微囊悬浮型流化床式生物人工肝治疗急性肝衰竭猪的血清代谢组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分猪急性肝衰竭过程中血清代谢物的动态变化模式
     目的:探索急性肝衰竭发生发展直至死亡过程中血清代谢物的动态变化模式,建立急性肝衰竭病情严重程度评估模型。
     方法:用D-半乳糖胺对猪(n=8)行急性肝衰竭造模,分别在给药前(0h)给药后18h、24h、36h,死亡前12h内取血清样本行超高效液相色谱-质谱检测。用Simca-P等软件进行多元统计分析,用Matlab进行模式识别和构建线性判别分析模型。
     结果:急性肝衰竭过程中血清代谢物至少存在3种上升的动态变化模式和1中下降的动态变化模式。每种模式在不同的时间段的变化趋势和程度不同。芳香族氨基酸(模式1)和溶血卵磷脂(模式4)可以作为急性肝衰竭严重程度的评估指标,而一些结合胆汁酸和长链肉毒碱(模式2)及甘氨胆酸(模式3)可以在早期检测到肝损伤。基于急性肝衰竭病情的严重程度可以在代谢组学水平上体现的事实,我们建立了包含苯丙氨酸和溶血卵磷脂18:1的线性判别分析模型来分期评估急性肝衰竭的严重程度。弃一法交叉验证显示该模型对于训练样本的判断准确率为91.67%,对于外部验证数据集的预测精确度为92.31%。
     结论:D-半乳糖胺诱导的猪急性肝衰竭发生发展直至死亡过程中血清代谢物至少有4种动态变化的模式,每种模式都有着相对独特的临床意义。急性肝衰竭病情的严重程度可以用代谢组学模型来评估。
     第二部分微囊悬浮型流化床式生物人工肝对急性肝衰竭猪血清代谢物的影响
     目的:从代谢组学角度揭示微囊悬浮型流化床式生物人工肝(FBBAL)治疗急性肝衰竭的机制,评估其安全性和疗效,以获得改进FBBAL的有用信息。
     方法:用D-半乳糖胺行急性肝衰竭造模,18h后21头猪分为以下3组分别处理6小时:FBBAL组,急性肝衰竭猪给予包含微囊化原代猪肝细胞的FBBAL治疗;假治疗组,急性肝衰竭猪给予包含空微囊的FBBAL治疗;肝衰竭对照组(n=7),不给予任何外部处理,只观察动物的一般状态。分别在给药前(0h)、给药后治疗前(18h)、治疗结束时(24h)和治疗结束后24h(48h)取血清样本行超高效液相色谱-质谱检测。用Simca-P和Matlab等软件进行多元统计分析。
     结果:FBBAL组的生存时间(70.4±11.5h)显著长于假治疗组(51.6±7.9h)肝衰竭对照组(49.3±6.6h)。治疗前(0h、18h)各组代谢谱没有明显不同。治疗后,FBBAL组的代谢谱和其他两组明显不同,并且后两组的代谢谱没有明显不同。经过FBBAL治疗胆汁酸进一步升高,而卵磷脂、溶血卵磷脂、脂肪酸和鞘磷脂进一步降低。
     结论:壳聚糖-海藻酸钠微囊对急性肝衰竭猪的血清代谢谱的短期影响较小。FBBAL具备一定的肝脏功能,能改变急性肝衰竭猪的血清代谢谱,从而延长受试猪的生存时间。然而FBBAL的作用不一定使得代谢物都靠近正常水平,其结构和功能仍需进一步完善。
Part I Dynamic Patterns of Serum Metabolites in Aute Liver Failure Pigs
     Background&Aims:The study was aimed to explore the Dynamic Patterns of endogenous serum metabolites in the whole process of acute liver failure (ALF), and to develop a metabolomic model for evaluating the severity of ALF.
     Methods:ALF was induced in pigs (n=8) by intravenous administration of D-galactosamine. Serum samples were collected before the administration,18h,24h and36h after the administration and within12h before death and assayed by ultra performance liquid chromatography-mass spectrometry. The multivariate data was analyzed with SIMCA-P+12.0. Matlab Version7.8(R2009a) was used to perform pattern recognition analysis and construct a linear discriminant analysis model.
     Results:Three increased patterns and one decreased pattern were found in the whole process of ALF, and each pattern has its own distinct changing trends at different stages. Aromatic amino acids (Patternl) and Lysophosphatidylcholines (LPCs)(Pattern4) might be good markers for evaluating the severity of ALF, while some conjugated bile acids, long chain acylcarnitines (Pattern2) and Glycocholic acid (Pattern3) could indicate liver injury in the early stage. Inspired from the principal component analysis score plot that the pathogenetic condition of ALF aggravated with sampling time, a linear discriminant analysis (LDA) model based on phenylalanine and LPC18:1were further constructed for evaluating the severity of ALF. The leave-one-out cross-validation accuracy of91.67%for the training set and the prediction accuracy of92.31%for the external validation set confirmed its excellent performance.
     Conclusion:There are at least four Dynamic Patterns in the whole process of ALF, and each pattern has its own distinctive clinical significance. The severity of ALF could be evaluated by the metabolomics model.
     Part Ⅱ Effects of Fuidized Bed Bioartificial Liver on Serum Metabolites of Acute Liver Failure Pigs
     Background&Aims:Through characterizing the potential serum metablomics alterations of ALF pigs after the real and sham Fuidized Bed Bioartificial Liver (FBBAL) treatment, this study was aimed to reveal their therapy mechanism and evaluate their safety and get useful information for improving FBBAL.
     Methods:ALF was induced by intravenous administration of D-galactosamine.18hours later, pigs were treated for6hours as follows. In FBBAL group (B), pigs (n=7) were treated with FBBAL containing encapsulated primary porcine hepatocytes; in sham FBBAL group (S), pigs (n=7) were treated with FBBAL containing cell-free capsules; in ALF group (C), pigs (n=7) were only given intensive care. Serum samples were collected at0h,18h,24h and48h and assayed by ultra performance liquid chromatography-mass spectrometry. The multivariate data was analyzed with SIMCA-P+12.0.
     Results:Survival time was prolonged significantly (P<0.01) in the B group (70.4±11.5h) as compared with S group (51.6±7.9h) and C group (49.3±6.6h). No apparent metabolomics difference was observed between each group before FBBAL treatment, however, after the treatment, distinct clustering of B group and other two groups, which were intermixed, were presented. Phosphatidylcholines, lysophosphatidylcholines, sphingomyelinase and fatty acids were decreased further, while conjugated bile acids were increased further after FBBAL treatment.
     Conclusion:Alginate-chitosan capsules have no obvious influence on serum metabolites of ALF pigs. FBBAL possesses some liver functions and could alters the serum metabolome of ALF pigs, and ALF pigs survive longer thereby. Nevertheless, the alterations of metabolites are not universally toward health, and much should be done to improve the therapeutic effect of FBBAL.
引文
[1]中华医学会感染病学分会肝衰竭与人工肝学组,中华医学会肝病学分会重型肝病与人工肝学组.肝衰竭诊疗指南[J].中华肝脏病杂志,2006,14(9):643~646.
    [2]Polson J, Lee W M. AASLD position paper:the management of acute liver failure[J]. Hepatology,2005,41(5):1179-1197.
    [3]Feng B, Wu S, Lv S, et al. Metabolic profiling analysis of a D-galactosamine/lipopolysaccharide-induced mouse model of fulminant hepatic failure[J]. J Proteome Res,2007,6(6):2161-2167.
    [4]Craig D G, Lee A, Hayes P C, et al. Review article:the current management of acute liver failure[J]. Aliment Pharmacol Ther,2010,31(3):345-358.
    [5]American Society of Transplant Surgeons' position paper on adult-to-adult living donor liver transplantation[J]. Liver Transpl,2000,6(6):815-817.
    [6]Srtr O A. The 2009 Annual Report of the OPTN and SRTR:Transplant Data 1999-2008[J].2009.
    [7]Jay C L, Butt Z, Ladner D P, et al. A review of quality of life instruments used in liver transplantation[J]. J Hepatol,2009,51(5):949-959.
    [8]van der Hilst C S, Ijtsma A J, Slooff M J, et al. Cost of liver transplantation:a systematic review and meta-analysis comparing the United States with other OECD countries[J]. Med Care Res Rev,2009,66(1):3-22.
    [9](李兰娟)(人工肝脏)浙江大学出版社,20011.
    [10]Strain A J, Neuberger J M. A bioartificial liver--state of the art[J]. Science, 2002,295(5557):1005-1009.
    [11]Calise F, Mancini A, Amoroso P, et al. Functional evaluation of the AMC-BAL to be employed in a multicentric clinical trial for acute liver failure[J]. Transplant Proc,2001,33(1-2):647-649.
    [12]Samuel D, Ichai P, Feray C, et al. Neurological improvement during bioartificial liver sessions in patients with acute liver failure awaiting transplantation[J]. Transplantation,2002,73(2):257-264.
    [13]Millis J M, Cronin D C, Johnson R, et al. Initial experience with the modified extracorporeal liver-assist device for patients with fulminant hepatic failure: system modifications and clinical impact[J]. Transplantation,2002,74(12): 1735-1746.
    [14]Lv G, Zhao L, Zhang A, et al. Bioartificial liver system based on choanoid fluidized bed bioreactor improve the survival time of fulminant hepatic failure pigs[J]. Biotechnol Bioeng,2011,108(9):2229-2236.
    [15]Nicholson J K, Lindon J C. Systems biology:Metabonomics[J]. Nature, 2008,455(7216):1054-1056.
    [16]Yu K, Sheng G, Sheng J, et al. A metabonomic investigation on the biochemical perturbation in liver failure patients caused by hepatitis B virus [J]. J Proteome Res, 2007,6(7):2413-2419.
    [17]Yang J, Zhao X, Liu X, et al. High performance liquid chromatography-mass spectrometry for metabonomics:potential biomarkers for acute deterioration of liver function in chronic hepatitis B[J]. J Proteome Res,2006,5(3):554-561.
    [18]Zhang L, Jia X, Peng X, et al. Development and validation of a liquid chromatography-mass spectrometry metabonomic platform in human plasma of liver failure caused by hepatitis B virus[J]. Acta Biochim Biophys Sin (Shanghai), 2010,42(10):688-698.
    [19]Mao Y, Huang X, Yu K, et al. Metabonomic analysis of hepatitis B virus-induced liver failure:identification of potential diagnostic biomarkers by fuzzy support vector machine[J]. J Zhejiang Univ Sci B,2008,9(6):474-481.
    [20]Feng B, Wu S, Lv S, et al. Dynamic metabonomic analysis of BALB/c mice with different outcomes after D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure[J]. Liver Transpl,2008.14(11):1620-1631.
    [21]Hao S R, Xin J J, Lian J S, et al. Establishing a metabolomic model for the prognosis of hepatitis B virus-induced acute-on-chronic liver failure treated with different liver support systems[J]. Metablomics,2011,7(7):400-412.
    [22]Douglas W R. Of pigs and men and research:a review of applications and analogies of the pig, sus scrofa, in human medical research[J]. Space Life Sci, 1972,3(3):226-234.
    [23]Churchwell M I, Twaddle N C, Meeker L R, et al. Improving LC-MS sensitivity through increases in chromatographic performance:comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2005,825(2):134-143.
    [24]Want E J, Wilson I D, Gika H, et al. Global metabolic profiling procedures for urine using UPLC-MS[J]. Nat Protoc,2010,5(6):1005-1018.
    [25]Gao Y Y, Han T, Kan Z C. [Clinical study of survival time for chronic liver failure.][J]. Zhonghua Gan Zang Bing Za Zhi,2009,17(2):131-134.
    [26]Hofmann A F, Korman M G, Krugman S. Sensitivity of serum bile acid assay for detection of liver damage in viral hepatitis type B. Prospective study in five patients[J]. Am J Dig Dis,1974,19(10):908-910.
    [27]Pennington C R, Ross P E, Bouchier I A. Serum bile acids in the diagnosis of hepatobiliary disease[J]. Gut,1977,18(11):903-908.
    [28]Malhi H, Gores G J, Lemasters J J. Apoptosis and necrosis in the liver:a tale of two deaths?[J]. Hepatology,2006,43(2 Suppl 1):S31-S44.
    [29]Silk D B. Branched chain amino acids in liver disease:fact or fantasy?[J]. Gut, 1986,27 Suppl 1:103-110.
    [30]Lingens F. The biosynthesis of aromatic amino acids and its regulation [J]. Angew Chem Int Ed Engl,1968,7(5):350-360.
    [31]Li L J, Wu Z W, Xiao D S, et al. Changes of gut flora and endotoxin in rats with D-galactosamine-induced acute liver failure[J]. World J Gastroenterol,2004,10(14): 2087-2090.
    [32]Smith A R, Rossi-Fanelli F, Ziparo V, et al. Alterations in plasma and CSF amino acids, amines and metabolites in hepatic coma[J]. Ann Surg,1978,187(3): 343-350.
    [33]Benz C, Angermuller S, Tox U, et al. Effect of tauroursodeoxycholic acid on bile-acid-induced apoptosis and cytolysis in rat hepatocytes[J]. J Hepatol, 1998,28(1):99-106.
    [34]Mutomba M C, Yuan H, Konyavko M, et al. Regulation of the activity of caspases by L-carnitine and palmitoylcarnitine[J]. FEBS Lett,2000,478(1-2):19-25.
    [35]Olofsson K E, Andersson L, Nilsson J. et al. Nanomolar concentrations of lysophosphatidylcholine recruit monocytes and induce pro-inflammatory cytokine production in macrophages[J]. Biochem Biophys Res Commun,2008,370(2): 348-352.
    [36]Radu C G, Yang L V, Riedinger M, et al. T cell chemotaxis to lysophosphatidylcholine through the G2A receptor[J]. Proc Natl Acad Sci U S A, 2004,101(1):245-250.
    [37]Antoniades C G, Berry P A, Wendon J A, et al. The importance of immune dysfunction in determining outcome in acute liver failure[J]. J Hepatol,2008,49(5): 845-861.
    [38]Polson J, Lee W M. AASLD position paper:the management of acute liver failure[J]. Hepatology,2005,41(5):1179-1197.
    [39]Pazzi P, Morsiani E, Vilei M T, et al. Serum bile acids in patients with liver failure supported with a bioartificial liver[J]. Aliment Pharmacol Ther,2002,16(8): 1547-1554.
    [40]Chamuleau R A. Future of bioartificial liver support[J]. World J Gastrointest Surg, 2009,1(1):21-25.
    [41]O. V. Dobrynina S Z S A. Phosphatidylcholine liposomes in the repair of the hepatocyte plasma membrane[J]. Bulletin of Experimental Biology and Medicine, 1990,110:94-96.
    [42]Lieber C S, Leo M A, Aleynik S I, et al. Polyenylphosphatidylcholine decreases alcohol-induced oxidative stress in the baboon[J]. Alcohol Clin Exp Res, 1997,21(2):375-379.
    [43]Buchman A L, Dubin M D, Moukarzel A A, et al. Choline deficiency:a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation[J]. Hepatology,1995,22(5):1399-1403.
    [44]Wurtman R J, Hirsch M J, Growdon J H. Lecithin consumption raises serum-free-choline levels[J]. Lancet,1977,2(8028):68-69.
    [45]Kanter M M, Williams M H. Antioxidants, carnitine, and choline as putative ergogenic aids[J]. Int J Sport Nutr,1995,5 Suppl:S120-S131.
    [46]Niederau C, Strohmeyer G, Heintges T, et al. Polyunsaturated phosphatidyl-choline and interferon alpha for treatment of chronic hepatitis B and C:a multi-center, randomized, double-blind, placebo-controlled trial. Leich Study Group[J]. Hepatogastroenterology,1998,45(21):797-804.
    [47]Singh N K, Prasad R C.A pilot study of polyunsaturated phosphatidyl choline in fulminant and subacute hepatic failure[J]. J Assoc Physicians India,1998,46(6): 530-532.
    [48]Schmitz G, Ruebsaamen K. Metabolism and atherogenic disease association of lysophosphatidylcholine[J]. Atherosclerosis,2010,208(1):10-18.
    [49]Serebrov V, Kuz'Menko D I, Burov P G, et al. [Activity of the sphingomyelin cycle enzymes and concentration of products of sphingomyelin degradation in the rat liver in the course of acute toxic hepatitis][J]. Biomed Khim,2010,56(2): 283-289.
    [50]Weissman C. The metabolic response to stress:an overview and update[J]. Anesthesiology,1990,73(2):308-327.
    [51]Morris A A. Cerebral ketone body metabolism[J]. J Inherit Metab Dis,2005,28(2): 109-121.
    [1]中华医学会感染病学分会肝衰竭与人工肝学组,中华医学会肝病学分会重型肝病与人工肝学组.肝衰竭诊疗指南[J].中华肝脏病杂志,2006,14(9):643~646.
    [2]Polson J, Lee W M. AASLD position paper:the management of acute liver failure[J]. Hepatology,2005,41(5):1179-1197.
    [3]Du WB, Pan X P, Li L J. Prognostic models for acute liver failure[J]. Hepatobiliary Pancreat Dis Int,2010,9(2):122-128.
    [4]Kamath P S, Wiesner R H, Malinchoc M, et al. A model to predict survival in patients with end-stage liver disease[J]. Hepatology,2001,33(2):464-470.
    [5]Dhiman R K, Jain S, Maheshwari U, et al. Early indicators of prognosis in fulminant hepatic failure:an assessment of the Model for End-Stage Liver Disease (MELD) and King's College Hospital criteria[J]. Liver Transpl,2007,13(6): 814-821.
    [6]Anand A C, Nightingale P, Neuberger J M. Early indicators of prognosis in fulminant hepatic failure:an assessment of the King's criteria[J]. J Hepatol, 1997,26(1):62-68.
    [7]O'Grady J G, Alexander G J, Hayllar K M, et al. Early indicators of prognosis in fulminant hepatic failure[J]. Gastroenterology,1989,97(2):439-445.
    [8]Cholongitas E B, Betrossian A, Leandro G, et al. King's criteria, APACHE Ⅱ, and SOFA scores in acute liver failure[J]. Hepatology,2006,43(4):881,882.
    [9]Du WB, Pan X P, Li L J. Prognostic models for acute liver failure[J]. Hepatobiliary Pancreat Dis Int,2010,9(2):122-128.
    [10]Bernal W, Donaldson N, Wyncoll D, et al. Blood lactate as an early predictor of outcome in paracetamol-induced acute liver failure:a cohort study[J]. Lancet, 2002,359(9306):558-563.
    [11]Chung P Y, Sitrin M D, Te H S. Serum phosphorus levels predict clinical outcome in fulminant hepatic failure[J]. Liver Transpl,2003,9(3):248-253.
    [12]Malinchoc M, Kamath P S, Gordon F D, et al. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts[J]. Hepatology, 2000,31(4):864-871.
    [13]Kamath P S, Wiesner R H, Malinchoc M, et al. A model to predict survival in patients with end-stage liver disease[J]. Hepatology,2001,33(2):464-470.
    [14]Said A, Williams J, Holden J, et al. Model for end stage liver disease score predicts mortality across a broad spectrum of liver disease[J]. J Hepatol,2004,40(6): 897-903.
    [15]Wiesner R, Edwards E, Freeman R, et al. Model for end-stage liver disease (MELD) and allocation of donor livers[J]. Gastroenterology,2003,124(1):91-96.
    [16]Yantorno S E, Kremers W K, Ruf A E, et al. MELD is superior to King's college and Clichy's criteria to assess prognosis in fulminant hepatic failure[J]. Liver Transpl,2007,13(6):822-828.
    [17]Biggins S W, Kim W R, Terrault N A, et al. Evidence-based incorporation of serum sodium concentration into MELD[J]. Gastroenterology,2006,130(6): 1652-1660.
    [18]Nicholson J K, Lindon J C. Systems biology:Metabonomics[J]. Nature,2008, 455(7216):1054-1056.
    [19]Feng B, Wu S, Lv S, et al. Dynamic metabonomic analysis of BALB/c mice with different outcomes after D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure[J]. Liver Transpl.2008,14(11):1620-1631.
    [20]Feng B, Wu S M, Lv S, et al. A novel scoring system for prognostic prediction in d-galactosamine/lipopolysaccharide-induced fulminant hepatic failure BALB/c mice[J]. BMC Gastroenterol,2009,9:99.
    [21]Schiodt F V. Gc-globulin in liver disease[J]. Dan Med Bull,2008,55(3):131-146.
    [22]Schiodt F V, Rossaro L, Stravitz R T, et al. Gc-globulin and prognosis in acute liver failure[J]. Liver Transpl,2005,11(10):1223-1227.
    [23]Kogure K, Omata W, Kanzaki M, et al. A single intraportal administration of follistatin accelerates liver regeneration in partially hepatectomized rats[J]. Gastroenterology,1995,108(4):1136-1142.
    [24]Lin S D, Kawakami T, Ushio A, et al. Ratio of circulating follistatin and activin A reflects the severity of acute liver injury and prognosis in patients with acute liver failure[J]. J Gastroenterol Hepatol,2006,21(2):374-380.
    [25]Moller H J, Gronbaek H, Schiodt F V, et al. Soluble CD 163 from activated macrophages predicts mortality in acute liver failure[J]. J Hepatol,2007,47(5): 671-676.
    [26]Hao S, Xin J, Lian J, et al. Establishing a metabolomic model for the prognosis of hepatitis B virus-induced acute-on-chronic liver failure treated with different liver support systems [J]. Metablomics,2011,7(7):400-412.
    [27]Zhou P, Li J, Shao L. Dynamic Patterns of serum metabolites in fulminant hepatic failure pigs[J]. Metabolomics,2011 (DOI 10.1007/s11306-011-0381-5).
    [28]Schiodt F V, Ostapowicz G, Murray N, et al. Alpha-fetoprotein and prognosis in acute liver failure[J]. Liver Transpl,2006,12(12):1776-1781.
    [29]Bernal W, Hall C, Karvellas C J, et al. Arterial ammonia and clinical risk factors for encephalopathy and intracranial hypertension in acute liver failure[J]. Hepatology,2007,46(6):1844-1852.
    [30]Yamagishi Y, Saito H, Ebinuma H, et al. A new prognostic formula for adult acute liver failure using computer tomography-derived hepatic volumetric analysis[J]. J Gastroenterol,2009,44(6):615-623.
    [31]Polson J. Assessment of prognosis in acute liver failure[J]. Semin Liver Dis. 2008,28(2):218-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700