原位化学氧化法制备纳米TiO_2薄膜及其光催化降解性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用可再生能源(如太阳能)治理水污染和大气污染的方法在过去几十年得到了迅速的发展,其中光催化技术是最为安全和环境友好的方法。光催化净化技术的核心是光催化材料,TiO_2纳米薄膜是一种成本低、安全无毒、稳定性好且易回收的光催化材料,在环境污染治理中具有十分广泛的应用前景。众所周知,纳米薄膜的形貌对其多样化的性能和相应的应用有重要影响;因此,制备具有一定形貌的纳米TiO_2薄膜,可以有效地提高其光催化性能。本文采用原位化学氧化法在钛金属表面原位生成了不同结构和形貌的TiO_2纳米薄膜,并对薄膜进行了表征和光催化降解性能的研究。围绕以上内容,主要开展了以下几方面工作:
     (1)采用氢氧化钠和双氧水的混合氧化液,在80℃的水热反应釜中与金属钛片反应24小时,再经过酸洗和热处理,制备了低维结构的钛基TiO_2纳米线网络状薄膜。纳米线网络结构的形成过程为:钛片部分溶解在氧化液中形成钛酸钠溶胶,通过溶解-沉积过程逐渐生长形成钛酸钠盐纳米线,再经过酸洗热处理最终形成TiO_2纳米线网络状结构。通过光催化降解苯酚溶液测试该纳米线薄膜的光催化性能,结果表明,这种TiO_2纳米线网络状薄膜表现出良好的光催化降解性能并具有很好的稳定性,2小时候苯酚的降解率达到75.9%。薄膜的网络状结构和锐钛矿晶型是其具有良好光催化性能的主要原因。
     (2)用双氧水氧化液直接与钛片反应,并通过进一步的水热后处理制备了钛基TiO_2纳米花状薄膜。在氧化反应过程中,钛基底上形成了无定形的TiO_2纳米花状结构,水热处理使得无定形TiO_2晶化并形成锐钛矿/金红石混合晶相。通过光催化降解甲基橙测试样品的光催化活性,结果表明与没有经过水热反应直接煅烧的样品相比,水热反应得到的TiO_2薄膜光催化活性提高了两倍。研究了水热反应温度与时间对薄膜性质的影响,结果表明提高水热反应的温度或者延长水热反应的时间可以提高薄膜的结晶度,从而提高薄膜的光催化效率。
     在此基础上,以尿素为原料,通过焙烧热解的方法对TiO_2纳米花薄膜进行表面改性。研究发现不同焙烧温度下改性的薄膜,带隙宽度都有不同程度的降低。将薄膜用于光催化降解甲基橙,结果表明,无论是在可见光下还是全谱照射下,改性后的TiO_2纳米花薄膜的光催化降解性能均有所提高。其中350℃改性TiO_2薄膜表现出最佳的可见光活性,可见光下光照3小时甲基橙的降解率达到72.8%,DRS测试表明其带隙宽度降至2.4 eV。XPS分析结果表明改性TiO_2薄膜的可见光光催化活性可以归因于尿素热解在薄膜表面形成的胺类聚合物的敏化作用。
     (3)在双氧水中加入不同量的过氧钨酸溶胶,再将钛片加入其中进行原位化学氧化反应,制备了钨掺杂的一维纳米TiO 2薄膜。所制备的纳米TiO_2薄膜呈纳米花、纳米网或者纳米孔状结构。溶胶加入量不同,薄膜中的钨含量不同,钨元素掺杂进入了TiO_2的晶格中形成Ti-O-W键。Ti-O-W键是通过过氧钛酸和过氧钨酸在反应体系中的缩合沉积形成的。DRS测试表明掺杂了钨的TiO_2薄膜的吸收边红移,禁带宽度均小于3.1eV。将掺杂改性薄膜光催化降解甲基橙测试其光催化性能,结果表明掺杂了钨的薄膜光催化降解性能远优于纯TiO_2薄膜,可见光下光照3小时甲基橙的降解率最高能达到19.3%,全谱照射3小时后,最优条件下掺杂样品对甲基橙的降解率达到91.3%,光催化降解速度是未掺杂样品的4.3倍。
Development of the effective methods aimed at removal of pollutants from water and air by using the renewable energy sources e.g. solar energy becomes a subject of the intensified research over the last decades. One of the most safe and environmentally friendly chemical methods is photocatalysis. The key to the photocatalysis purifying technology is the photocatalysis material. Titanium dioxide nanofilms, as photocatalysts, possess advantages such as low cost, innocuity safety, well stability and easily recovery. Therefore they are promising materials for applications in pollution control. It is well known that the morphologies of nanofilms are demonstrated to have great effects on their widely varying properties and corresponding potential applications. Therefore, the fabrication of TiO_2 nanofilms with special morphologies could effectively improve their photocatalytic activity. In the present work, we synthesized various TiO_2 nanofilms by in situ chemical oxidation method. Meanwhile, the properties and photocatalytic degradation activities were investigated. In this dissertation, our investigations are carried out as follows:
     (i) When Ti sheets were treated with an aqueous mix-solution of sodium hydroxide and hydrogen peroxide in a reaction kettle for 24 h at 80℃and then with HCl aqueous solution and heat treatment, low-dimensional titania nanowires network films were prepared. The formation process is that the oxidative solution causes partial dissolution of the Ti sheets to form an amorphous sodium titanate sol, which gradually form sodium titanate nanowires through dissolution precipitation mechanism. TiO_2 nanowires were finally obtained after the treatment by HCl aqueous solution and the heat treatment. The TiO_2 nanofilms can be applied to photodegrade phenol solution. The film prepared shows excellent photocatalytic performance and stability and the phenol removal is as high as 75.9% after 2 h irradiation. The excellent photocatalytic activity must be attributed to the synergetic effect of the net-like anatase structure.
     (ii) Ti sheets were directly treated with hydrogen peroxide and further hydrothermal treatment was conducted. Nanoflower films on Ti substrates were obtained by these steps. The oxidation step ensured the formation of flower-like amorphous TiO_2 on titanium surface. The hydrothermal step facilitated the crystallization of amorphous titanium oxide and the formed films possess both anatase and rutile phases. The photocatalytic activity was evaluated by decomposing methyl orange in water. Compared with the traditional annealed sample without hydrothermal treatment, the rate of degradation tripled. The effects of hydrothermal temperature and time are also investigated. The photocatalytic activitivies of the flower-like films are improved with the increasing hydrothermal temperature or prolonged hydrothermal time for the higher crystallinity.
     Further study focuses on the modification of the nanoflower films through roasting the films with urea. The study showed that the band-gap of the modified TiO_2 thin films is reduced in varying degrees. The photocatalytic activity was also investigated by photocatalytic degradation of methyl orange. Photocatalytic results showed that the photocatalytic efficiency under visible light or full spectrum light illumination was enhanced after modification. The modified TiO_2 film which roasted at 350℃showed the best activity under the visible light irradiation. 72.8% methyl orange was degraded in 3 hours. DRS test showed that the band-gap was down to 2.4eV. XPS results indicated that the visible light photocatalytic activity is due to the effect of the polymer formed during urea pyrolysis process.
     (iii) Different amount of peroxotungstic acid sol was added in peroxide dioxide and Ti sheets were reacted with these mixed oxidation solution. W-doped TiO_2 nanostructured films were synthesized in situ on Ti substrate by this one-pot process. According to our data analysis, the films showed typical nanoflower, nanoweb or nanopore morphologies. Tungsten content in the films changes with the amount of additional sol Tungsten is doped into the TiO_2 lattice to form Ti-O-W bond, which is obtained by the condensation of peroxo titanic acid and peroxotungstic acid. The absorption edge of the films, measured by a UV-Vis spectrophotometer, was observed to shift toward longer wavelengths when tungsten was incorporated to the TiO_2 films. The band gap energy was less than 3.1 eV for W-doped TiO_2 systems and the band gap of grown TiO_2 is 3.1eV. Furthermore, photocatalytic activity of the films was also examined by measuring the decomposition rate of methyl orange under both visible and full-septrum irradiations. It was observed that the W-doped layers were more photoactive as compared to as-synthesized pure TiO_2 layers. Under the visible light irradiation, the degradation rate could reach up to 19.3% in 3 hours. For the film prepared under optimum condition, the methyl orange removal is as high as 91.3% after 3 h full spectrum light illumination and the speed of degradation is 4.3 times higher than undoped TiO_2 films.
引文
[1]戴树桂.环境化学[M].北京:高等教育出版社,1997:11-87.
    [2]胡亨魁.水污染控制工程[M].武汉:武汉理工大学出版社,2003:3-7.
    [3] Fujishuma A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature,1972,238(5358):37-38.
    [4] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCBs in the Presence of Titanium Dioxide in Aqueous Suspensions[J]. Bulletin of Environmental Contamination and Toxicology,1976,16(6):697-701.
    [5] Okomoto K, Yamamoto Y, Tanaka H, et al. Heterogeneous Photocatalytic Decomposition of Phenol over TiO_2 Powder[J]. Bulletin of the Chemical Society of Japan,1985,58(7):2015-2022.
    [6] Choi W Y, Hoffmann M R. Novel Photocatalytic Mechanisms for CHCl3, CHBr3, and CCl3CO2- Degradation and the Fate of Photogenerated Frihalomethyl Radicals on TiO_2[J]. Environmental Science & Technology,1997,31(1):89-95.
    [7] Zielinska B, Grzechulska J, Kalenczuk R J, et al. The PH Influence on Photocatalytic Decomposition of Organic Dyes over A11 and P25 Titanium Dioxide[J]. Applied Catalysis B-Environmental,2003,45(4):293-300.
    [8] Malygina T, Preis S, Kallas J. The Role of PH in Aqueous Photocatalytic Oxidation of Beta-Estradiol[J]. International Journal of Photoenergy,2005,7(4):187-191.
    [9] Gao C M, Wang Z Y, Yu Z P, et al. Effect of PH Values on Photocatalytic Properties of Bi2WO6 Synthesized by Hydrothermal Method[J]. Journal of Wuhan University of Technology-Materials Science Edition,2009,24(4):533-536.
    [10] Paz Y. Preferential Photodegradation - Why and How?[J]. Comptes Rendus Chimie,2006,9(5-6):774-787.
    [11] Zou J A, Gao J C, Xie F Y. An Amorphous TiO_2 Sol Sensitized with H2O2 with the Enhancement of Photocatalytic Activity[J]. Journal of Alloys and Compounds,2010,497(1-2):420-427.
    [12] Pichat P, Guillard C, Amalric L, et al. Assessment of the Importance of theRole of H_2O_2 and O_2~(O-) in the Photocatalytic Degradation of 1,2-Dimethoxybenzene[J]. Solar Energy Materials and Solar Cells,1995,38(1-4):391-399.
    [13] Rod'ko I Y, Kozlov Y N, Purmal' A P. Photocatalytic Oxidation of Phenols in the Presence of Fe(III) and Persulfate[J]. Russian Journal of Physical Chemistry,1999,73(6):1001-1002.
    [14] Gozmen B, Turabik M, Hesenov A. Photocatalytic Degradation of Basic Red 46 and Basic Yellow 28 in Single and Binary Mixture by UV/TiO_2/Periodate System[J]. Journal of Hazardous Materials,2009,164(2-3):1487-1495.
    [15] Yamazaki S, Matsunaga S, Hori K. Photocatalytic Degradation of Trichloroethylene in Water Using TiO_2 Pellets[J]. Water Research,2001,35(4):1022-1028.
    [16] Peterson M W, Turner J A, Nozik A J. Mechanistic Studies of the Photocatalytic Behavior of Titania: Particles in a Photoelectrochemical Slurry Cell and the Relevance to Photodetoxification Reactions[J]. The Journal of Physical Chemistry,1991,95(1):221-225.
    [17] Bekbolet M, Balcioglu I. Photocatalytic Degradation Kinetics of Humic Acid in Aqueous TiO_2 Dispersions: The Influence of Hydrogen Peroxide and Bicarbonate Ion[J]. Water Science and Technology,1996,34(9):73-80.
    [18] Herrmann J M. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants[J]. Catalysis Today,1999,53(1):115-129.
    [19] Hagfeldt A, Graetzel M. Light-Induced Redox Reactions in Nanocrystalline Systems[J]. Chemical Reviews,1995,95(1):49-68.
    [20] Long M C, Cai W M. Photoelectrochemical Properties of BiVO_4 Film Electrode in Alkaline Solution[J]. Chinese Journal of Catalysis,2008,29(9):881-883.
    [21] Ye J H, Zou Z G, Matsushita A. A Novel Series of Water Splitting Photocatalysts NiM2O6 (M = Nb, Ta) Active under Visible Light[J]. International Journal of Hydrogen Energy,2003,28(6):651-655.
    [22] Matthews R W. Photooxidative Degradation of Coloured Organics in Water Using Supported Catalysts. TiO_2 on Sand[J]. Water Research,1991,25 (10):1169-1176.
    [23] Farre M J, Franch M I, Malato S, et al. Degradation of Some BiorecalcitrantPesticides by Homogeneous and Heterogeneous Photocatalytic Ozonation[J]. Chemosphere,2005,58(8):1127-1133.
    [24] Lopez-Munoz M J, Aguado J, van Grieken R, et al. Simultaneous Photocatalytic Reduction of Silver and Oxidation of Cyanide from Dicyanoargentate Solutions[J]. Applied Catalysis B-Environmental,2009,86(1-2):53-62.
    [25] Ku Y, Jung I L. Photocatalytic Reduction of Cr(VI) in Aqueous Solutions by Uv Irradiation with the Presence of Titanium Dioxide[J]. Water Research,2001,35(1):135-142.
    [26] Fourniere E M, Leyva A G, Gautier E A, et al. Treatment of Phenylmercury Salts by Heterogeneous Photocatalysis over TiO_2[J]. Chemosphere,2007,69(5):682-688.
    [27] Lam R C W, Leung M K H, Leung D Y C, et al. Visible-Light-Assisted Photocatalytic Degradation of Gaseous Formaldehyde by Parallel-Plate Reactor Coated with Cr Ion-Implanted TiO_2 Thin Film[J]. Solar Energy Materials and Solar Cells,2007,91(1):54-61.
    [28] Akbarzadeh R, Umbarkar S B, Sonawane R S, et al. Vanadia-Titania Thin Films for Photocatalytic Degradation of Formaldehyde in Sunlight[J]. Applied Catalysis a-General,2010,374(1-2):103-109.
    [29] Wu Y P, Zhang W M, Ma C F, et al. Photocatalytic Degradation of Formaldehyde by Diffuser of Solar Light Pipe Coated with Nanometer Titanium Dioxide Thin Films[J]. Science China-Technological Sciences,2010,53(1):150-154.
    [30] Nasonova A, Kim D J, Kim K S, et al. Application of TiO_2 Photocatalysts to NO and SO_2 Removal in the Dielectric Barrier Discharge Process[J]. Journal of the Korean Physical Society,2009,54(3):1042-1047.
    [31] Huang Y, Ho W K, Lee S C, et al. Effect of Carbon Doping on the Mesoporous Structure of Nanocrystalline Titanium Dioxide and Its Solar-Light-Driven Photocatalytic Degradation of NOx[J]. Langmuir , 2008 ,24(7):3510-3516.
    [32] Sunada K, Kikuchi Y, Hashimoto K, et al. Bactericidal and Detoxification Effects of TiO_2 Thin Film Photocatalysts[J]. Environmental Science & Technology,1998,32(5):726-728.
    [33] Dunlop P S M, Byrne J A, Manga N, et al. The Photocatalytic Removal ofBacterial Pollutants from Drinking Water[J]. Journal of Photochemistry and Photobiology a-Chemistry,2002,148(1-3):355-363.
    [34] Shiraishi K, Koseki H, Tsurumoto T, et al. Antibacterial Metal Implant with a TiO_2-Conferred Photocatalytic Bactericidal Effect against Staphylococcus Aureus[J]. Surface and Interface Analysis,2009,41(1):17-22.
    [35] Jeffery B, Peppler M, Lima R S, et al. Bactericidal Effects of HVOF-Sprayed Nanostructured TiO_2 on Pseudomonas Aeruginosa[J]. Journal of Thermal Spray Technology,2010,19(1-2):344-349.
    [36] Cai R, Kubota Y, Shuin T, et al. Induction of Cytotoxicity by Photoexcited TiO_2 Particles[J]. Cancer Research,1992,52(8):2346-2348.
    [37] Allam N K, Shankar K, Grimes C A. A General Method for the Anodic Formation of Crystalline Metal Oxide Nanotube Arrays without the Use of Thermal Annealing[J]. Advanced Materials,2008,20(20):3942-3946.
    [38]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002:34-35.
    [39] Diebold U. Structure and Properties of TiO_2 Surfaces: A Brief Review[J]. Applied Physics a-Materials Science & Processing,2003,76(5):681-687.
    [40] Mills A, Davies R H, Worsley D. Water Purification by Semiconductor Photocatalysis [J]. Chemical Society Reviews,1993,22(6):417-434.
    [41] Zhang X W, Lei L C. Effect of Preparation Methods on the Structure and Catalytic Performance of TiO_2/AC Photocatalysts[J]. Journal of Hazardous Materials,2008,153(1-2):827-833.
    [42] Zhao X, Liu M H, Zhu Y F. Fabrication of Porous TiO_2 Film Via Hydrothermal Method and Its Photocatalytic Performances[J]. Thin Solid Films,2007,515(18):7127-7134.
    [43]严伟,王小祥.热氧化处理钛表面渗氧层的组织与性能研究[J].稀有金属材料与工程,2005,34(3):471-474.
    [44] Que W X, Zhou Y, Lam Y L, et al. Optical and Microstructural Properties of Sol-Gel Derived Titania/Organically Modified Silane Thin Films[J]. Thin Solid Films,2000,358(1-2):16-21.
    [45] Lee K S, Park I S. Anatase-Phase Titanium Oxide by Low Temperature Oxidation of Metallic Ti Thin Film[J]. Scripta Materialia,2003,48(6):659-663.
    [46] Peng F, Wang H J, Yu H, et al. Preparation of Aluminum Foil-supportedNano-sized ZnO Thin Films and its Photocatalytic Degradation to Phenol under Visible Light Irradiation. Materials Research Bulletin , 2006 , 41(11):2123-2129.
    [47] Watanabe T, Fukayama S, Miyauchi M, et al. Photocatalytic Activity and Photo-Induced Wettability Conversion of TiO_2 Thin Film Prepared by Sol-Gel Process on a Soda-Lime Glass[J]. Journal of Sol-Gel Science and Technology,2000,19(1-3):71-76.
    [48] Deki S, Iizuka S, Mizuhata M, et al. Fabrication of Nano-Structured Materials from Aqueous Solution by Liquid Phase Deposition[J]. Journal of Electroanalytical Chemistry,2005,584(1):38-43.
    [49] Segawa K, Katsuta M, Kameda F. TiO_2-coated on Al2O3 Support Prepared by the Cvd Method for Hds Catalysts[J]. Catalysis Today,1996,29(1-4):215-219.
    [50]吴钧,施利毅,袁帅等.纳米TiO_2/Ti管阵列薄膜催化剂的制备和性能[J].化学反应工程与工艺,2008,24(2):147-151.
    [51]万晔,杨龙刚,于欢.溶胶凝胶法制备纳米TiO_2薄膜及其性能的研究[J].沈阳建筑大学学报(自然科学版),2009,25(1):139-142.
    [52]崔玉民,张文保. WO3/TiO_2薄膜光催化降解ARB性能研究[J].稀有金属,2008,32(4):489-492.
    [53]温敏,齐公台,孙菊梅. TiO_2溶胶的制备及其胶凝过程影响因素分析[J].表面技术,2004,33(1):30-31.
    [54] Balasubramanian G, Dionysiou D D, Suidan M T, et al. Titania Powder Modified Sol-Gel Process for Photocatalytic Applications[J]. Journal of Materials Science,2003,38(4):823-831.
    [55] Keshmiri M, Mohseni M, Troczynski T. Development of Novel TiO_2 Sol-Gel-Derived Composite and Its Photocatalytic Activities for Trichloroethylene Oxidation[J]. Applied Catalysis B-Environmental,2004,53(4):209-219.
    [56] Chen Y, Dionysiou D D. A Comparative Study on Physicochemical Properties and Photocatalytic Behavior of Macroporous TiO_2-P25 Composite Films and Macroporous TiO_2 Films Coated on Stainless Steel Substrate[J]. Applied Catalysis a-General,2007,317(1):129-137.
    [57] Lim L L P, Lynch R J, In S I. Comparison of Simple and Economical Photocatalyst Immobilisation Procedures[J]. Applied Catalysis a-General,2009,365(2):214-221.
    [58] Kishimoto H, Takahama K, Hashimoto N, et al. Photocatalytic Activity of Titanium Oxide Prepared by Liquid Phase Deposition (LPD)[J]. Journal of Materials Chemistry,1998,8(9):2019-2024.
    [59]李宣东,韩喜江,孙浩杰等.液相沉积法制备掺银TiO_2薄膜及光催化性能[J].哈尔滨工业大学学报,2009,41(2):101-104.
    [60]任典君,王荣昌,夏四清.微波辅助液相沉积法制备TiO_2薄膜光催化性能[J].稀有金属材料与工程,2008,37(6):989-994.
    [61] Liao J D, Chen H J, Chang C W, et al. Thin-Film Photo-Catalytic TiO_2 Phase Prepared by Magnetron Sputtering Deposition, Plasma Ion Implantation and Metal Vapor Vacuum Arc Source[J]. Thin Solid Films,2006,515(1):176-185.
    [62] Li Y X, Guo M, Zhang M, et al. Hydrothermal Synthesis and Characterization of TiO_2 Nanorod Arrays on Glass Substrates[J]. Materials Research Bulletin,2009,44(6):1232-1237.
    [63] Lee S H, Kang M S, Cho S M, et al. Synthesis of TiO_2 Photocatalyst Thin Film by Solvothermal Method with a Small Amount of Water and Its Photocatalytic Performance[J]. Journal of Photochemistry and Photobiology a-Chemistry,2001,146(1-2):121-128.
    [64] Gao Y F, Nagai M, Seo W S, et al. Template-Free Self-Assembly of a Nanoporous TiO_2 Thin Film[J]. Journal of the American Ceramic Society,2007,90(3):831-837.
    [65] Kim J H, Fujita S, Shiratori S. Fabrication and Characterization of TiO_2 Thin Film Prepared by a Layer-by-Layer Self-Assembly Method[J]. Thin Solid Films,2006,499(1-2):83-89.
    [66] Sasaki T, Nichols W T, Yoon J W, et al. Photoelectrochemical Behaviors of Pt/TiO_2 Nanocomposite Thin Films Electrodes Prepared by PLD/Sputtering Combined System[J]. Organic and Nanocomposite Optical Materials ,2005,846:223-228.
    [67] Litter M I. Heterogeneous Photocatalysis - Transition Metal Ions in Photocatalytic Systems[J]. Applied Catalysis B-Environmental,1999,23(2-3):89-114.
    [68]杨波,刘再华,蔡益恒等. Fe3+/TiO_2薄膜光催化降解UDMH废水的研究[J].环境科学与技术,2009,32(1):45-47.
    [69]罗磊,李志光,李琼等.不同离子掺杂TiO_2薄膜及光催化活性研究[J].化学工业与工程,2009,26(4):311-315.
    [70] Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science,2001,293(5528):269-271.
    [71] Wong M S, Chou H P, Yang T S. Reactively Sputtered N-Doped Titanium Oxide Films as Visible-Light Photocatalyst[J]. Thin Solid Films,2006,494(1-2):244-249.
    [72] Wang S H, Chen T K, Rao K K, et al. Nanocolumnar Titania Thin Films Uniquely Incorporated with Carbon for Visible Light Photocatalysis[J]. Applied Catalysis B-Environmental,2007,76(3-4):328-334.
    [73] Yang J, Bai H Z, Jiang Q, et al. Visible-Light Photocatalysis in Nitrogen-Carbon-Doped TiO_2 Films Obtained by Heating TiO_2 Gel-Film in an Ionized N-2 Gas[J]. Thin Solid Films,2008,516(8):1736-1742.
    [74] Xie Y, Zhao X J. The Effects of Synthesis Temperature on the Structure and Visible-Light-Induced Catalytic Activity of F-N-Codoped and S-N-Codoped Titania[J]. Journal of Molecular Catalysis a-Chemical,2008,285(1-2):142-149.
    [75] Yao K S, Wang D Y, Chang C Y, et al. Photocatalytic Disinfection of Phytopathogenic Bacteria by Dye-Sensitized TiO_2 Thin Film Activated by Visible Light[J]. Surface & Coatings Technology,2007,202(4-7):1329-1332.
    [76] Solbrand A, Henningsson A, Sodergren S, et al. Charge Transport Properties in Dye-Sensitized Nanostructured TiO_2 Thin Film Electrodes Studied by Photoinduced Current Transients[J]. Journal of Physical Chemistry B ,1999,103(7):1078-1083.
    [77] Biswas S, Hossain M F, Takahashi T, et al. Photocatalytic Activity of High-Vacuum Annealed CdS-TiO_2 Thin Film[J]. Thin Solid Films , 2008 ,516(21):7313-7317.
    [78] Zhang Y G, Ma L L, Li J L, et al. In Situ Fenton Reagent Generated from TiO_2/Cu2O Composite Film: A New Way to Utilize TiO_2 under Visible Light Irradiation[J]. Environmental Science & Technology,2007,41(17):6264-6269.
    [79] Mladenova D, Dushkin C, Puma G L. Photocatalysis with TiO_2 and SnO2/TiO_2 Films Examined by a Kinetic Model[J]. Journal of Advanced Oxidation Technologies,2008,11(3):477-485.
    [80] Song K Y, Park M K, Kwon Y T, et al. Preparation of Transparent Particulate MoO3/TiO_2 and WO3/TiO_2 Films and Their Photocatalytic Properties[J]. Chemistry of Materials,2001,13(7):2349-2355.
    [81]张高洁,吴进明,刘少光等.纳米复合结构二氧化钛薄膜的制备及其光降解水中若丹明B的能力[J].硅酸盐学报,2007,35(4):442-446.
    [82]曹永强,龙绘锦,陈咏梅等.金红石/锐钛矿混晶结构的TiO_2薄膜光催化活性[J].物理化学学报,2009,25(6):1088-1092
    [83] Zhang Y J, Li X F, Hua X S, et al. Sunlight Photocatalysis in Coral-Like TiO_2 Film[J]. Scripta Materialia,2009,61(3):296-299.
    [84] Peng X S, Wang J P, Thomas D F, et al. Tunable Growth of TiO_2 Nanostructures on Ti Substrates[J]. Nanotechnology,2005,16(10):2389-2395.
    [85] Peng X S, Chen A C. Aligned TiO_2 Nanorod Arrays Synthesized by Oxidizing Titanium with Acetone[J]. Journal of Materials Chemistry,2004,14(16):2542-2548.
    [86] Wu G S, Chen A. Direct Growth of F-Doped TiO_2 Particulate Thin Films with High Photocatalytic Activity for Environmental Applications[J]. Journal of Photochemistry and Photobiology a-Chemistry,2008,195(1):47-53.
    [87] Chi B, Victorio E S, Jin T. Synthesis of TiO_2-Based Nanotube on Ti Substrate by Hydrothermal Treatment[J]. Journal of Nanoscience and Nanotechnology,2007,7(2):668-672.
    [88] Peng X S, Chen A C. Large-Scale Synthesis and Characterization of TiO_2-Based Nanostructures on Ti Substrates[J]. Advanced Functional Materials,2006,16(10):1355-1362.
    [89] Wang W L, Lin H, Li J B, et al. Formation of Titania Nanoarrays by Hydrothermal Reaction and Their Application in Photovoltaic Cells[J]. Journal of the American Ceramic Society,2008,91(2):628-631.
    [90] Tengvall P, Elwing H, Lundstrom I. Titanium Gel Made from Metallic Titanium and Hydrogen Peroxide[J]. J. Colloid Interface Science,1989,130:405-413.
    [91] Wang Y Z, Hong X, Wang G Z, et al. Fabrication and Photocatalysis of TiO_2 Flower-Like Nanostructures[J]. Chinese Journal of Chemical Physics ,2006,19(6):559-562.
    [92] Wu J M. Low-Temperature Preparation of Titania Nanorods through DirectOxidation of Titanium with Hydrogen Peroxide[J]. Journal of Crystal Growth,2004,269(2-4):347-355.
    [93] Wu J M, Hayakawa S, Tsuru K, et al. Nanocrystalline Titania Made from Interactions of Ti with Hydrogen Peroxide Solutions Containing Tantalum Chloride[J]. Crystal Growth & Design,2002,2(2):147-149.
    [94] Wu J M. Photodegradation of Rhodamine B in Water Assisted by Titania Nanorod Thin Films Subjected to Various Thermal Treatments[J]. Environmental Science & Technology,2007,41(5):1723-1728.
    [95] Wu J M, Zhang T W, Zeng Y W, et al. Large-Scale Preparation of Ordered Titania Nanorods with Enhanced Photocatalytic Activity[J]. Langmuir,2005,21(15):6995-7002.
    [96] Wu J M, Qi B. Low-Temperature Growth of a Nitrogen-Doped Titania Nanoflower Film and Its Ability to Assist Photodegradation of Rhodamine B in Water[J]. Journal of Physical Chemistry C,2007,111(2):666-673.
    [97] Resel R, Oehzelt M, Lengyel O, et al. The Epitaxial Sexiphenyl (001) Monolayer on TiO_2 (110): A Grazing Incidence X-Ray Diffraction Study[J]. Surface Science,2006,600(19):4645-4649.
    [98] Zhao W, Ma W H, Chen C C, et al. Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO_2-xBx under Visible Irradiation[J]. Journal of the American Chemical Society,2004,126(15):4782-4783.
    [99] Barton D G, Shtein M, Wilson R D, et al. Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures[J]. Journal of Physical Chemistry B,1999,103(4):630-640.
    [100] Hong X T, Wang Z P, Cai W M, et al. Visible-Light-Activated Nanoparticle Photocatalyst of Iodine-Doped Titanium Dioxide[J]. Chemistry of Materials,2005,17(6):1548-1552.
    [101] Kasuga T, Hiramatsu M, Hoson A, et al. Formation of Titanium Oxide Nanotube[J]. Langmuir,1998,14(12):3160-3163.
    [102] Kasuga T, Hiramatsu M, Hoson A, et al. Titania Nanotubes Prepared by Chemical Processing[J]. Advanced Materials,1999,11(15):1307-1311.
    [103] Z. H. Dong, Y. N. Zhao, H. Su, et al. Hierarchical Titanate Nanostructures through Hydrothermal Treatment of Commercial Titania Powders. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 2009, 635(3):417-419
    [104] Armstrong A R, Armstrong G, Canales J, et al. TiO_2-B Nanowires[J].Angewandte Chemie-International Edition,2004,43(17):2286-2288.
    [105] Yuan Z Y, Su B L. Titanium Oxide Nanotubes, Nanofibers and Nanowires[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2004,241(1-3):173-183.
    [106] Kolen'ko Y V, Kovnir K A, Gavrilov A I, et al. Hydrothermal Synthesis and Characterization of Nanorods of Various Titanates and Titanium Dioxide[J]. Journal of Physical Chemistry B,2006,110(9):4030-4038.
    [107] Kim H M, Miyaji F, Kokubo T, et al. Effect of Heat Treatment on Apatite-Forming Ability of Ti Metal Induced by Alkali Treatment[J]. Journal of Materials Science-Materials in Medicine,1997,8(6):341-347.
    [108] Ramo J, Saarinen K, Sillanpaa M. Uniform Corrosion of Titanium in Alkaline Hydrogen Peroxide Conditions: Influence of Transition Metals and Inhibitors Calcium and Silicate[J]. Materials and Corrosion-Werkstoffe Und Korrosion,2002,53(12):898-901.
    [109] Ichinose H, Katsuki H. Photocatalytic Activities of Coating Films Prepared from Peroxotitanic Acid Solution-Derived Anatase Sols[J]. Journal of the Ceramic Society of Japan,1998,106(3):344-347.
    [110] Ma R Z, Fukuda K, Sasaki T, et al. Structural Features of Titanate Nanotubes/Nanobelts Revealed by Raman, X-Ray Absorption Fine Structure and Electron Diffraction Characterizations[J]. Journal of Physical Chemistry B,2005,109(13):6210-6214.
    [111] Zhang Q H, Gao L A, Sun J, et al. Preparation of Long TiO_2 Nanotubes from Ultrafine Rutile Nanocrystals[J]. Chemistry Letters,2002(2):226-227.
    [112] Du G H, Chen Q, Che R C, et al. Preparation and Structure Analysis of Titanium Oxide Nanotubes[J]. Applied Physics Letters,2001,79(22):3702-3704.
    [113] Suzuki Y, Yoshikawa S. Synthesis and Thermal Analyses of TiO_2-Derived Nanotubes Prepared by the Hydrothermal Method[J]. Journal of Materials Research,2004,19(4):982-985.
    [114] Yoshida R, Suzuki Y, Yoshikawa S. Syntheses of TiO_2 (B) Nanowires and TiO_2 Anatase Nanowires by Hydrothermal and Post-Heat Treatments[J]. Journal of Solid State Chemistry,2005,178(7):2179-2185.
    [115]王芹,陶杰,翁履谦.氧化钛纳米管的水热法合成机理研究[J].南京航空航天大学学报,2005,37(1):130-134.
    [116] Pekakis P A, Xekoukoulotakis N P, Mantzavinos D. Treatment of Textile Dyehouse Wastewater by TiO_2 Photocatalysis[J]. Water Research,2006,40(6):1276-1286.
    [117] Hurum D C, Agrios A G, Gray K A, et al. Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO_2 Using EPR[J]. Journal of Physical Chemistry B,2003,107(19):4545-4549.
    [118] Orendorz A, Brodyanski A, Losch J, et al. Phase Transformation and Particle Growth in Nanocrystalline Anatase TiO_2 Films Analyzed by X-Ray Diffraction and Raman Spectroscopy[J]. Surface Science,2007,601(18):4390-4394.
    [119] Zuruzi A S, MacDonald N C. Facile Fabrication and Integration of Patterned Nanostructured TiO_2 for Microsystems Applications[J]. Advanced Functional Materials,2005,15(3):396-402.
    [120] Zuruzi A S, Kolmakov A, MacDonald N C, et al. Highly Sensitive Gas Sensor Based on Integrated Titania Nanosponge Arrays[J]. Applied Physics Letters,2006,88(10):102904-102906.
    [121] Zuruzi A S, Butler B C, MacDonald N C, et al. Nanostructured TiO_2 Thin Films as Porous Cellular Interfaces[J]. Nanotechnology,2006,17(2):531-535.
    [122] Wu L, Yu J C, Fu X Z. Characterization and Photocatalytic Mechanism of Nanosized CdS Coupled TiO_2 Nanocrystals under Visible Light Irradiation[J]. Journal of Molecular Catalysis a-Chemical,2006,244(1-2):25-32.
    [123] Wu J M, Qi B. Low-Temperature Growth of Rutile Nanorod Thin Films and Their Photon-Induced Property[J]. Journal of the American Ceramic Society,2008,91(12):3961-3970.
    [124] Wu J M, Qi B. Low-Temperature Growth of Monolayer Rutile TiO_2 Nanorod Films[J]. Journal of the American Ceramic Society,2007,90(2):657-660.
    [125] Mühlebach J, Müller K, Schwarzenbach G. The Peroxo Complexes of Titanium[J]. Inorganic Chemistry,1970,9(11):2381-2390.
    [126] Sanderson R T. Chemical Bond and Bond Engergies[M]. New York :Academic Press,1976:23-30
    [127] Yamabi S, Imai H. Crystal Phase Control for Titanium Dioxide Films by Direct Deposition in Aqueous Solutions[J]. Chemistry of Materials,2002,14(2):609-614.
    [128] Yamabi S, Imai H. Fabrication of Rutile TiO_2 Foils with High Specific Surface Area Via Heterogeneous Nucleation in Aqueous Solutions[J]. Chemistry Letters,2001(3):220-221.
    [129] Alhomoudi I A, Newaz G. Residual Stresses and Raman Shift Relation in Anatase TiO_2 Thin Film[J]. Thin Solid Films,2009,517(15):4372-4378.
    [130] Ma H L, Yang J Y, Dai Y, et al. Raman Study of Phase Transformation of TiO_2 Rutile Single Crystal Irradiated by Infrared Feratosecond Laser[J]. Applied Surface Science,2007,253(18):7497-7500.
    [131] Tryba B, Toyoda M, Morawski A W, et al. Photocatalytic Activity and Oh Radical Formation on TiO_2 in the Relation to Crystallinity[J]. Applied Catalysis B-Environmental,2007,71(3-4):163-168.
    [132] Miyagi T, Kamei M, Mitsuhashi T, et al. Charge Separation at the Rutile/Anatase Interface: A Dominant Factor of Photocatalytic Activity[J]. Chemical Physics Letters,2004,390(4-6):399-402.
    [133] Nosaka Y, Matsushita M, Nishino J, et al. Nitrogen-Doped Titanium Dioxide Photocatalysts for Visible Response Prepared by Using Organic Compounds[J]. Science and Technology of Advanced Materials,2005,6(2):143-148.
    [134] Kobayakawa K, Murakami Y, Sato Y. Visible-Light Active N-Doped TiO_2 Prepared by Heating of Titanium Hydroxide and Urea[J]. Journal of Photochemistry and Photobiology a-Chemistry,2005,170(2):177-179.
    [135] Mitoraj D, Beranek R, Kisch H. Mechanism of Aerobic Visible Light Formic Acid Oxidation Catalyzed by Poly(Tri-S-Triazine) Modified Titania[J]. Photochemical & Photobiological Sciences,2010,9(1):31-38.
    [136] Mitoraj D, Kisch H. The Nature of Nitrogen-Modified Titanium Dioxide Photocatalysts Active in Visible Light[J]. Angewandte Chemie-International Edition,2008,47(51):9975-9978.
    [137] Mitoraj D, Kisch H. On the Mechanism of Urea-Induced Titania Modification[J]. Chemistry-a European Journal,2010,16(1):261-269.
    [138] Chen J P, Kimio I. Thermal Decomposition of Urea and Urea Derivatives by Simutaneous TG/(DTA)/MS[J]. Journal of the Mass Spectrometry Society of Japan,1998,46(4):299-303.
    [139] Schaber P M, Colson J, Higgins S, et al. Thermal Decomposition (Pyrolysis) of Urea in an Open Reaction Vessel[J]. Thermochimica Acta,2004,424(1-2):131-142.
    [140] Schaber P M, Colson J, Higgins S, et al. Study of the Urea Thermal Decomposition (Pyrolysis) Reaction and Importance to Cyanuric Acid Producition[J]. American Laboratory,1999,31(16):13-21.
    [141] Kafizas A, Parkin I P. The Combinatorial Atmospheric Pressure Chemical Vapour Deposition (CAPCVD) of a Gradating N-Doped Mixed Phase Titania Thin Film[J]. Journal of Materials Chemistry,2010,20(11):2157-2169.
    [142] Spadavecchia F, Cappelletti G, Ardizzone S, et al. Solar Photoactivity of Nano-N-TiO_2 from Tertiary Amine: Role of Defects and Paramagnetic Species[J]. Applied Catalysis B-Environmental,2010,96(3-4):314-322.
    [143] Vitiello R P, Macak J M, Ghicov A, et al. N-Doping of Anodic TiO_2 Nanotubes Using Heat Treatment in Ammonia[J]. Electrochemistry Communications,2006,8(4):544-548.
    [144] Yin S, Ihara K, Komatsu M, et al. Low Temperature Synthesis of TiO_2-xNy Powders and Films with Visible Light Responsive Photocatalytic Activity[J]. Solid State Communications,2006,137(3):132-137.
    [145] Beranek R, Kisch H. Surface-Modified Anodic TiO_2 Films for Visible Light Photocurrent Response[J]. Electrochemistry Communications,2007,9(4):761-766.
    [146] Beranek R, Kisch H. Tuning the Optical and Photoelectrochemical Properties of Surface-Modified TiO_2[J]. Photochemical & Photobiological Sciences,2008,7(1):40-48.
    [147] Wang X C, Maeda K, Thomas A, et al. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light[J]. Nature Materials,2009,8(1):76-80.
    [148] Al-Quadawi S, Salman S R. Photocatalytic Degradation of Methyl Orange as a Model Compound[J]. Journal of Photochemistry and Photobiology a-Chemistry,2002,148(1-3):161-168.
    [149] Lee M S, Hong S S, Mohseni M. Synthesis of Photocatalytic Nanosized TiO_2-Ag Particles with Sol-Gel Method Using Reduction Agent[J]. Journal of Molecular Catalysis a-Chemical,2005,242(1-2):135-140.
    [150] Deifallah M, McMillan P F, Cora F. Electronic and Structural Properties of Two-Dimensional Carbon Nitride Graphenes[J]. Journal of Physical Chemistry C,2008,112(14):5447-5453.
    [151] Chen S F, Chen L, Gao S, et al. The Preparation of Coupled WO3/TiO_2 Photocatalyst by Ball Milling[J]. Powder Technology,2005,160(3):198-202.
    [152] Kobayashi M, Miyoshi K. WO3-TiO_2 Monolithic Catalysts for High Temperature SCR of NO by NH3: Influence of Preparation Method on Structural and Physico-Chemical Properties, Activity and Durability[J]. Applied Catalysis B-Environmental,2007,72(3-4):253-261.
    [153] Michalow K A, Heel A, Vital A, et al. Effect of Thermal Treatment on the Photocatalytic Activity in Visible Light of TiO_2-W Flame Spray Synthesised Nanopowders[J]. Topics in Catalysis,2009,52(8):1051-1059.
    [154] Piszcz M, Tryba B, Grzmil B, et al. Photocatalytic Removal of Phenol under Uv Irradiation on WO(x) -TiO_2 Prepared by Sol-Gel Method[J]. Catalysis Letters,2009,128(1-2):190-196.
    [155] Yang H M, Shi R R, Zhang K, et al. Synthesis of WO3/TiO_2 Nanocomposites Via Sol-Gel Method[J]. Journal of Alloys and Compounds,2005,398(1-2):200-202.
    [156] Cheng Y Z, Zhang Y M, Tang Y. Preparation and Properties of WO3-TiO_2 Composite Film Photocatalyst[J]. Chinese Journal of Catalysis, 2001,22(2):203-205.
    [157] Luo W, Fu X K, Ma L H. The Research on the High Quality TiO_2, MoO3-Doped WO3 Electrochromic Film[J]. Chinese Chemical Letters,2007,18(7):883-886.
    [158] Yagi M, Umemiya S. Novel Preparation and Photoelectrochemical Properties of a Tungsten Oxide/Tris(2,2'-Bipyrizine)Ruthenium(II) Complex Composite Film[J]. Journal of Physical Chemistry B,2002,106(25):6355-6357.
    [159] Zuruzi A S, MacDonald N C, Moskovits M, et al. Metal Oxide "Nanosponges" As Chemical Sensors: Highly Sensitive Detection of Hydrogen with Nanosponge Titania[J]. Angewandte Chemie-International Edition,2007,46(23):4298-4301.
    [160] Li X Z, Li F B, Yang C L, et al. Photocatalytic Activity of WOx-TiO_2 under Visible Light Irradiation[J]. Journal of Photochemistry and Photobiology a-Chemistry,2001,141(2-3):209-217.
    [161] Zhang J Y, Zheng S K, Hao W C, et al. Characterization of WO3-Doped TiO_2 Photocatalytic Thin Films Prepared by Self-Assembly Method[J]. Rare MetalMaterials and Engineering,2005,34(5):731-733.
    [162] Chen S F, Cao G Y. Study on the Photocatalytic Reduction of Dichromate and Photocatalytic Oxidation of Dichlorvos[J]. Chemosphere,2005,60(9):1308-1315.
    [163] Ke D N, Liu H J, Peng T Y, et al. Preparation and Photocatalytic Activity of WO3/TiO_2 Nanocomposite Particles[J]. Materials Letters,2008,62(3):447-450.
    [164] Fernandez-Garcia M, Martinez-Arias A, Fuerte A, et al. Nanostructured Ti-W Mixed-Metal Oxides: Structural and Electronic Properties[J]. Journal of Physical Chemistry B,2005,109(13):6075-6083.
    [165]张立德,牟秀美.纳米材料和纳米结构[M].北京:科学出版社,2001:236-237
    [166] Ge L, Xu M X, Fang H B. Study on Preparation, Structure and Forming Mechanism of the Needle-Like TiO_2 Anatase Crystals Sol[J]. Chinese Journal of Inorganic Chemistry,2005,21(3):394-398.
    [167] Wang Z C, Hu X F. Electrochromic Properties of TiO_2-Doped WO3 Films Spin-Coated from Ti-Stabilized Peroxotungstic Acid[J]. Electrochimica Acta,2001,46(13-14):1951-1956.
    [168] Kim C Y, Cho S G, Park S, et al. Tungsten Oxide Film Synthesis by Spray Pyrolysis of Peroxotungstic Acid and Its Electrochromic Characterization[J]. Journal of Ceramic Processing Research,2009,10(6):851-854.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700