多孔SnO_2、ZnO纳米材料及PPy/F-MWCNTs复合纳米材料的制备及其气敏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料及纳米技术的发展为改善传感器的性能提供了新的发展机会。近年来,具有多孔结构的金属氧化物半导体(MOS)纳米材料与碳纳米管(CNTs)基纳米复合材料因其优异的性能而倍受关注。因此制备多孔结构MOS纳米材料及CNTs基纳米复合材料对改善气敏传感器的性能具有很重要的意义。
     (1)通过原位化学氧化聚合法成功制备了聚吡咯(PPy)包裹酸处理多壁碳米管(F-MWCNTs)的复合材料(PPy/F-MWCNTs)。对所制备的PPy/F-MWCNTs纳米复合材料,分别采用傅里叶变换红外光谱分析(FT-IR)、紫外可见漫反射(UV-vis DRS)、热重分析(TGA)、X-射线衍射(XRD)、比表面分析(BET)、场发射扫描电镜(FE-SEM)口透射电镜(TEM)进行表征。实验结果表明在F-MWCNTs表面均匀包覆了一层约25-40 nm厚的PPy, PPy/F-MWCNTs的比表面积较单一的PPy提高了近3倍。基于PPy/F-MWCNTs的气敏元件在室温下对NH3的气敏性能较单一聚吡咯和碳纳米管具有更高的灵敏度,更短的响应时间以及更好的稳定性,其中对200 ppm NH3的灵敏度能达到1.9,响应时间为135s.另外与PPy包覆未经酸处理的MWCNTs相比PPy/F-MWCNTs的灵敏度更高。
     (2)通过高温处理层状碱式碳酸锌前躯体的方法成功制备了多孔ZnO单晶纳米片。前躯体碱式碳酸锌(LBZC)采用聚乙烯吡咯烷酮(PVP)为表面活性剂,尿素水溶液水热的条件下制备。所得多孔ZnO单晶纳米片分别采用X-射线衍射(XRD),傅里叶转换红外光谱分析(FT-IR),热重-示差分析(TGA-DSC),场发射扫描电镜(FE-SEM),透射电镜(TEM),选区电子衍射(SAED),比表面分析(BET)等进行表征。实验结果表明所制备的多孔ZnO单晶纳米片直径大约几百个纳米,厚度约为15 nm。基于该多孔ZnO单晶纳米片的气敏传感器在300℃下对乙醇具有很好的灵敏度,比较高的选择性以及快速的响应-恢复性能,是一种很好的气敏材料。而且,这种溶液法也可以用来制备其他具有均一形貌的金属氧化物多孔材料。
     (3)采用一种简单的溶剂热-高温处理的方法成功制备了由大量15.9 nm左右的单晶SnO2微纳米球组装而成的分级结构多孔SnO2纳米棒。采用X-射线衍射(XRD),傅立叶转换红外光谱分析(FT-IR),热重-差热分析(TGA-DTA),场发射扫描电镜(FE-SEM),透射电镜(TEM),选区电子衍射(SAED),比表面分析(BET)等测试手段对样品的形貌与结构进行表征。实验结果表明多孔SnO:纳米棒长度约5-6μm,基于该结构材料的气敏元件在240℃下对乙醇蒸气具有非常好的灵敏度,快速的响应-恢复时间以及比较好的选择性及稳定性。
In the past few years, the development of nanomaterials and nanotechnologies provided new opportunities for improving the properties of gas sensors. Recently, the sensing properties of porous MOS nanostructured materials and CNTs-based nanocomposites have been widely studied, owing to the great surface activity provided by their enormous surface areas for chemical reaction and effective diffusion of gases into the materials. Hence, the preparation of porous MOS nanomaterials and CNTs-based nanocomposites would be of significance for improving the gas sensor's performance. In view of this problems, this paper mainly do the following work:
     (1) A nanocomposite(PPy/F-MWCNTs) has been successfully synthesized by the in-situ chemical oxidation polymerization with acid-treated multi-walled carbon nanotubes(F-MWCNTs) and polypyrroles(PPy). The asprepared composiste was characterized by Fourier transformed infrared spectra (FT-IR), UV-vis diffuse reflection spectroscopy(UV-vis DRS), Thermal gravimetric analysis(TGA), X-ray diffraction study(XRD), Branauer-Emmett-Teller analysis(BET), Field-emission scanning electron microscopy(FE-SEM) and Transmission electron microscopy (TEM). The results has revealed that the F-MWCNTs was well-coated with about 25-40 nm thickness of polypyrrole, and the surface specific areas of PPy/F-MWCNTs is about three times than that of pure PPy. The sensors fabricated by PPy/F-MWCNTs exhibited a higher sensitivity, better response/reproduc-ibility towards NH3 vapor at room temperature than by pure PPy or F-MWCNTs. The sensitivity was 1.9 even to 200 ppm of NH3 and the response time was 135s. In addition, compared with MWCNTs untreated with acid, the as-prepared PPy/F-MWCNTs also exhibits higher sensitivity than that prepared without acid-treated MWCNTs.
     (2) In this paper, the porous single-crystalline Zinc oxide (ZnO) nanoplates were fabricated from the thermal-decomposition of layered basic zinc carbonate (LBZC) precursors, which were synthesized by an urea hydrothermal method used PVP as surfactant in the solution of water. The structure and morphology of the as-synthesized samples were characterized by means of X-ray powder diffraction(XRD), Fourier transform infrared(FT-IR), Thermogravimetric-differential scanning calorimetry analysis(TGA-DSC), Field-emission scanning electron microscopy(FE-SEM), Transmission electron microscopy(TEM), Selected area electron diffraction (SAED) pattern and Nitrogen adsorption-desorption isotherm analysis. The results showed that the average diameter of as-prepared porous ZnO nanoplates were about several hundred nanometers and the thickness of the nanoplates was about 15 nm. The sensors fabricated from the porous ZnO nanoplates exhibited good sensitivity, high selectivity, rapid response-recovery times to ethanol vapors at 300℃and would be good candidate for gas sensing materials.Moreover, it is believed that the solution-based approach could be extended to fabricate other porous metal oxide materials with a unique morphology.
     (3) Hierarchical porous Tin oxide (SnO2) nanorods that composed of numerous single-crystalline SnO2 nanoparticles with about 15.9 nm in diameter were synthesized by a facile hydrothermal method with the help of the surfactant DMF followed by calcination in air atmosphere.The structure and morphology of resulting samples were characterized by means of X-ray powder diffraction (XRD), Fourier transform infrared(FT-IR), Thermogravimetric-differential thermalgravimetric analysis(TGA-DTA), Feld-emission scanning electron, Transmission electron microscopy(TEM), selected area electron diffraction (SAED) pattern and Branauer-Emmett-Teller analysis. The results showed that the as-synthesized porous nanorods were about 5-6μm in length. The sensors fabricated from the porous SnO2 nanorods exhibited good sensitivity, high selectivity, long-term stability and rapid response-recovery times to ethanol vapors at 240℃.
引文
[1]刘迎春,叶湘滨.现代新型传感器原理与应用.北京:国防工业出版社,2000:286-305
    [2]刘正勇,张耀华.半导体氧化物气敏传感器测试新原理和方法.传感器学报,2000,6(2):106-108
    [3]Ji S Z, Li Y, Yang M J. Gas sensing properties of a composite composed of electrospun poly(methyl methacrylate) nanofibers and in situ polymerized polyaniline. Sensors and Actuators B,2008,133(2):644-649
    [4]Pelloux A, Gondran C. Solid state electrochemical sensor for chlorine and hydrogen chloride gas trace analysis. Sensors and Actuators B,1999,59(7):83-88
    [5]潘小青,刘庆成.气体传感器及发展.东华理工学院学报,2004,27(1):89-93
    [6]刘崇进,陈明光,贝承训,等.气体传感器的发展概况与发展方向.计算机自动测量与控制,1999,7(2):55-57
    [7]赵平刚,陈莉华,白旭东,等.石英谐振式CO2气敏元件.传感器技术,200l,20(9):30-31
    [9]王玉田,孟宗,刘卫东.环境监测与光纤传感器.世界科技研究与发展,2001,25(6):15-17
    [10]吴玉锋,田彦文,韩元山,等.气体传感器研究进展和发展方向.计算机测量与控制,2003,11(10):731-734
    [11]徐甲强,韩建军,孙雨安,等.半导体气敏传感器敏感机理的研究进展.传感器与微系统,2006,25(11):5-8
    [12]官德斌,杨亚杰,刘学涌,等.一种新型有机气敏材料的成膜和低温气敏性能.传感技术学报,2009,22(1):l 9-22
    [13]李平,余萍,肖定全.气体传感器的近期进展.功能材料,1999,30(2):126-128
    [14]林金阳.基于霍耳效应的气敏传感器的研制:[硕士学位论文],福州:福州大学,2006
    [15]李晶晶,李冬梅,赵以贵,等.常见气体声表面波传感器的研究进展.传感器世界,2009,15(3):6-10
    [16]王焕新,胡平,王晓华,等.氧化铈掺杂对氧化铟气敏特性的影响.稀土2007,28(2):1-6
    [17]徐海军,何新秀,曾英.富氧尾气中NOx催化净化的研究进展.环境污染治理技术与设备,2002,3(4):29-34
    [18]Hu Y, Zhou X H, Han Q, et al. Sensing properties of CuO-ZnO heterojunction gas sensor. Materials Science and Engineering B,2003,99(1-3):41-43
    [19]Chen Y J, Zhu C L, Shi X L, et al. The synthesis and selective gas sensing characteristics of SnO2/a-Fe2O3 hierarchical nanostructures. Nanotechnology, 2008,20(19):205603-205608
    [20]顾长志,孙良彦,张彤,等.一种新型结构的LB膜化学场效应晶体管的气敏特性研究.半导体学报,1994,15(4):272-275
    [21]田敬明.Pt/InP肖特基二极管气敏特性的研究.半导体学报,1996,17(7):529-532
    [22]安宏亮.In2O3系半导体复合氧化物氯气敏感特性研究[硕士论文].哈尔滨:哈尔滨理工大学,2008
    [23]Ling Z, Leach C. The effect of relative humidity on the NO2 sensitivity of a SnO2/WO3 heterojunction gas sensor. Sensors and Actuators B,2004,102(1): 102-106
    [24]Fan H T, Zeng Y, Xu X J, et al. Hydrothermal synthesis of hollow ZnSnO3 microspheres and sensing properties toward butane. Sensors and Actuators B, 2011,153(1):170-175
    [25]Chen T, Zhou Z L, Wang Y D. Surfactant CATB-assisted generation and gas-sensing characteristics of LnFeO3(Ln= La, Sm, Eu) materials. Sensors and Actuators B,2009,143(1):124-131
    [26]Chu X F, Liu X Q, Deng J J, et al. The effect of Ln3+(Ln=Y, Nd) on the conductivity and gas-sensing properties of CdIn2O4 semiconductor. Sensors and Actuators B:Chemical,2000,67(1):290-293
    [27]Serge Z K, Takashi N, Akira K M, et al. Potentiometric NOx sensor based on stabilized zirconia and NiCr2O4 sensing electrode operating at high temperatures. Electrochemistry Communications,2001,3(2):97-101
    [28]Hu Y, Tan O K, Pan J S, et al. The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor. Sensors and Actuators B:Chemical,2005,108(1-2):244-249
    [29]Chu X F, Jiang D L, Zheng C M. The preparation and gas-sensing properties of NiFe2O4 nanocubes and nanorods. Sensors and Actuators B:Chemical,2007, 123(2):793-797
    [30]赵义芬,赵鹤云,吴兴惠.金属氧化物半导体气敏材料的研究进展.传感器世界,2009,15(1):6-11
    [31]Giselle J C, Jordi R, Xavier R F. Gas sensors based on nanostructured-materials. Analyst,2007,132(11):1083-1099
    [32]Ge C Q, XieC S, Hu M L, et al. Structural characteristics and UV-light enhanced gas sensitivity of La-doped ZnO nanoparticles, Mater. Sci. Eng. B:Solid.,2007, 141(1-2):43-48
    [33]Ge C Q, Xie C S, Cai S Z. Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating, Mater. Sci. Eng. B:Solid.2007,137(1-3): 53-58
    [34]Neri G, Bonavita A, Milone C, et al. Role of the Au oxidation state in the CO sensing mechanism of Au/iron oxide-based gas sensors, Sens. Actuators B: Chem.,2003,93(1-3):402-408
    [35]Matsushima S, Maekawa T, Tamaki J, et al. Role of additives on alcohol sensing by semiconductor gas sensor. Chem Lett,1989,18(5):845-848
    [36]Tamaki J, Maekawa T, Matsushima S, et al. CuO-SnO2 element for highly sensitive and selective detection of H2S. Sensors and Actuators B,2005,9(3): 197-203
    [37]Madler L, Roessler A, Pratsinis S E, et al. Direct formation of highly porous gas-sensing films by in situ therm ophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sens. Actuators B:Chem.,2006,114(1):283-295
    [38]Ulman A. An Introduction to ultrathin organic films:from Langmuir-Blodgett to self-assembly, Academic Press, Boston,1991.
    [39]Zhan Z L, WangW N, Zhu L Y, et al. Flame aerosol reactor synthesis of nanostructured SnO2 thin films:high gas-sensing properties by control of morphology. Sensors and Actuators B,2010,150 (2):609-615
    [40]张纯禹.现代优化计算方法在材料最优化设计中的应用.材料科学与工程学报,2003,21(1):44-47
    [41]Kauffman D R, Alexander S. Carbon nanotube gas and vapor sensors. Angew. Chem. Int. Ed.2008,47(35):6550-6570
    [42]Kong J, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors. Science,2000,287(5453):622-625
    [43]Wang S G, Zhang Q, Yang D J, et al. Multi-walled carbon nanotube-based gas sensors for NH3 detection. Diamond and Related Materials,2004, 13(4-8):1327-1332
    [44]Modi A, Koratkar N, Lass E, et al. Miniaturized gas ionization sensors using carbon nanotubes. Nature,2003,424 (6945):171-174
    [45]Qi P F, Vermesh O, Grecu M, et al. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett,2003,3(3):347-351
    [46]Zhang T, Mubeen Y, Myung N V, et al. Recent progress in carbon nanotube-based gas sensors. Nanotechnology,2008,19(33):332001-33214
    [47]Sayago I, Terrado E, Lafuente E, et al. Hydrogen sensors based on carbon nanotubes thin films. Synth. Met.,2005,148(1-3):15-19
    [48]Kumar M K, Ramaprabhu S. Nanostructured Pt functional-ized multiwalled carbon nanotube based hydrogen sensor. J. Phys. Chem. B.,2006,110(33): 11291-11298
    [49]Liou W J, Lin H M, Yang T Y, et al. Hybrid MOS/CNTs Materials for gas sensing. Solid State Phenomena,2006,111(19):19-24
    [50]Radouane L, Roman P, Alexandre F, et al. Gas sensors based on multiwall carbon nanotubes decorated with tin oxide nanoclusters. Sensors and Actuators B: Chemical,2010,145(1):411-416
    [51]Yang A, Tao X M, Wang R X, et al. Room temperature gas sensing properties of SnO2/multiwall-carbon nanotube composite nanofibers. Applied Physics Letters, 2007,91(13):133110-133113
    [52]Bittencourt C, Felten A, Espinosa E H. et al. WO3 films modified with functionalised multi-wall carbon nanotubes:Morphological, compositional and gas response studies. Sensors and Actuators B,2006,115(1):33-41
    [53]van de Leur R H M, van derWaal A. Gas and vapor detection using polypyrrole, Synth. Met.1999,102 (1-3) 1330-1331
    [54]Torsi L, Pezzuto M, Siciliano P, et al. Conducting polymers doped with metallic inclusions:new materials for gas sensors. Sens. Actuators B,1998,48 (1-3):362-367
    [55]Hong L J, Li Y,Yang M J.Fabrication and ammonia gas sensing of palladium/polypyrrole nanocomposite. Sensors and Actuators B,2010,145 (1): 25-31
    [56]Su P G, Shiu C C. Flexible H2 sensor fabricated by layer-by-layer self-assembly of thin films of polypyrrole and modified in situ with Pt nanoparticles. Sensors and Actuators B:Chemical, doi:10.1016/j.snb.2011.03.062
    [57]Zhang J, Wang S R, Xu M J, et al. Polypyrrole-Coated SnO2 Hollow Spheres and Their Application for Ammonia Sensor. J. Phys. Chem. C,2009,113(5): 1662-1665
    [58]Weng S H, Zhou J Z, Lin Z H. Preparation of one-dimensional (1D) polyaniline-polypyrrole coaxial nanofibers and their application in gas sensor. Synthetic Metals,2010,160(11-12):1136-1142
    [59]Jin G, Norrish J, Too C, et al. Polypyrrole filament sensors for gases and vapours. Curr Appl Phys.,2004,4(2-4):366-369
    [60]Doleman B J, Lewis N S. Comparison of odor detection thresholds and odor discriminablities of a conducting polymer composite electronic nose versus mammalian olfaction. Sensor Actuat B:Chem.,2001,72(1):41-50
    [61]Hopkins A R, Lewis N S. Detection and classification characteristics of arrays of carbon black/organic polymer composite chemiresistive vapor detectors for the nerve agent simulants dimethylmethylphosphonate and diisopropylmethylphospo-nate. Anal Chem.,2001,73(5):884-892
    [62]Ha S C, Kim Y S, Yang Y, et al. Integrated and microheater embedded gas sensor array based on the polymer composites dispensed in micromachined wells. Sensor Actuat B:Chem.,2005,105(2):549-555
    [63]Snow E S, Perkins F K, Houser E J, et al. Chemical detection with a single-walled carbon nanotube capacitor. Science,2005,307(5717):1942-1945
    [64]Takao Y,Miyazaki K,Shimizu Y,et al. High Ammonia Sensitive Semiconductor Gas Sensors with Double-Layer Structure and Interface Electrodes. J.Electrochem.Soc.,1994,141(4):1028-1034
    [65]张红芹,谢英南,蒋登高,等.聚苯胺气敏材料的研究进展.化工新型材料,2007,35(11):11-13
    [66]Chen Y S, Li Y, Wang H C,et al.Gas sensitivity of a composite of multi-walled carbon nanotubes and polypyrrole prepared by vapor phase polymerization. Carbon,2007,45(2):357-363
    [67]Iijima S.Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-68
    [68]Ajayan P M, Zhou O Z, Applications of carbon nanotubes. Topics Appl. Phys., 2001,80:391-425
    [69]Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes.Nature,1996,381(20):678-680
    [70]Nguyen V H, Nguyen Q D, Phuong D T, et al. Thin film polypyrrole/SWCNTs nanocomposites-based NH3 sensor operated at room temperature. Sensors and Actuators B:Chem.,2009,140(2):500-507
    [71]Shin H C, Liu M L, Sadanadan B, et al. Electrochemical insertion of lithium into multiwalled carbon nanotubes prepared by catalytic decomposition. J. Power Sources,2002,112(1):216-221
    [72]Canobre S C, Almeida D A L, Fonseca C P, et al. Synthesis and characterization of hybrid composites based on carbon nanotubes. Electrochim. Acta.,2009, 54(26):6383-6388
    [73]Long Y Z, Yin Z H,Chen Z J. Low temperature magnetoresistance studies on composite films of conducting polymer and multiwalled carbon nanotubes. J. Phys. Chem. C.,2008,112(30):11507-11512
    [74]Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms in carbon nanotubepolystyrene composites. Appl. Phys. Lett.,2000, 76 (20):2868-2870
    [76]Lu Y, Li T, Zhao X Q et al. Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces. Biomaterials,2010, 31(19):5169-5181
    [76]Gong X Y, Liu J, Baskaran S, et al. Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites. Chem. Mater.,2000,12(4):1049-1052
    [77]Zhang L, Tao T, Li C Z. Formation of polymer/carbon nanotubes nano-hybrid shish-kebabvia non-isothermal crystallization. Polymer,2009,50(15):3835-3840
    [78]Sandra C. H, Debangshu C, Wilfred C, et al. Single Polypyrrole Nanowire Ammonia Gas Sensor. Electroanalysis,2007,19(19-20):2125-2130
    [79]Wu T M, Lin Y W, Liao C S. Preparation and characterization of polyaniline/ multi-walled carbon nanotube composites. Carbon,2005,43(4):734-740
    [80]Zhang X T, Zhang J, Wang R M, et al. Cationic surfactant directed polyaniline /CNT nanocables:synthesis, characterization, and enhanced electrical properties. Carbon,2004,42(8-9):1455-1461
    [81]Kay H A, Seung Y J, Ha R H, et al. Enhanced Sensitivity of a Gas Sensor Incorporating Single-Walled Carbon Nanotube-Polypyrrole Nanocomposites. Adv.Mater.,2004,16(12):1005-1009
    [82]宿凯.聚苯胺/碳纳米管原位聚合[硕士论文].哈尔滨:黑龙江大学,2008
    [83]Zou W, Du Z J, Liu Y X, et al. Functionalization of MWNTs using polyacryloyl chloride and the properties of CNT-epoxy matrix nanocomposites. Composites Science and Technology,2008,68(15-16):3259-3264
    [84]Zhang J, Zou H L, Qing Q, et al. Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes.J. Phys.Chem.B.,2003,107(161):3712—3718
    [85]Mawhinney D B, Naumenko V, Kuznetsova A, et al. Infrared Spectral Evidence for the Etching of Carbon Nanotubes:Ozone Oxidation at 298K. J.Am.Chem. Soc.,2000,122(10):2383-2384
    [86]Zhang X T, Zhang J, Song W H, et al.Controllable synthesis of conducting polypyrrole nanostructures. J. Phys.Chem.B.,2006,110(3):1158-1165
    [87]Nanda G S, Yong C J, Hyang H S, et al. Polypyrrole coated carbon nanotubes: Synthesis, characterization, and enhanced electrical properties. Synthetic Metals, 2007,157(8-9):374-379
    [88]Long Y Z, Chen Z J, Zhang X T, et al. Electrical properties of multi-walled carbon nanotube/polypyrrole nanocables:percolation-dominated conductivity. J. Phys. D:Appl. Phys.,2004,37(14):1965-1969
    [89]Wu T M, Lin S H. Characterization and electrical properties of polypyrrole/multiwalled carbon nanotube composites synthesized by in situ chemical oxidative polymerization. J Polym Sci B Polym Phys.,2006,44(10): 1413-1418
    [90]Sing K S W, Everett D H, Haul R A W, et al. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure & Appl. Chem,1985,57(4):603-619
    [91]Zhang X T, Zhang J, Wang R M, et al. Surfactant-Directed Polypyrrole/CNT Nanocables:Synthesis, Characterization, and Enhanced Electrical Properties. ChemPhysChem.,2004,5(7):998-1002
    [92]Wu A M, Kolla H S, Manohar S K. Chemical Synthesis of Highly Conducting Polypyrrole Nanofiber Film. Macromolecules,2005,38(19):7873-7875
    [93]肖元化,唐新村,王志敏,等.分级结构聚苯胺/多壁碳纳米管纳米复合物的制备、表征及其气敏性能研究.无机材料学报,2010,25(10):1092-1098
    [94]Gustafsson G, Lundstormi I, Liedberg B, et al. The interactimn between ammonia and poly(pyrrmle). Synth. Met.,1989,31(2):163-179
    [95]王会才.高分子纳米复合气敏材料及气敏传感器[博士论文].杭州:浙江大学,2007
    [96]Shen X F, Ding Y S, Liu J, et al. Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials. Adv. Mater., 2005,17(7):805-809
    [97]Sun F Q, Cai W P, Li Y,et al. Direct growth of mono-and multilayer nanostructu-ed porous films on curved surfaces and their application as gas sensors Adv. Ma-ter.2005,17(23):2872-2877
    [98]Tang X W, Liang X Y, Rahman S,et al. Porous nanoparticle membranes: Synthesis and application as fuel-cell catalysts. Adv. Mater.2005,17(18): 2237-2241
    [99]Corma A, Atienzar P, Garcia H, et al. Hierarchically mesostructured doped CeO2 with potential for solar-cell use.Nat. Mater.,2004,3(6):394-397
    [100]Rintoul M D, Torquato S, Yeong C, et al. Structure and transport properties of a porous magnetic gel via x-ray microtomography. Phys. Rev.E,1996,54(3):2663-2669
    [101]Zampieri A, Colombo P, Mabande G T P, et al. Zeolite coatings on microcellular ceramic foams:A novel route to microreactor and microseparator devices. Adv. Mater.2004,16(9-10):819-823
    [102]Vettraino M, He X, Trudeau M, et al. Superparamagnetic and spin glass behavior in mesoporous niobium oxide bis(cyclopentadienyl)nickel composites. Journal of Materials Chemistry.2001,11(6):1755-1759
    [103]Morris R E, Wheatley P S. Gas Storage in Nanoporous Materials. Angew. Chem. Int. Ed.2008,47(27):4966-4981
    [104]Takeshi S, Takehisa T, Mitsuru I, et al. Application of porous material to reduce aerodynamic sound from bluff bodies. Fluid Dyn. Res.,2010,42(1):015004(14pp)
    [105]Xu M W, Zhao M S, Wang F, et al. Facile synthesis and electrochemical properties of porous SnO2 micro-tubes as anode material for lithium-ion battery.Materials Letters,2010,64(8):921-923
    [106]Zheng J, Liu J, Lv D, et al. A Facile synthesis of flower-like CO3O4 porous spheres for the lithium-ion battery electrode. Journal of Solid State Chemistry.2010,183(3):600-605
    [107]Guo Z, Liu J Y, Jia Y, et al. Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres. Nanotechnology,2008, 19(34):345704(9pp)
    [108]Hornebecq V, Mastai Y, Antonietti M, et al. Redox Behavior of Nanostructured Molybdenum Oxide-Mesoporous Silica Hybrid Materials.Chem. Mater.2003, 15(19):3586-3593
    [109]Cooper A I. Porous Materials and Supercritical Fluids. Adv. Mater.2003,15(13): 1049-1059
    [110]Jing Z H, Zhan J H, Fabrication and gas-sensing properties of porous ZnO nanoplates, Adv. Mater.,2008,20(23):4547-4551
    [111]Govender K, Boyle D S, Brien P O, et al. Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition.Adv. Mater.,2002,14(17):1221-1224
    [112]Lu F, Cai W P, Zhang Y G, ZnO hierarchicalmicro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance, Adv. Funct.Mater.,2008,18(7):1047-1056
    [113]Falconi C, Mantini G, Damico A, et al.Studying piezoelectric nanowires and nanowalls for energy harvesting. Sensor Actuat. B:Chem.2009, 139(2):511-519
    [114]Chen Y J, Zhu C L, Xiao G. Ethanol sensing characteristics of ambient temperature sonochemically synthesized ZnO nanotubes. Sensors Actuators B.2008,129(2):639-642
    [115]Liao L, Lu H B, Li J C, et al. Size Dependence of Gas Sensitivity of ZnO Nanorods. J. Phys. Chem. C.2007,111(5):1900-1903
    [116]Huang J R, Wu Y J, Gu C P, et al. Fabrication and gas-sensing properties of hierarchically porous ZnO architectures. Sensors and Actuators B:Chemical,2010, doi:10.1016/j.snb.2010.11.036
    [117]Zhang Y, Xu J Q, Xiang Q, et al. Brush-Like Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and Gas Sensor Properties. J. Phys. Chem. C, 2009,113(9):3430-3435
    [118]Hsueh T J, Hsu C L. Fabrication of gas sensing devices with ZnO nanostructure by the low-temperature oxidation of zinc particles. Sensors Actuators B.2008, 131(2):572-576
    [119]Liu J Y, Guo Z, Meng F L,et al. Novel porous single-crystalline ZnO nanosheets fabricated by annealing ZnS(en)0.5 (en= ethylenediamine)precursor. Application in a gas sensor for indoor air contaminant detection. Nanotechnology,2009,20: 125501 (8pp)
    [120]Zhang F H, Yang H Q, Xie X L, et al. Controlled synthesis and gas-sensing properties of hollow sea urchin-like α-Fe2O3 nanostructures and α-Fe203 nanocubes. Sensors and Actuators B:Chemical,2009,141(2):381-389
    [121]Zhou X F, Hu Z L, Fan Y Q, et al. Microspheric Organization of Multilayered ZnO Nanosheets with Hierarchically Porous Structures. J. Phys. Chem. C,2008, 112(31):11722-11728
    [122]Newman S P, Jones W.Comparative study of some layered hydroxide salts containing exchangeable interlayer anions. J. Solid State Chem.1999,148(1): 26-40
    [123]Taibi M, Ammar S, Jouini N,et al. Layered nickel hydroxide salts:synthesis, characterization and magnetic behaviour in relation to the basal spacing.J. Mater. Chem.2002,12(11):3238-3244
    [124]Xu Z P, Lu G Q. Layered double hydroxide nanomaterials as potential cellular drug delivery agents.Pure Appl. Chem.2006,78(9):1771-1779
    [125]Xu Z P, Stevenson G S, Lu C Q, et al. Stable Suspension of Layered Double Hydroxide Nanoparticles in Aqueous Solution. J. Am. Chem. Soc.2006,128(1): 36-37
    [126]Poul L, Jouini N, Fievet F. Layered Hydroxide Metal Acetates (Metal=Zinc, Cobalt, and Nickel):Elaboration via Hydrolysis in Polyol Medium and Comparative Study.Chem. Mater.2000,12(10):3123-3132
    [127]Zhang W X, Yanagisawa K. Hydrothermal Synthesis of Zinc Hydroxide Chloride Sheets and Their Conversion to ZnO.Chem. Mater.2007,19(9): 2329-2334
    [128]Song R Q, Xu A W, Deng B, et al. From Layered Basic Zinc Acetate Nanobelts to Hierarchical Zinc Oxide Nanostructures and Porous Zinc Oxide Nanobelts.Adv. Funct. Mater.2007,17(2):296-306
    [129]李博,崔玉明,刘磊,等.微观尺度高分子协同组装ZnO纳米片.无机化学学报,2009,25(12):2077—2082
    [130]Li B X, Wang Y F. Hierarchically assembled porous ZnO microstructures and applications in a gas sensor.Superlattices and Microstructures.2011,49(4): 433-440
    [131]Zhang J, Wang S R, Xu M J, et al. Hierarchically Porous ZnO Architectures for Gas Sensor Application. Crystal Growth & Design,2009,9(8):3532-3537
    [132]Gregg S J, Sing K S W. Adsorption, surface Area, and Porosity[M]. London: Academic Press,1982
    [133]Xu J Q, Wang X H, Shen J N.Hydrothermal synthesis of In2O3 for detecting H2S in air.Sensors and Actuators B:Chemical.2006,115(2):642-646
    [134]Roy Morrison S. Selectivity in semiconductor gas sensors. Sensors and Actuators,1987,12(4):425-440
    [135]Harrison P G, Willett M J. The mechanism of operation of Tin(IV) oxide carbon monoxide sensors.Nature.1988,332:337-339
    [136]Huang X J, Meng F L, Pi Z X, et al. Gas sensing behavior of a single tin dioxide sensor under dynamic temperature modulation.Sensors Actuators B,2004, 99(2-3):444-450
    [137]Wang Y, Chen J, Wu X. Preparation and gas-sensing properties of perovskite-type SrFeO3 oxide. Mater. Lett.2001,49(6):361-364
    [138]Trinh T T, Tu N H, Le H H, et al. Improving the ethanol sensing of ZnO nano-particle thin films—The correlation between the grain size and the sensing mechanism. Sensors and Actuators B,2011,152 (1):73-81
    [139]Li L L, Zhang W M, Yuan Q, et al. Room Temperature Ionic Liquids Assisted Green Synthesis of Nanocrystalline Porous SnO2 and Their Gas Sensor Behaviors. Cryst. Growth Des,2008,8(5):4165-4172
    [140]Tiemann M. Porous Metal Oxides as Gas Sensors. Chem. Eur. J,2007,13(30): 8376-8388
    [141]Sakai G, Matsunaga N, Shimanoe K, et al. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators B,2001, 80(2):125-131
    [142]Caruso, F. Nanoengineering of Particle Surfaces. Adv. Mater.2001,13(1): 11-22
    [143]Xu X X, Zhuang J, Wang X. SnO2 Quantum Dots and Quantum Wires: Controllable Synthesis, Self-Assembled 2D Architectures, and Gas-Sensing Properties. J. Am. Chem. Soc,2008,130(37):12527-12535
    [144]Wang Y D, Djerdj I, Antonietti M, et al. Polymer-Assisted Generation of Antimony-Doped SnO2 Nanoparticles with High Crystallinity for Application in Gas Sensors. Small,2008,4(10):1656-1660
    [145]Zhang L S, Jiang L Y, Chen C Q, et al. Programmed Fabrication of Metal Oxides Nanostructures Using Dual Templates to Spatially Disperse Metal Oxide Nanocrystals. Chem. Mater.,2010,22(2):414-419
    [146]Jiang L Y, Wu X L, Guo Y G, et al. SnO2-Based Hierarchical Nanomicrostructures:Facile Synthesis and Their Applications in Gas Sensors and Lithium-Ion Batteries J. Phys. Chem. C.,2009,113(32):14213-14219
    [147]Xue X, Chen Z, Ma C, et al. One-step synthesis and gas-sensing characteristics of uniformly loaded Pt@SnO2 nanorods. J. Phys. Chem. C,2010,114(9): 3968-3972
    [148]Wen Z H, Wang G, Lu W, et al. Enhanced Photocatalytic Properties of Mesoporous SnO2 Induced by Low Concentration ZnO Doping. Cryst.Growth Des.,2007,7(3):1722-1725
    [149]Chappel S, Zaban A. Nanoporous SnO2 electrodes for dye-sensitized solar cells: improved cell performance by the synthesis of 18 nm SnO2 colloids. Sol. Energ. Mat. Sol. C.,2002,71(2):141-152
    [150]Duan X F, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature,2001, 6816(409):66-69
    [151]Park M S, Wang G X, Kang Y M, et al. Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries. Angew. Chem. Int. Ed,2007,46(5):750-753
    [152]Zhang W M, Hu J S, Guo Y G, et al. Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries. J. Adv. Mater.2008,20(6):1160-1165
    [153]Juttukonda V, Paddock R L, Raymond J E,et al. Facile Synthesis of Tin Oxide Nanoparticles Stabilized by Dendritic Polymers. J. Am. Chem. Soc.,2006, 128(2):420-421
    [154]Qin L P, Xu J Q, Dong X W, et al. The template-free synthesis of square-shaped SnO2 nanowires:the temperature effect and acetone gas sensors. Nanotechnology.2008,19(18):185705-185712
    [155]Comini E, Faglia G, Sberveglieri G, et al. Tin oxide nanobelts electrical and sensing properties. Sens. Actuators, B,2005,111-112:2-6
    [156]Fang X S, Bando Y, Gautam U K, et al. Inorganic semiconductor nanostructures and their field-emission applications. J. Mater. Chem.,2008, 18(5):509-522
    [157]Lai M, Lim J H, Mubeen S, et al. Size-controlled electrochemical synthesis and properties of SnO2 nanotubes. Nanotechnology 2009,20(18): 185602-185606
    [158]Zhao Q, Gao Y, Bai X, et al. Facile synthesis of SnO2 hollow nanospheres and applications in gas sensors and electrocatalysts. Eur. J. Inorg.Chem.,2006, 2006(8):1643-1648
    [159]Deng D, Lee J Y. Hollow Core-Shell Mesospheres of Crystalline SnO2 Nanoparticle Aggregates for High Capacity Li+Ion Storage. Chem. Mater., 2008,20(5):1841-1846
    [160]Wang W W, Zhu Y J, Yang L X. ZnO-SnO2 hollow spheres and hierarchical nanosheets:hydrothermal preparation, formation mechanism, and photocatalytic properties. Adv. Funct. Mater.2007,17(1):59-64
    [161]Miao Z J, Wu Y Y, Zhang X R, et al.Large-scale production of self-assembled SnO2 nanospheres and their application in high-performance chemiluminescence sensors for hydrogen sulfide gas. J. Mater. Chem.,2007,17(18):1791-1796.
    [162]Lee J H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sensors and Actuators B.2009,140(1):319-336
    [163]Kim H R, Choi K I, Lee J H, et al. Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres. Sensors and Actuators B,2009,136(1):138-143
    [164]Wang H,Xu J Q, Pan Q Y. Synthesis and chlorine sensing properties of nanocrystalline hierarchical porous SnO2 by a phenol formaldehyde resin-assisted process. Cryst. Eng. Comm.,2010,12(4):1280-1285
    [165]Pal U, Santiago P. Controlling the Morphology of ZnO Nanostructures in a Low-Temperature Hydrothermal Process. J. Phys. Chem.B,2005,109(32): 15317-15321
    [166]Khan A, Jadwisienczak W M, Kordesch M E. From Zn microspheres to hollow ZnO microspheres:A simple route to the growth of large scale metallic Zn microspheres and hollow ZnO microspheres. Phys. E,2006,33(2) 33:331-335
    [167]Cullity B D. Elements of X-ray Diffraction,2nd ed, Addison-Wesley:Menlo Park, CA.,1978
    [168]Popescu D A, Verduraz F B. Infrared studies on SnO2 and Pd/SnO2.Catalysis Today.2001,70(1-3):139-154
    [169]Gua F, Wang S F, Song C F, et al. Synthesis and luminescence properties of SnO2 nanoparticles. Chem. Phys. Lett.2003,372(3-4):451-454
    [170]Tsierkezos N G, Schrolder D, Schwarz H. Gas-Phase Solvation Behavior of Ni(II) in Water/N,N-Dimethylformamide Mixtures. J. Phys. Chem A.,2003, 107(45):9575-9581
    [171]Fujiwara H, Murakoshi K, Wada Y, et al. Observation of Adsorbed N,N-Dimethylformamide Molecules on Colloidal ZnS Nanocrystallites. Effect of Coexistent Counteranion on Surface Structure.Langmuir,1998,14(15): 4070-4073
    [172]Jacob M M E, Arof A K. FTIR studies of DMF plasticized polyvinyledene fluoride based polymer electrolytes. Electrochim. Acta,2000,45(10): 1701-1706
    [173]Stalhandske C M V, Mink J, Sandstrom M, et al. Vibrational spectroscopic and force field studies of N,N-dimethylthioformamide,N,N-dimethylformamide, their deuterated analogues and bis(N,N-dimethylthioformamide) mercury(Ⅱ) perchlorate. Vibrational Spectroscopy.1997,14(2):207-227
    [174]Varghese O K, Kichambre P D, Gong D, et al. Gas sensing characteristics of multi-wall carbon nanotubes. Sens. Actuators B,2001,81(1):32-41
    [175]Guarlno G, Ortona O, Sartorlo R, et, al. Diffusion, Viscosity, and Refractivity Data on the Systems Dimethylformamide-Water and N-Methylpyrrolidone-Water at 5 ℃. Journal of chemical and engineering data,1985,30(3):366-368
    [176]Zhang J, Wang S R, Wang Y, et al. Facile synthesis of highly ethanol-sensitive SnO2 nanoparticles. Sensors and Actuators B:Chemical,2009,139(2):369-374
    [177]Chandler C D, Roger C, Hampden-Smith M J. Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors. Chem. Rev.1993,93(3):1205-1241
    [178]Yamazoe N, Fuchigami J, Kishikawa M, et al. Interactions of tin oxide surface with O2, H2O and H2. Surface Science.1979,86(2):335-344
    [179]Zong Y, Cao Y L, Jia D Z, et al.The enhanced gas sensing behavior of porous nanocrystalline SnO2 prepared by solid-state chemical reaction. Sensors and Actuators B,2009,145(1):84-88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700