S, Eichler H, Stoeve J, Kluter H and Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24:1294-1301. PMID:16410387
    140. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005;33:1402-1416. PMID: 16263424
    141. Ong SY, Dai H and Leong KW. Hepatic differentiation potential of commercially available human mesenchymal stem cells. Tissue Eng 2006; 12:3477-3485. PMID: 17518684
    142. Ayatollahi M, Soleimani M, Tabei SZ and Kabir Salmani M. Hepatogenic differentiation of mesenchymal stem cells induced by insulin like growth factor-I. World J Stem Cells 2011;3:113-121. PMID:22224170
    143. Pournasr B, Mohamadnejad M, Bagheri M, Aghdami N, Shahsavani M, Malekzadeh R, et al. In vitro differentiation of human bone marrow mesenchymal stem cells into hepatocyte-like cells. Arch Iran Med 2011;14:244-249. PMID: 21726099
    144. Lin N, Lin J, Bo L, Weidong P, Chen S and Xu R. Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells in an alginate scaffold. Cell Prolif 2010;43:427-434. PMID:20887549
    145. Ishii K, Yoshida Y, Akechi Y, Sakabe T, Nishio R, Ikeda R, et al. Hepatic differentiation of human bone marrow-derived mesenchymal stem cells by tetracycline-regulated hepatocyte nuclear factor 3beta. Hepatology 2008;48:597-606. PMID:18666263
    146. Kazemnejad S, Allameh A, Seoleimani M, Gharehbaghian A, Mohammadi Y, Amirizadeh N, et al. Functional hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel 3-dimensional biocompatible nanofibrous scaffold. Int J Artif Organs 2008;31:500-507. PMID:18432591
    147. Ghaedi M, Soleimani M, Shabani I, Duan Y and Lotfi AS. Hepatic differentiation from human mesenchymal stem cells on a novel nanofiber scaffold. Cell Mol Biol Lett 2012;17:89-106. PMID:22207333
    148. Kazemnejad S, Allameh A, Soleimani M, Gharehbaghian A, Mohammadi Y, Amirizadeh N, et al. Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. J Gastroenterol Hepatol 2009;24:278-287. PMID:18752558
    149. Stock P, Bruckner S, Ebensing S, Hempel M, Dollinger MM and Christ B. The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver. Nat Protoc 2010;5:617-627. PMID:20224562
    150. Schaffler A and Buchler C. Concise review:adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells 2007;25:818-827.PMID:17420225
    151. Yarak S and Okamoto OK. Human adipose-derived stem cells:current challenges and clinical perspectives. An Bras Dermatol 2010;85:647-656. PMID:21152789
    152. Coradeghini R, Guida C, Scanarotti C, Sanguineti R, Bassi AM, Parodi A, et al. A comparative study of proliferation and hepatic differentiation of human adipose-derived stem cells. Cells Tissues Organs 2010; 191:466-477. PMID.-20051678
    153. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 2007;46:219-228. PMID:17596885
    154. Talens-Visconti R, Bonora A, Jover R, Mirabet V, Carbonell F, Castell JV, et al. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J Gastroenterol 2006;12:5834-5845. PMID:17007050
    155. Lue J, Lin G, Ning H, Xiong A, Lin CS and Glenn JS. Transdifferentiation of adipose-derived stem cells into hepatocytes:a new approach. Liver Int 2010;30:913-922. PMID:20353420
    156. Seo MJ, Suh SY, Bae YC and Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 2005;328:258-264. PMID:15670778
    157. Wang M, Pei H, Zhang L, Guan L, Zhang R, Jia Y, et al. Hepatogenesis of adipose-derived stem cells on poly-lactide-co-glycolide scaffolds:in vitro and in vivo studies. Tissue Eng Part C Methods 2010;16:1041-1050. PMID:20064016
    158. Matikainen T and Laine J. Placenta--an alternative source of stem cells. Toxicol Appl Pharmacol 2005;207:544-549. PMID:15990135
    159. Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring HJ, Evangelista M, et al. Concise review:isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 2008 26:300-311. PMID:17975221
    160. Terada S, Matsuura K, Enosawa S, Miki M, Hoshika A, Suzuki S, et al. Inducing proliferation of human amniotic epithelial (HAE) cells for cell therapy. Cell Transplant 2000;9:701-704. PMID:11144969
    161. Takashima S, Ise H, Zhao P, Akaike T and Nikaido T. Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct 2004;29:73-84. PMID:15528839
    162. Marongiu F, Gramignoli R, Dorko K, Miki T, Ranade AR, Paola Serra M, et al. Hepatic differentiation of amniotic epithelial cells. Hepatology 2011;53:1719-1729. PMID:21374689
    163. Kim J, Kang HM, Kim H, Kim MR, Kwon HC, Gye MC, et al. Ex vivo characteristics of human amniotic membrane-derived stem cells. Cloning Stem Cells 2007;9:581-594. PMID:18154518
    164. Tamagawa T, Oi S, Ishiwata I, Ishikawa H and Nakamura Y. Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum Cell 2007;20:77-84. PMID:17645727
    165. Miki T, Marongiu F, Ellis EC, Dorko K, Mitamura K, Ranade A, et al. Production of hepatocyte-like cells from human amnion. Methods Mol Biol 2009;481:155-168.PMID:19096803
    166. Chien CC, Yen BL, Lee FK, Lai TH, Chen YC, Chan SH, et al. In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells 2006;24:1759-1768. PMID:16822884
    167. Brooke G, Rossetti T, Pelekanos R, Ilic N, Murray P, Hancock S, et al. Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. Br J Haematol 2009;144:571-579. PMID:19077161
    168. Yu Y, Li K, Bao C, Liu T, Jin Y, Ren H, et al. Ex vitro expansion of human placenta-derived mesenchymal stem cells in stirred bioreactor. Appl Biochem Biotechnol 2009;159:110-118.PMID:19266320
    169. Zhang D, Jiang M and Miao D. Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS One 2011;6:e16789. PMID:21326862
    170. Manuelpillai U, Tchongue J, Lourensz D, Vaghjiani V, Samuel CS, Liu A, et al. Transplantation of human amnion epithelial cells reduces hepatic fibrosis in immunocompetent CCl-treated mice. Cell Transplant 2010;19:1157-1168. PMID: 20447339
    171. Cao H, Yang J, Yu J, Pan Q, Li J, Zhou P, et al. Therapeutic potential of transplanted placental mesenchymal stem cells in treating Chinese miniature pigs with acute liver failure. BMC Med 2012;10:56. PMID:22673529
    172. Mihu CM, Mihu D, Costin N, Rus Ciuca D, Susman S and Ciortea R. Isolation and characterization of stem cells from the placenta and the umbilical cord. Rom J Morphol Embryol 2008;49:441-446. PMID:19050791
    173. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL and Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004;103:1669-1675. PMID:14576065
    174. Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 2004;40:1275-1284. PMID:15562440
    175. Zhao Q, Ren H, Li X, Chen Z, Zhang X, Gong W, et al. Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells. Cytotherapy 2009;11:414-426. PMID:19513901
    176. Kang XQ, Zang WJ, Bao LJ, Li DL, Xu XL and Yu XJ. Differentiating characterization of human umbilical cord blood-derived mesenchymal stem cells in vitro. Cell Biol Int 2006;30:569-575. PMID:16716607
    177. Hong SH, Gang EJ, Jeong JA, Ahn C, Hwang SH, Yang IH, et al. In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem Biophys Res Commun 2005;330:1153-1161. PMID:15823564
    178. Yoshida Y, Shimomura T, Sakabe T, Ishii K, Gonda K, Matsuoka S, et al. A role of Wnt/beta-catenin signals in hepatic fate specification of human umbilical cord blood-derived mesenchymal stem cells. Am J Physiol Gastrointest Liver Physiol 2007;293:G1089-1098. PMID:17884977
    179. Kang XQ, Zang WJ, Bao LJ, Li DL, Song TS, Xu XL, et al. Fibroblast growth factor-4 and hepatocyte growth factor induce differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocytes. World J Gastroenterol 2005;11:7461-7465. PMID:16437717
    180. Yu J, Cao H, Yang J, Pan Q, Ma J, Li J, et al. In vivo hepatic differentiation of mesenchymal stem cells from human umbilical cord blood after transplantation into mice with liver injury. Biochem Biophys Res Commun 2012;422:539-545. PMID:22580002
    181. Yan Y, Xu W, Qian H, Si Y, Zhu W, Cao H, et al. Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo. Liver Int 2009;29:356-365. PMID:19141029
    182. Jung KH, Shin HP, Lee S, Lim YJ, Hwang SH, Han H, et al. Effect of human umbilical cord blood-derived mesenchymal stem cells in a cirrhotic rat model. Liver Int 2009;29:898-909. PMID:19422480
    183. Shi LL, Liu FP and Wang DW. Transplantation of human umbilical cord blood mesenchymal stem cells improves survival rates in a rat model of acute hepatic necrosis. Am J Med Sci 2011;342:212-217. PMID:21642820
    184. Zhang S, Chen L, Liu T, Zhang B, Xiang D, Wang Z, et al. Human umbilical cord matrix stem cells efficiently rescue acute liver failure through paracrine effects rather than hepatic differentiation. Tissue Eng Part A 2012;18:1352-1364. PMID: 22519429
    185. Schmelzer E, Mutig K, Schrade P, Bachmann S, Gerlach JC and Zeilinger K. Effect of human patient plasma ex vivo treatment on gene expression and progenitor cell activation of primary human liver cells in multi-compartment 3D perfusion bioreactors for extra-corporeal liver support. Biotechnol Bioeng 2009;103:817-827. PMID:19274748
    186. Mueller D, Tascher G, Muller-Vieira U, Knobeloch D, Nuessler AK, Zeilinger K, et al. In-depth physiological characterization of primary human hepatocytes in a 3D hollow-fiber bioreactor. J Tissue Eng Regen Med 2011;5:e207-218. PMID: 21442764
    187. De Bartolo L, Salerno S, Curcio E, Piscioneri A, Rende M, Morelli S, et al. Human hepatocyte functions in a crossed hollow fiber membrane bioreactor. Biomaterials 2009;30:2531-2543. PMID:19185912
    188. Gerlach JC, Zeilinger K, Grebe A, Puhl G, Pless G, Sauer I, et al. Recovery of preservation-injured primary human hepatocytes and nonparenchymal cells to tissuelike structures in large-scale bioreactors for liver support:an initial transmission electron microscopy study. J Invest Surg 2003;16:83-92. PMID: 12746191
    189. Gerlach JC, Mutig K, Sauer IM, Schrade P, Efimova E, Mieder T, et al. Use of primary human liver cells originating from discarded grafts in a bioreactor for liver support therapy and the prospects of culturing adult liver stem cells in bioreactors:a morphologic study. Transplantation 2003;76:781-786. PMID: 14501853
    190. Coward SM, Legallais C, David B, Thomas M, Foo Y, Mavri-Damelin D, et al. Alginate-encapsulated HepG2 cells in a fluidized bed bioreactor maintain function in human liver failure plasma. Artif Organs 2009;33:1117-1126. PMID:20078562
    191. David B, Dufresne M, Nagel MD and Legallais C. In vitro assessment of encapsulated C3A hepatocytes functions in a fluidized bed bioreactor. Biotechnol Prog 2004;20:1204-1212. PMID:15296449
    192. Rahman TM, Selden C, Khalil M, Diakanov I and Hodgson HJ. Alginate-encapsulated human hepatoblastoma cells in an extracorporeal perfusion system improve some systemic parameters of liver failure in a xenogeneic model. Artif Organs 2004;28:476-482. PMID:15113342
    193. Enosawa S, Miyashita T, Fujita Y, Suzuki S, Amemiya H, Omasa T, et al. In vivo estimation of bioartificial liver with recombinant HepG2 cells using pigs with ischemic liver failure. Cell Transplant 2001;10:429-433. PMID:11549067
    194. Enosawa S, Miyashita T, Saito T, Omasa T and Matsumura T. The significant improvement of survival times and pathological parameters by bioartificial liver with recombinant HepG2 in porcine liver failure model. Cell Transplant 2006; 15:873-880. PMID:17299991
    195. Kanai H, Marushima H, Kimura N, Iwaki T, Saito M, Maehashi H, et al. Extracorporeal bioartificial liver using the radial-flow bioreactor in treatment of fatal experimental hepatic encephalopathy. Artif Organs 2007;31:148-151. PMID: 17298404
    196. Poyck PP, van Wijk AC, van der Hoeven TV, de Waart DR, Chamuleau RA, van Gulik TM, et al. Evaluation of a new immortalized human fetal liver cell line (cBAL111) for application in bioartificial liver. J Hepatol 2008;48:266-275. PMID: 18093687
    197. Jung Y, Bauer G and Nolta JA. Concise review:Induced pluripotent stem cell-derived mesenchymal stem cells:progress toward safe clinical products. Stem Cells 2012;30:42-47. PMID:21898694

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700