导电聚合物及其纳米复合材料的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电聚合物及其复合材料在抗静电材料、电磁屏蔽材料、人工肌肉、二极管和晶体管等领域具有重要的应用价值,而且发现导电聚合物可以化学还原比其还原电位高的金属离子。本论文基于聚苯胺(PANI)和聚吡咯(PPy),对导电聚合物纳米纤维和薄膜材料上纳米金属的可控生长及分子检测性能、磁性导电聚合物复合材料的制备及其电磁吸收性能进行了研究。
     采用表面活性剂辅助化学氧化聚合方法制备了PANI、PPy和PANI-PPy一维纳米纤维材料。研究表明,PPy纳米球和纳米纤维的光谱性能基本一致,但两者具有依赖于形貌的电化学性能:PPy纳米球的电化学过程受半无限扩散控制,而PPy纳米纤维的电化学过程受阻挡层扩散控制。PANI-PPy共聚材料的化学成分对其性能的影响体现在:含有较多PANI或PPy的共聚材料具有类似于单一聚合物(PANI或PPy)的物理化学性能,而含有等量PANI和PPy的共聚材料表现出特有的性能。对导电聚合物纳米纤维化学还原制备金属纳米粒子的研究发现,不同的种类、形貌和掺杂剂使导电聚合物具有不同的还原电位和表面性质,使还原得到的金属纳米粒子具有不同的形貌和粒径。
     将PANI材料制备成薄膜,探讨了不同的掺杂剂、薄膜种类(多孔膜和密实膜)、导电类添加剂、外加电场等工艺参数对薄膜上纳米金属成核和生长的影响。不同的掺杂剂和薄膜种类使薄膜具有不同的化学性质和表面性质,可以生长不同的金属结构。在PANI多孔膜中加入导电类添加剂(石墨或碳纳米管)可以提高多孔膜表面的掺杂均一性,使其表面生长均匀的金属纳米粒子,并使多孔膜的导电性增强。外加电场可以改变多孔膜上Ag的成核和生长机理,产生一个由树枝状、花状和微球状Ag组成的梯度结构,其机理是电场作用下多孔膜表面Ag+的移动是纵向扩散和横向电场驱动的协同效应,而不加电场时Ag+的移动仅受扩散动力学控制。多孔膜上树枝状、花状和微球状Ag都具有较强的表面增强拉曼光谱(SERS)性能。
     PANI多孔膜上预先构造的纳米Au层和掺杂剂对均匀三维纳米片状Ag结构的形成至关重要,这种Au-Ag复合金属结构整个表面都具有均匀的SERS信号,检测灵敏度达到10 ppm,可以应用于化学和生物分子的检测。柠檬酸分子吸附在Au核或Ag核上对后续生长的Ag纳米粒子自组装成片状结构具有导向作用,这一认识实现了未掺杂PANI多孔膜上均匀纳米Ag片状结构的构造。基于这种机理构造的由片状纳米Ag自组装而成的线状结构对20 ppm三聚氰胺具有很好的SERS响应。
     仅在柠檬酸掺杂的PANI密实膜上可以生长得到Ag纳米线,而且在同一PANI密实膜上生长有不同结构的Ag纳米线。在-0.05~+0.05 V及0~+4 V电位区间内测试了Ag纳米线的电学稳定性,单一Ag纳米线的熔断电压位于1.5 V左右。电迁移和表面扩散是造成Ag纳米线在电性能测试中熔断或发生形貌改变的主要原因。由Ag纳米粒子组装而成的Ag纳米线存在生长缺陷,电导率要比光滑Ag纳米线低。
     采用反相微乳液法合成了六角片状纳米钡铁氧体(BaFe12O19),确定了烧结工艺、Fe/Ba比例。以纳米BaFe12O19和Ni为磁性核,采用原位化学氧化聚合法制备了BaFe12O19-PANI、BaFe12O19-PPy、Ni-PPy磁性导电聚合物复合材料,发现无机材料和导电聚合物之间没有明显的化学作用,无机材料只是作为有机单体聚合时的成核中心。复合材料的导电性、磁性、电磁吸收性能可以通过调节无机相和有机相的相对比例而进行调控。复合材料电磁吸收性能结合了磁性材料的磁损耗和导电聚合物的介电损耗,而且无机磁性材料表面包覆导电聚合物后其复磁导率和复介电常数可以得到调节,符合传输线理论中对材料阻抗与自由空间阻抗匹配的要求。经过调控制备的磁性导电聚合物复合材料在2~18 GHz频率范围内具有增强的电磁吸收性能,并可调节吸收频带。
Conducting polymers and their composites have significant applications in electrostatic materials, electromagnetic shielding materials, artificial muscles, diodes, transistors, etc. It has been recognized that a metal ion having a higher reduction potential than that of a conducting polymer can be chemically reduced by the conducting polymer. Based on polyaniline (PANI) and polypyrrole (PPy), controlled growth and molecule detection properties of metal nanostructures reduced by using conducting polymer nanofibers, membranes and films, as well as prepration and electromagnetic properties of magnetic conducting polymer composites were studied in this thesis.
     One-dimensional (1D) PANI, PPy and PANI-PPy copolymer nanofibers are prepared by a surfactant-assisted chemical oxidative polymerization. Though spectroscopic properties of PPy nanospheres and nanofibers are almost identical, the electrochemical responses are morphology-dependent: electrochemical process of PPy nanospheres is controlled by semi-infinite diffusion, while that of PPy nanofibers is dominated by barrier diffusion. Effect of chemical composition on the properties of PANI-PPy copolymers can be described as: PANI-PPy nanofibers synthesized with an excess of either PANI or PPy show similar physico-chemical characteristics as the individual homopolymers, whereas nanofibers from an equimolar mixture of An and Py display unique properties. Preparation of metal nanostructures from chemical reduction of metal ions by conducting polymer nanofibers is also discussed. Conducting polymers with different catagories, morphologies and dopants have various reduction potentials and surface properties, which can be accounted for the yield of metal nanoparticles with different morphologies and sizes.
     PANI porous membranes and dense films are fabricated, and effects of technique parameters such as dopant, conductive additive, external electric field on the nucleation and growth of metal nanostructures are discussed. Different dopants render PANI porous membranes or dense films with different chemical natures and surface properties, leading to different metal structures grown on PANI membranes or films. Addition of conductive additives (graphite or carbon nanotube) in PANI porous membranes can increase the conductivity of the membrane and improve the doping inhomogeneity of the membrane surface, thus homogeneous metal nanoparticles can be produced. Application of an external electric field to the P-G or P-CNT porous membranes can alter the nucleation and growth mechanism of Ag, resulting in a Ag gradient structure comprised of dendrites, flowers and microspheres. It is believed that the formation of such silver gradient is a synergetic consequence of a vertical diffusion and a lateral electrokinetic flow in the field-assisted model when Ag+ ions move to the membrane surface and are reduced by PANI. While in the absence of an electric field, the movement of Ag+ ions is dominated by a simple diffusion process. It is revealed that the Ag dendrites, flowers and microspheres all possess strong surface enhanced Raman spectroscopy (SERS) properties.
     Both the pre-fabricated gold nanolayer and chemical nature of the PANI porous membrane play pivotal roles in the formation of homogeneous 3D Ag nanosheet structures. The fabricated Au-Ag hybrid structures show strong and uniform SERS enhancement of the absorbed molecules over the whole surface, with a detection sensitivity of 10 ppm, indicating a promise for sensitive detection of chemical and biological analytes. It is revealed that citric acid absorbed onto the pre-fabricated Au or Ag nanoparticles directs the self-assembly of subsequent grown Ag nanoaprticles into nanosheet structures. This recognition makes the fabrication of homogeneous Ag nanosheet structures on undoped PANI porous membranes become available. Moreover, based on the above mechanism, a wire structure consisting of assembled Ag nanosheets is also successfully fabricated, which shows promising SERS recognition of 20 ppm melamine molecules.
     Current study reveals that Ag nanowires can only be grown on citric acid doped PANI dense films. Ag nanowires with a wide range of morphologies and sizes can be obtained on one single PANI film. Electrical stability of the Ag nanowires is tested in the voltage range of -0.05~+0.05 V and 0~+4 V respectively, and a meltdown voltage of about 1.5 V is determined. Electromigration and surface diffusion can both be accounted for the meltdown or morphology change of the Ag nanowires during the electrical measurements. The nanowires comprised of self-assembled Ag nanoparticles usually have lower electrical conductivities than those with smooth surfaces, due to the presence of growth defects.
     Hexagonal barium ferrite (BaFe12O19) nanoparticles have been prepared from a reverse microemulsion technique, and optimum sintering condition and Fe/Ba ratio are determined. Using BaFe12O19 nanoparticles and nickel powder as magnetic cores, BaFe12O19-PANI, BaFe12O19-PPy and Ni-PPy composites are prepared through an in situ chemical oxidative polymerization method. There is no obvious chemical interaction between the conducting polymer and inorganic phase, where the inorganic phase simply plays a role of nucleation center during the polymeri- zation of organic monomers. Electrical conductivities, magnetic properties and electromagnetic properties of the composites can be modulated by controlling the relative content of the inorganic phase and organic phase. Electromagnetic properties of the composites result from a combination of magnetic loss of magnetic materials and dielectric loss of conducting polymers. Complex permeability and permittivity of the composites can be tuned by coating the magnetic materials with conducting polymers, leading to a better impedance matching between the compistes and free space as required according to the transmission line theory. Magnetic conducting polymer composites show promising electromagnetic absorption properties in the frequency range of 2~18 GHz, and the absorption band can be finely tuned.
引文
1 H. Shirakawa, E. J. Edwin, A. G. MacDiarmid, et al. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x. J. Chem. Soc. Chem. Comm. 1977, 578~580.
    2 C. K. Chiang, C. R. Fincher, Y. W. Park, et al. Electrical Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1977, 39: 1098~1101.
    3 A. O. Patil, A. J. Heeger, F. Wudl. Optical Properties of Condcuting Polymers. Chem. Rev. 1988, 88: 183~200.
    4 F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer, et al. About Supramolecular Assemblies ofπ-Conjugated Systems. Chem. Rev. 2005, 105: 1491~1546.
    5 D. W. Hatchett, M. Josowicz. Composites of Intrinsically Conducting Polymers as Sensing Nanomaterials. Chem. Rev. 2008, 108: 746~769.
    6 E. M. Genies, A. Boyle, M. Lapkowski, et al. Polyaniline - A Historical Survey. Synth. Met. 1990, 36: 139~182.
    7 A. G. MacDiarmid, J. C. Chiang, A. F. Richter, et al. Polyaniline - A New Concept in Conducting Polymers. Synth. Met. 1987, 18: 285~290.
    8 W. S. Huang, B. D. Humphrey, A. G. MacDiarmid. Polyaniline, a Novel Conducting Polymer: Morphology and Chemistry of its Oxidation and Reduction in Aqueous Electrolytes. J. Chem. Soc. Faraday Trans. 1986, 82: 2385~2400.
    9 C. R. Martin. Nanomaterials: A Membrane-Based Synthetic Approach. Science 1994, 266: 1961~1966.
    10 C. R. Martin. Template Synthesis of Electronically Conductive Polymer Nanostructures. Acc. Chem. Res. 1995, 28: 61~68.
    11 H. Dong, S. Prasad, V. Nyame, et al. Sub-Micrometer Conducting Polyaniline Tubes Prepared from Polymer Fiber Templates. Chem. Mater. 2004, 16: 371~373.
    12 J. Huang, M. Wan. In Situ Doping Polymerization of Polyaniline Microtubules in the Presence ofβ-naphthalenesulfonic Acid. J. Polym. Sci.: Polym. Chem.1999, 37: 151~157.
    13 M. Wan, J. Li. Formation Mechanism of Polyaniline Microtubules Synthesized by a Template-Free Method. J. Polym. Sci.: Polym. Chem. 2000, 38: 2359~2364.
    14 L. Zhang, M. Wan. Self-Assembly of Polyaniline-From Nanotubes to Hollow Microspheres. Adv. Funct. Mater. 2003, 13: 815~820.
    15 L. Zhang, M. Wan. Synthesis and Characterization of Self-Assembled Polyaniline Nanotubes Doped with D-10-Camphorsulfonic Acid. Nanotechnology 2002, 13: 750~755.
    16 H. Qiu, M. Wan, B. Matthews, et al. Conducting Polyaniline Nanotubes by Template-Free Polymerization. Macromolecules 2001, 34: 675~677.
    17 Z. Wei, M. Wan, T. Lin, et al. Polyaniline Nanotubes Doped with Sulfonated Carbon Nanotubes Made via a Self-Assembly Process. Adv. Mater. 2003, 15: 136~139.
    18 Z. Wei, Z. Zhang, M. Wan. Formation Mechanism of Self-Assembled Polyaniline Micro/Nanotubes. Lagmuir 2002, 18: 917~922.
    19 H. Qiu, J. Zhai, S. Li, et al. Oriented Growth of Self-Assembled Polyaniline Nanowire Arrays Using a Novel Method. Adv. Funct. Mater. 2003, 13: 925~928.
    20 L. Zhang, H. Peng, J. Sui, et al. Polyaniline Nanotubes Doped with Polymeric Acids. Current Appl. Phys. 2008, 8: 312~315.
    21 G. Li, Z. Zhang. Synthesis of Dendritic Polyaniline Nanofibers in a Surfactant Gel. Macromolecules 2004, 37: 2683~2685.
    22 G. Li, H. Peng, Y. Wang, et al. Synthesis of Polyaniline Nanobelts. Macromol. Rapid Commun. 2004, 25: 1611~1614.
    23 W. Zhong, J. Deng, Y. Yang, et al. Synthesis of Large-Area Three-Dimensional Polyaniline Nanowire Networks Using a“Soft Template”. Macromol. Rapid Commun. 2005, 26: 395~400.
    24 J. Jang, H. Yoon. Facile fabrication of polypyrrole nanotubes using reverse microemulsion polymerization. Chem. Commun. 2003, 720~721.
    25 P. Xu, X. Han, C. Wang, et al. Facile Synthesis of Polyaniline-PolypyrroleNanofibers for Application in Chemical Deposition of Metal Nanoparticles. Macromol. Rapid Commun. 2008, 29: 1392~1397.
    26 J. Huang, S. Virji, B. H. Weiller, et al. Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors. J. Am. Chem. Soc. 2003, 125: 314~315.
    27 J. Huang, R. B. Kaner. A General Chemical Route to Polyaniline Nanofibers. J. Am. Chem. Soc. 2004, 126: 851~855.
    28 D. Li, J. Huang, R. B. Kaner. Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Acc. Chem. Res. 2009, 42: 135~145.
    29 D. D. Sawall, R. M. Villahermosa, R.A. Lipeles, et al. Interfacial Polymerization of Polyaniline Nanofibers Grafted to Au Surfaces. Chem. Mater. 2004, 16: 1606~1608.
    30 W. Li, H.-L. Wang. Oligomer-Assisted Synthesis of Chiral Polyaniline Nanofibers. J. Am. Chem. Soc. 2004, 126: 2278~2279.
    31 H. D. Tran, K. Shin, W. G. Hong, et al. A Template-Free Route to Polypyrrole Nanofibers. Macromol. Rapid Commun. 2007, 28: 2289~2293.
    32 X. Zhang, W. J. Goux, S. K. Manohar. Synthesis of Polyaniline Nanofibers by“Nanofiber Seeding”. J. Am. Chem. Soc. 2004, 126: 4502~4503.
    33 X. Zhang, S. K. Manohar. Bulk Synthesis of Polypyrrole Nanofibers by a Seeding Approach. J. Am. Chem. Soc. 2004, 126: 12714~12715.
    34 N.-R. Chiou, A. J. Epstein. Polyaniline Nanofibers Prepared by Dilute Polymerization. Adv. Mater. 2005, 17: 1679~1683.
    35 N.-R. Chiou, C. Lu, J. Guan, et al. Growth and Alignment of Polyaniline Nanofibres with Superhydrophobic, Superhydrophilic and Other Properties. Nat. Nanotechnol. 2007, 2: 354~357.
    36 E. M. Genies, A. A. Syed, C. Tsintavis. Electrochemical Study of Polyaniline in Aqueous and Organic Medium. Redox and Kinetic Properties. Mol. Cryst. Liq. Cryst. 1985, 121: 181~186.
    37 R. Rajagopalan. Effect of Electrochemical Deposition Paramaters on the Synthesis, Structure and Properties of Polyaniline-Polypyrrole Composite Coatings on Steel. Ph.D. Dissertation of the University of Cincinnati 2001, 5~8.
    38 C. L. Curtis. Synthesis and Characterization of Conducting Polymer Interconnects. Ph.D. Dissertation of the University of Califonia, San Diego. 1996, 14.
    39 L. Liang, J. Liu, C. F. Windisch, et al. Direct Assembly of Large Arrays of Oriented Conducting Polymer Nanowires. Angew. Chem. Int. Ed. 2002, 41: 3665~3668.
    40 H. Zhang, J. Wang, Z. Zhou, et al. Preparation of Nanostructured Polyaniline and its Super-Amphiphilic Behavior. Macromol. Rapid Commun. 2008, 29: 68~73.
    41 J. Wang, S. Chan, R. R. Carlson, et al. Electrochemically Fabricated Polyaniline Nanoframework Electrode Junctions that Function as Resistive Sensors. Nano Lett. 2004, 4: 1693~1697.
    42 N.-R. Chiou, L. J. Lee, A. J. Epstein. Self-Assembled Polyaniline Nanofibers /Nanotubes. Chem. Mater. 2007, 19: 3589~3591.
    43 X. Jing, Y. Wang, D. Wu, et al. Polyaniline Nanofibers Prepared with Ultrasonic Irradiation. J. Polym. Sci.: Polym. Chem. 2006, 44: 1014~1019.
    44 X. Lu, H. Mao, D. Chao, et al. Fabrication of Polyaniline Nanostructures under Ultrasonic Irradiation: From Nanotubes to Nanofibers. Macromol. Chem. Phys. 2006, 207: 2142~2152.
    45 L. K. Werake, J. Story, M. F. Bertino, et al. Photolithographic Synthesis of Polyaniline Nanofibres. Nanotechnology 2005, 16: 2833~2837.
    46 S. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro, et al. Radiolytic Synthesis of Polyaniline Nanofibers: A New Templateless Pathway. Chem. Mater. 2005, 17: 227~229.
    47 Y. Wang, Z. Liu, B. Han, et al. Facile Synthesis of Polyaniline Nanofibers Using Chloroaurate Acid as the Oxidant. Langmuir 2005, 21: 833~836.
    48 J. Huang, R. B. Kaner. Flash Welding of Conducting Polymer Nanofibers. Nat. Mater. 2004, 3: 783~786.
    49 F. Fusalba, D. Bélanger. Electropolymerization of Polypyrrole and Polyaniline- Polypyrrole from Organic Acidic Medium. J. Phys. Chem. B 1999, 103: 9044~9054.
    50 R. Rajagopalan, J. O. Iroh. A One-Step Electrochemical Synthesis of Polyaniline-Polypyrrole Composite Coatings on Carbon Fibers. Electrochim. Acta 2002, 47: 1847~1855.
    51 R. Rajagopalan, J. O. Iroh. Characterization of Polyaniline-Polypyrrole Composite Coatings on Low Carbon Steel: a XPS and Infrared Spectroscopy Study. Appl. Surf. Sci. 2003, 218: 58~69.
    52 R. Rajagopalan, J. O. Iroh. Development of Polyaniline-Polypyrrole Composite Coatings on Steel by Aqueous Electrochemical Process. Electrochim. Acta 2001, 46: 2443~2455.
    53 G. S. Akundy, R. Rajagopalan, J. O. Iroh, et al. Electrochemical Deposition of Polyaniline-Polypyrrole Composite Coatings on Aluminum. J. Appl. Polym. Sci. 2002, 83: 1970~1977.
    54 J. Stejskal, M. Trchová, I. A. Ananieva, et al. Poly(aniline-co-pyrrole): Powders, Films, and Colloids. Thermophoretic Mobility of Colloidal Particles. Synth. Met. 2004, 146: 29~36.
    55 S. Xin, C. Zhao, T. Zhou, et al. Preparation and Characterization of Polyaniline- Polypyrrole Composite from Polyaniline Dispersions. J. Appl. Polym. Sci. 2007, 104: 3523~3529.
    56 W. S. Huang, M. Angelopoulos, J. R. White, et al. Metallization of Printed Circuit Boards Using Conducting Polyaniline. Mol. Cryst. Liq. Cryst. 1990, 189: 227~235.
    57 E. T. Kang, Y. P. Ting, K. L. Tan. Electroless Reduction and Precipitation of Gold from Acid Solution by Polypyrrole. J. Appl. Polym. Sci. 1994, 12(53): 1539~1545.
    58 Y. P. Ting, K. G. Neoh, E. T. Kang, et al. Recovery of Gold by Electroless Precipitation from Acid Solutions Using Polyaniline. J. Chem.Technol. Biotechnol. 1994, 59: 31~36.
    59 W. Li, Q. X. Jia, H.-L. Wang. Facile Synthesis of Metal Nanoparticles Using Conducting Polymer Colloids. Polymer 2006, 47: 23~26.
    60 H.-L. Wang, W. Li, Q. X. Jia, et al. Tailoring Conducting Polymer Chemistryfor the Chemical Deposition of Metal Particles and Clusters. Chem. Mater. 2007, 19: 520~525.
    61 R. J. Tseng, J. Huang, J. Ouyang, et al. Polyaniline Nanofiber/Gold Nanoparticle Nonvolatile Memory. Nano Lett. 2005, 5: 1077~1080.
    62 H.-H. Shih, D. Williams, N. H. Mack, et al. Conducting Polymer-Based Electrodeless Deposition of Pt Nanoparticles and Its Catalytic Properties for Regioselective Hydrosilylation Reactions. Macromolecules 2009, 42: 14~16.
    63 Y. Gao, C.-A. Chen, H.-M. Gau, et al. Facile Synthesis of Polyaniline- Supported Pd Nanoparticles and Their Catalytic Properties toward Selective Hydrogenation of Alkynes and Cinnamaldehyde. Chem. Mater. 2008, 20: 2839~2844.
    64 B. J. Gallon, R. W. Kojima, R. B. Kaner, et al. Palladium Nanoparticles Supported on Polyaniline Nanofibers as a Semi-Heterogeneous Catalyst in Water. Angew. Chem. Int. Ed. 2007, 46: 7251~7254.
    65 A. P. O’Mullane, S. E. Dale, J. V. Macpherson, et al. Fabrication and Electrocatalytic Properties of Polyaniline/Pt Nanoparticle Composites. Chem. Commun. 2004, 1606~1607.
    66 Z. J. Donhauser, B. A. Mantooth, K. F. Kelly, et al. Conductance Switching in Single Molecules Through Conformational Changes. Science 2001, 292: 2303~2307.
    67 T. Tsujioka, H. Kondo. Organic Bistable Molecular Memory Using Photochromic Diarylethene. Appl. Phys. Lett. 2003, 83: 937~939.
    68 J. Xie, Q. Zhang, J. Y. Lee, et al. The Synthesis of SERS-Active Gold Nanoflower Tags for In Vivo Applications. ACS Nano 2008, 2: 2473~2480.
    69李雪艳,王德松,安静,等.导电聚合物/无机纳米复合材料的研究进展.材料导报2007, 21: 174~178.
    70 L. Zhang, M. Wan. Polyaniline/TiO2 Composite Nanotubes. J. Phys. Chem. B 2003, 107: 6748~6753.
    71 T.-H. Hsieh, K.-S. Ho, C.-H. Huang, et al. Electromagnetic Properties of Polyaniline/Maghemite Nanocomposites: I. The Effect of Re-Doping Time on the Electromagnetic Properties. Syn. Met. 2006, 156: 1355~1361.
    72 B. Urbach, N. Korbakov, Y. Bar-David, et al. Composite Structures of Polyaniline and Mesoporous Silicon: Electrochemistry, Optical and Transport Properties. J. Phys. Chem. C 2007, 111: 16586~16592.
    73 M. Nikiforov, H. Liu, H. Craighead, et al. Polarization Controlled Transport in PANI-BaTiO3 Nanofibers. Nano Lett. 2006, 6: 896~990.
    74 B. Z. Tang, Y. Geng, J. W. Y. Lam, et al. Processible Nanostructured Materials with Electrical Conductivity and Magnetic Susceptibility: Preparation and Properties of Maghemite/Polyaniline Nanocomposite Films. Chem. Mater 1999, 11: 1581~1589.
    75 J. W. Kim, F. Liu, H. J. Choi, et al. Intercalated Polypyrrole/Na+- Montmorillonite Nanocomposite via an Inverted Emulsion Pathway Method. Polymer 2003, 44: 289~293.
    76 S. H. Hong, B. H. Kim, J. Joo, et al. Polypyrrole-Montmorillonite Nano- composites Synthesized by Emulsion Polymerization. Current Appl. Phys. 2001, 1: 447~450.
    77 X. L. Dong, X. F. Zhang, H. Huang, et al. Enhanced Microwave Absorption in Ni/Polyaniline Nanocomposites by Dual Dielectric Relaxations. Appl. Phys. Lett. 2008, 92: 013127.
    78 S. M. Abbas, A. K. Dixit, R. Chatterjee, et al. Complex Permittivity and Microwave Absorption Properties of BaTiO3-Polyaniline Composite. Mater. Sci. Eng. B 2005, 123: 167~171.
    79邓雪萍,周瑜芬,熊国宣.导电聚合物与磁性粒子复合吸波材料的研究进展.化工新型材料2007, 35: 5~7.
    80 M. Wan, J. Fan. Synthesis and Ferromagnetic Properties of Composites of a Water-Soluble Polyaniline Copolymer Containing Iron Oxide. J. Polym. Sci.: Polym. Chem. 1998, 36: 2749~2755.
    81 Q.-L. Yang, J. Zhai, L. Feng, et al. Synthesis and Characterization of Conducting Polyaniline/γ-Fe2O3 Magnetic Nanocomposite. Syn. Met. 2003, 135-136: 819~820.
    82 J. Liu, M. Wan. Composites of Polypyrrole with Conducting and FerromagneticBehaviors. J. Polym. Sci.: Polym. Chem. 2000, 38: 2734~2739.
    83 J. Deng, C. He, Y. Peng, et al. Magnetic and Conductive Fe3O4-Polyaniline Nanoparticles with Core-Shell Structure. Syn. Met. 2003, 139: 295~301.
    84 Y. Long, Z. Chen, J. L. Duvail, et al. Electrical and Magnetic Properties of Polyaniline/Fe3O4 Nanostructures. Physica B 2005, 370: 121~130.
    85 W. Xue, H. Qiu, K. Fang, et al. Electrical and Magnetic Properties of the Composite Pellets Containing DBSA-doped Polyaniline and Fe Nanoparticles. Syn. Met. 2006, 156: 833~837.
    86 L. Li, J. Jiang, F. Xu. Synthesis and Ferrimagnetic Properties of Novel Sm-Substituted LiNi Ferrite-Polyaniline Nanocomposite. Mater. Lett. 2007, 61: 1091~1096.
    87蒋静,李良超,徐烽,等.聚苯胺-LiNi铁氧体复合纳米微粒的原位合成及其键合机制.化学学报2007, 65: 53~58.
    88 N. E. Kazantseva, Y. I. Bespyatykh, I. Sapurina, et al. Magnetic Materials Based on Manganese-Zinc Ferrite with Surface-Organized Polyaniline Coating. . J. Mag. Mag. Mater. 2006, 301: 155~165.
    89 D. W. Deberry. Modification of the Electrochemical and Corrosion Behavior of Stainless Steels with an Electroactive Coating. J. Electrochem. Soc. 1985, 132: 1022~1026.
    90 C. A. Ferreirai, S. C. Domenech, P. C. Lacaze. Synthesis and Characterization of Polypyrrole/TiO2 Composites on Mild Steel. J. Appl. Electrochem. 2001, 31: 49~56.
    91 D. M. Lenz, M. Delamar, C. A. Ferreira. Application of Polypyrrole/TiO2 Composite Films as Corrosion Protection of Mild Steel. J. Electroanal. Chem. 2003, 540: 35~40.
    92 K. Dutta, S. De, S. K. De. Optical and Electrical Characterizations of Self-Assembled CdS Nanorods-Polyaniline Composites. J. Appl. Phys. 2007, 101: 093711.
    93 B. C. Kim, J. M. Ko, G. G. Wallace. A Novel Capacitor Material Based on Nafion-Doped Polypyrrole. J. Power Sour. 2008, 177: 665~668.
    94 Y. Qiao, S.-J. Bao, C. M. Li, et al. Nanostructured Polyaniline/TitaniumDioxide Composite Anode for Microbial Fuel Cells. ACS Nano 2008, 2: 113~119.
    95 T. Zhang, Y. Zeng, S. Chen, et al. Improved Performances of E. coli-Catalyzed Microbial Fuel Cells with Composite Graphite/PTFE Anodes. Electrochem. Commun. 2007, 9: 349~353.
    96 W. Zhong, S. Liu, X. Chen, et al. High-Yield Synthesis of Superhydrophilic Polypyrrole Nanowire Networks. Macromolecules 2006, 39: 3224~3230.
    97 V. Pallai, P. Kumar, D. O. Shah. Magnetic Properties of Barium Ferrite Synthesized Using a Microemulsion Mediated Process. J. Magn. Magn. Mater. 1992, 116: L299~L304.
    98 M. Fleischmann, P. J. Hendra, A. J. McQuillan. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26: 163~166.
    99 D. L. Jeanmarie, R. P. Van Duyne. Surface Raman Spectroelectrochemistry, part 1: Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem. 1977, 84: 1~20.
    100 M. T. Nguyen, A. F. Diaz. A Novel Method for the Preparation of Magnetic Nanoparticles in a Polypyrrole Powder. Adv. Mater. 1994, 6: 858~860.
    101 N. V. Blinova, J. Stejskal, M. Trchová, et al. Polyaniline and Polypyrrole: A Comparative Study of the Preparation. Euro. Polym. J. 2007, 43: 2331~2341.
    102 S. ?en, A. G?k, H. Gülce. Novel Ni/Polypyrrole and Cu/Polypyrrole Composites Prepared in the Presence of Different Acids: Synthesis and Investigation of Thermal Stability. J. Appl. Polym. Sci. 2007, 106: 3852~3860.
    103 Y.-C. Liu. Evidence of Chemical Effect on Surface-Enhanced Raman Scattering of Polypyrrole Films Electrodeposited on Roughened Gold Substrates. 2002, 18: 174~181.
    104 S. J. Vigmond, V. Ghaemmaghami, M. Thompson. Raman and Resonance- Raman Spectra of Polypyrrole with Application to Sensor-Gas Probe Interactions. Can. J. Chem. 1995, 73: 1711~1718.
    105 J. Mikat, I. Orgzall, H. D. Hochheimer. Raman Spectroscopy of Conducting Polypyrrole under High Pressure. Phys. Rev. B 2002, 65: 174202.
    106 C. C. B. Bufon, J. Vollmer, T. Heinzel. Relationship between Chain Length, Disorder, and Resistivity in Polypyrrole Films. J. Phys. Chem. B 2005, 109: 19191~19199.
    107 M. D. Levi, C. Lopez, E. Vieil, et al. Influence of Ionic Size on the Mechanism of Electrochemical Doping of Polypyrrole Films Studied by Cyclic Voltammetry. Electrochim. Acta 1997, 42: 757~769.
    108 M. Grzeszczuk, G. ?abińsk-Olszak. Effects of the Secondary Counterions in the Electrochemistry of Polypyrrole. J. Electroanal. Chem. 1997, 427: 169~177.
    109 G. M. do Nascimento, P. Y. G. Kobata, M. L. A. Temperini. Structural and Vibrational Characterization of Polyaniline Nanofibers Prepared from Interfacial Polymerization. J. Phys. Chem. B 2008, 112: 11551~11557.
    110 J. P. Pouget, M. E. Jozefowicz, A. J. Epstein, et al. X-ray Structure of Polyaniline. Macromolecules 1991, 24: 779~789.
    111 S. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro, et al. One-Pot Synthesis of Polyaniline-Metal Nanocomposites. Chem. Mater. 2005, 17: 5941~5944.
    112 C. Saravanan, R. C. Shekhar, S. Palaniappan. Synthesis of Polypyrrole Using Benzoyl Peroxide as a Novel Oxidizing Agent. Macromol. Chem. Phys. 2006, 207: 342~348.
    113 J. Stejskal. The Effect of Chemical Heterogeneity on the Properties of Statistical Copolymers: the Conductivity of Poly(aniline-co-2-bromoaniline). Polym. Int. 2005, 54: 108~113.
    114 X. J. Han, P. Xu, C. Q. Xu, et al. Study of the Effects of Nanometerβ-Ni(OH)2 in Nickel Hydroxide Electrodes. Electrochim. Acta 2005, 50: 2763~2769.
    115 B. Zhang, G. Chen, P. Xu, et al. Effect of Ultrasonic Irradiation on the Structure and Electrochemical Properties of Cathode Material LiNi0.5Mn0.5O2 for Lithium Batteries. Solid State Ionics 2007, 178: 1230~1234.
    116 J. S. Miller. Conducting Polymers-Materials of Commerce. Adv. Mater. 1993, 5: 587~589.
    117 E. Katz, I. Willner. Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angew. Chem. Int. Ed. 2004, 43: 6042~6108.
    118 A. Courty, A.-I. Henry, N. Goubet, et al. Large Triangular Single Crystals Formed by Mild Annealing of Self-organized Silver Nanocrystals. Nature Mater. 2007, 6: 900~907.
    119 A. Michota, J. Bukowska. Surface-Enhanced Raman Scattering (SERS) of 4-Mercaptobenzoic Acid on Silver and Gold Substrates. J. Raman Spectrosc. 2003, 34: 21~25.
    120 L. Yang, X. Jiang, W. Ruan, et al. Adsorption Study of 4-MBA on TiO2 Nanoparticles by Surface-Enhanced Raman Spectroscopy. J. Raman Spectrosc. 2009, DOI: 10.1002/jrs.2358.
    121 L. Yang, X. Jiang, W. Ruan, et al. Observation of Enhanced Raman Scattering for Molecules Adsorbed on TiO2 Nanoparticles: Charge-Transfer Contribution. J. Phys. Chem. C 2008, 112: 20095~20098.
    122 Z. Sun, B. Zhao, J. R. Lombardi. ZnO Nanoparticle Size-Dependent Excitation of Surface Raman Signal from Adsorbed Molecules: Observation of a Charge-Transfer Resonance. Appl. Phys. Lett. 2007, 91: 221106.
    123 L. Lu, A. Kobayashi, K. Tawa, et al. Silver Nanoplates with Special Shapes: Controlled Synthesis and Their Surface Plasmon Resonance and Surface-Enhanced Raman Scattering Properties. Chem. Mater. 2006, 18: 4894~4901.
    124 J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, et al. The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization. Nano Lett. 2007, 7: 1013~1017.
    125 K. Kneipp, H. Kneipp, J. Kneipp. Surface-Enhanced Raman Scattering in Local Optical Fields of Silver and Gold Nanoaggregates-From Single-Molecule Raman Spectroscopy to Ultrasensitive Probing in Live Cells. Acc. Chem. Res. 2006, 39: 443~450.
    126 M. V. Kakade, S. Givens, K. Gardner, et al. Electric Field Induced Orientation of Polymer Chains in Macroscopically Aligned Electrospun Polymer Nanofibers. J. Am. Chem. Soc. 2007, 129: 2777~2782.
    127 K. Okoshi, T. Kajitani, K. Nagai, et al. Uniaxial Orientation of a RodlikeHelical Poly(phenylacetylene) in an Electric Field. Macromolecules 2008, 41: 258~261.
    128 T. Kim, M.-T. Kao, E. F. Hasselbrink, et al. Active Alignment of Microtubules with Electric Fields. Nano Lett. 2007, 7: 211~217.
    129 A. Troisi, M. A. Ratner. Molecular Rectification through Electric Field Induced Conformational Changes. J. Am. Chem. Soc. 2002, 124: 14528~14529.
    130 M. Alemani, M. V. Peters, S. Hecht, et al. Electric Field-Induced Isomerization of Azobenzene by STM. J. Am. Chem. Soc. 2006, 128: 14446~14447.
    131 J. Lu, N. J. Pinto, A. G. MacDiarmid. Apparent Dependence of Conductivity of a Conducting Polymer on an Electric Field in a Field Effect Transistor Configuration. J. Appl. Phys. 2002, 92: 6033~6037.
    132 M. Umeda, I. Uchida. Electric-Field Oriented Polymer Blend Film for Proton Conduction. Langmuir 2006, 22: 4476~4479.
    133 E. Rothenberg, M. Kazes, E. Shaviv, et al. Electric Field Induced Switching of the Fluorescence of Single Semiconductor Quantum Rods. Nano Lett. 2005, 5: 1581~1586.
    134 E. S. Moskalenko, M. Larsson, K. F. Karlsson, et al. Enhancement of the Luminescence Intensity of InAs/GaAs Quantum Dots Induced by an External Electric Field. Nano Lett. 2007, 7: 188~193.
    135 K. C. Hsieh, H. L. Chen, D. H. Wan, et al. Active Modulation of Surface Plasmon Resonance Wavelengths by Applying an Electric Field to Gold Nanoparticle-Embedded Ferroelectric Films. J. Phys. Chem. C 2008, 112: 11673~11678.
    136 B. Kakade, R. Mehta, A. Durge, et al. Electric Field Induced, Superhydrophobic to Superhydrophilic Switching in Multiwalled Carbon Nanotube Papers. Nano Lett. 2008, 8: 2693~2696.
    137 J. Fang, H. You, P. Kong, et al. Direct Silver Nanostructure Growth and Evolution in Replacement Reaction. Cryst. Growth Des. 2007, 7: 864~867.
    138 C. Gu, T.-Y. Zhang. Electrochemical Synthesis of Silver Polyhedrons and Dendritic Films with Superhydrophobic Surfaces. Langmuir 2008, 24: 12010~12016.
    139 C.-H. Hsia, M.-Y. Yen, C.-C. Lin, et al. In Situ Generation of the Silica Shell Layer-Key Factor to the Simple Yield Synthesis of Silver Nanowires. J. Am. Chem. Soc. 2003, 125: 9940~9941.
    140 Y. Fang, N.-H. Seong, D. D. Dlott. Measurement of the Distribution of Site Enhancement in Surface-Enhanced Raman Scattering. Science 2008, 321: 388~392.
    141 J. P. Camden, J. A. Dieringer, Y. Wang, et al. Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots. J. Am. Chem. Soc. 2008, 130: 12616~12617.
    142 P. H. C. Camargo, M. Rycenga, L. Au, et al. Isolating and Probing the Hot Spot Formed between Two Silver Nanocubes. Angew. Chem. Int. Ed. 2009, 48: 2180~2184.
    143 W. Li, P. H. C. Camargo, X. Lu, et al. Dimers of Silver Nanospheres: Facile Synthesis and Their Use as Hot Spots for Surface-Enhanced Raman Scattering. Nano Lett. 2009, 9: 485~490.
    144 P. L. Stiles, J. A. Dieronger, N. C. Shah, et al. Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem. 2008, 1: 601~626.
    145 I. Yoon, T. Kang, W. Choi, et al. Single Nanowire on a Film as an Efficient SERS-Active Platform. J. Am. Chem. Soc. 2009, 131: 758~762.
    146 M. Mabuchi, T. Takenaka, Y. Fujiyoshi, et al. Surface Enhanced Raman Scattering of Citrate Ions Adsorbed on Gold Sol Particles. Surf. Sci. 1982, 119: 150~158.
    147 Y. Lin, G.-B. Pan, G.-J. Su, et al. Study of Citrate Adsorbed on the Au(111) Surface by Scanning Probe Microscopy. Langmuir 2003, 19: 10000~10003.
    148 H. S. Park, C. J. Ji. On the Thermomechanical Deformation of Silver Shape Memory Nanowires. Acta Mater. 2006, 54: 2645~2654.
    149 A. W. Sanders, D. A. Routenberg, B. J. Wiley, et al. Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires. Nano Lett. 2006, 6: 1822~1826.
    150 H. Ditlbacher, A. Hohenau, D. Wagner, et al. Silver Nanowires as SurfacePlasmon Resonators. Phys. Rev. Lett. 2005, 95: 257403.
    151 X. Hu, C. T. Chan. Photonic Crystals with Silver Nanowires as a Near-infrared Superlens. Appl. Phys. Lett. 2004, 85: 1520~1522.
    152 G. Y. Jing, H. L. Duan, X. M. Sun, et al. Surface Effects on Elastic Properties of Silver Nanowires: Contact Atomic-force Microscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73: 235409.
    153 W. Zhang, P. Chen, Q. Gao, et al. High-Concentration Preparation of Silver Nanowires: Restraining in Situ Nitric Acidic Etching by Steel-Assisted Polyol Method. Chem. Mater. 2008, 20: 1699~1704.
    154 A. Tao, F. Kim, C. Hess, et al. Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Nano Lett. 2003, 3: 1229~1233.
    155 R. F. Aroca, P. J. G. Goulet, D. S. dos Santos, et al. Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering. Anal. Chem. 2005, 77: 378~382.
    156 J. A. Hutchison, S. P. Centeno, H. Odaka, et al. Subdiffraction Limited, Remote Excitation of Surface Enhanced Raman Scattering. Nano Lett. 2009, 9: 995~1001.
    157 J. M. Baik, S. J. Lee, M. Moskovits. Polarized Surface-Enhanced Raman Spectroscopy from Molecules Adsorbed in Nano-Gaps Produced by Electromigration in Silver Nanowires. Nano Lett. 2009, 9: 672~676.
    158 A. M. Leach, M. McDowell, K. Gall Deformation of Top-Down and Bottom-Up Silver Nanowires. Adv. Func. Mater. 2007, 17: 43~53.
    159 B. Wang, G. T. Fei, Y. Zhou, et al. Controlled Growth and Phase Transition of Silver Nanowires with Dense Lengthwise Twins and Stacking Faults. Cryst. Growth Des. 2008, 8: 3073~3076.
    160 P. A. Lee, T. V. Ramakrishnan. Disordered Electronic Systems. Rev. Mod. Phys. 1985, 57: 287~337.
    161 A. Bid, A. Bora, A. K. Raychaudhuri. Temperature Dependence of the Resistance of Metallic Nanowires of Diameter≥15 nm: Applicability of Bloch-Grüneisen Theorem. Phys. Rev. B 2006, 74: 035426.
    162 C. Douketis, T. L. Haslett, Z. Wang, et al. Vibronic Interpretation of the Low-energy Absorption Spectrum of the Sexithiophene Single Crystal. J. Chem. Phys. 2000, 113: 11315.
    163 M. Linh Tran, S. P. Centeno, J. A. Hutchison, et al. Control of Surface Plasmon Localization via Self-Assembly of Silver Nanoparticles along Silver Nanowires. J. Am. Chem. Soc. 2008, 130: 17240~17241.
    164 M. Lin, L. He, J. Awika, et al. Detection of Melamine in Gluten, Chicken Feed, and Processed Foods Using Surface Enhanced Raman Spectroscopy and HPLC. J. Food Sci. 2008, 73: T129~T134.
    165 L. He, Y. Liu, M. Lin, et al. A New Approach to Measure Melamine, Cyanuric Acid, and Melamine Cyanurate Using Surface Enhanced Raman Spectroscopy Coupled with Gold Nanosubstrates. Sens. & Instrumen. Food Qual. 2008, 2: 66~71.
    166 A. Bumajdad, J. Eastoe. Conductivity of Water-in-Oil Microemulsions Stabilized by Mixed Surfactants. J Colloid Interface Sci. 2004, 274: 268~276.
    167 S. Mun, D. J. McClements. Influence of Interfacial Characteristics on Ostwald Ripening in Hydrocarbon Oil-in-Water Emulsions. Langmuir 2006, 22: 1551~1554.
    168 H.-F. Yu, P.-C. Liu. Effects of pH and Calcination Temperatures on the Formation of Citrate-Derived Hexagonal Barium Ferrite Particles. J. Alloys Compd. 2006, 416: 222~227.
    169 J. G. Huang, H. R. Zhuang, W. L. Li. Synthesis and Characterization of Nano Crystalline BaFe12O19 Powders by Low Temperature Combustion. Mater. Res. Bull. 2003, 38: 149~159.
    170 H.-F. Yu, K.-C. Huang. Effects of pH and Citric Acid Contents on Characteristics of Ester-Derived BaFe12O19 Powder. J. Magn. Magn. Mater. 2003, 260: 455~461.
    171 Q. Song, Z. J. Zhang. Shape Control and Associated Magnetic Properties of Spinel Cobalt Ferrite Nanocrystals. J. Am. Chem. Soc. 2004, 126: 6164~6168.
    172 E. C. Stoner, E. P. Wohlfarth. A Mechanism of Magnetic Hysteresis inHeterogeneous Alloys. Philos Trans. R. Soc.London, A 1948, 240: 599~642.
    173 J. Huang, R. B. Kaner. The Intrinsic Nanofibrillar Morphology of Polyaniline. Chem. Commun. 2006, 367~376.
    174 J. Deng, X. Ding, W. Zhang, et al. Magnetic and Conducting Fe3O4-Cross- Linked Polyaniline Nanoparticles with Core-Shell Structure. Polymer 2002, 43: 2179~2184.
    175 J. P. Pouget, M. E. Jozefowiczz, A. J. Epstein, et al. X-ray Structure of Polyaniline. Macromolecules 1991, 24: 779~789.
    176 P. Singh, V. K. Babbar, A. Razdan, et al. Complex Permittivity, Permeability, and X-band Microwave Absorption of CaCoTi Ferrite Composites. J. Appl. Phys. 2000, 87: 4362.
    177 K. Park, S. Lee, C. Kim, et al. Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures. Compos. Sci. Technol. 2006, 66: 576~584.
    178 T. Kagotani, D. Fujiwara, S. Sugimoto, et al. Enhancement of GHz Electromagnetic Wave Absorption Characteristics in Aligned M-type Barium Ferrite Ba1?xLaxZnxFe12?x?y(Me0.5Mn0.5)yO19 (x=0.0-0.5; y=1.0-3.0, Me: Zr, Sn) by Metal Substitution. J. Magn. Magn. Mater. 2004, 272-276: e1813~e1815.
    179 J. Qiu, Q. Zhang, M. Gu, et al. Effect of Aluminum Substitution on Microwave Absorption Properties of Barium Hexaferrite. J. Appl. Phys. 2005, 98: 103905.
    180 M. R. Karim, C. J. Lee, M. S. Lee. Synthesis of Conducting Polypyrrole by Radiolysis Polymerization Method. Polym. Adv. Technol. 2007, 18: 916~920.
    181 M. V. Murugendrappa, M. V. N. Ambika Prasad. Chemical Synthesis, Characterization, and Direct-Current Conductivity Studies of Polypyrrole/γ-Fe2O3 Composites. J. Appl. Polym. Sci. 2007, 103: 2797~2801.
    182 ?. Yavuz, M. K.Ram, M. Aldissi, et al. Synthesis and the Physical Properties of MnZn Ferrite and NiMnZn Ferrite–Polyaniline Nanocomposite Particles. J. Mater. Chem. 2005, 15: 810~817.
    183 C. R. Vestal, Z. J. Zhang. Effects of Surface Coordination Chemistry on the Magnetic Properties of MnFe2O4 Spinel Ferrite Nanoparticles. J. Am. Chem. Soc. 2003, 125: 9828~9833.
    184 C. R. Vestal, Z. J. Zhang. Synthesis and Magnetic Characterization of Mn and Co Spinel Ferrite-Silica Nanoparticles with Tunable Magnetic Core. Nano Lett. 2003, 3: 1739~1743.
    185 K. J. Vinoy, R. M. Jha. Radar Absorbing Materials: from Theory to Design and Characterization. Kluwer Academic Publishers: Boston/Dordrecht/London 1996, Chapter 2.
    186 S. A. Saafan, M. K. El-Nimr, E. H. El-Ghazzawy. Study of Dielectric Properties of Polypyrrole Prepared Using Two Different Oxidizing Agents. J. Appl. Polym. Sci. 2006, 99: 3370~3379.
    187 X. F. Zhang, X. L. Dong, H. Huang, et al. Microwave Absorption Properties of the Carbon-Coated Nickel Nanocapsules. Appl. Phys. Lett. 2006, 89: 053115.
    188 P. H. Fang. Cole-Cole Diagram and the Distribution of Relaxation Times. J. Chem. Phys. 1965, 42: 3411.
    189 K. S. Cole, R. H. Cole. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 1941, 9: 341.
    190 J. Barthel, K. Bachhuber, R. Buchner, et al. Dielectric Spectra of Some Common Solvents in the Microwave Region. Water and Lower Alcohols. Chem. Phys. Lett. 1990, 165: 369~373.
    191 R. J. Tseng, H. N. D. Cunha, R. M. Faria, et al. Charge Transfer Effect in the Polyaniline-Gold Nanoparticle Memory System. Appl. Phys. Lett. 2007, 90: 053101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700