铝合金表面激光金属间铝化物复合强化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要
     本文利用激光强化技术,采用高功率连续波的YAG固体激光器对预置了Ni、Ti等粉末的2024铝合金基体表面进行激光强化处理,以期原位反应生成铝的金属间化合物,从而提高铝合金表面的硬度、耐磨损及耐高温抗氧化性能。
     在氩气保护的条件下,采用适宜的激光强化工艺参数和粉末组合,可在基体表面制得厚度为1~2mm,组织致密,且与基体呈现良好冶金接合的合金强化层。对强化层的微观组织结构分析结果表明,强化层主要由NiAl、Ni3Al、NiAl3、Al3Ti、AlTi等金属间化合物与分布在它们之间的α-Al固溶体组成,并形成了多层次的组织结构。表层主要由细小胞状晶枝组织构成,并出现了大量纳米级组织颗粒;内层组织呈多样性分布,组织生长具有很强的方向性;接合部则是由垂直于界面生长的柱状晶组织构成,从而提高了强化层与基体的接合性能。
     强化层性能受激光参数影响很大,激光功率密度影响熔池的对流强度,扫描速度影响熔池的冷却速度。在一定的激光功率密度下,扫描速度越大,得到的组织颗粒越细小,强化层硬度越高,同时其厚度会变薄,但扫描速度过大时会导致层内出现裂纹。在预涂粉末厚度0.3mm,激光功率密度为700~800W/mm2,扫描速度12~14mm/s,搭接率30%,保护氩气的流量为20L/min处理条件下能得到质量较好的强化层。
     几种合金粉末的激光强化层硬度均比基体有了显著提高,强化层平均硬度值可达350HV,较基材2024铝合金硬度提高了近2倍,而耐磨性能提高4倍以上,且具有较强的高温抗氧化性能,强化层在连续24小时,400℃的环境中层内未出现开裂现象。
A strengthening layer was fabricated on 2024 aluminum alloy by laser surface modification with pure Ti, Ni and Ti+Ni mixed powders in order to obtain in-situ formed aluminum intermetallics for improving the properties of the Al 2024, such as surface hardness, wear resistance, high temperature and oxidation resistance, etc.
     With proper processing parameters the qualified strengthening layer of about 1~2 mm thick was formed. The analytical results of microstructure and wear properties of the strengthening layer showed that the strengthening layer was composed of the intermetallics such as NiAl, Ni3Al, NiAl3, Al3Ti, AlTi etc. in the form of fine dendrites distributed in a-Al solid solution. The strengthening layer can be divided into several micro-layers:the surface layer is primarily formed of the small cellular-like crystal sticks and a large number of nano-particles; the microstructure of the inner layer is varied and has a strong directional; the microstructure near the substrate is columnar and grows perpendicular to the interface, which improves the bind strength between the strengthening layer and the substrate.
     The properties of strengthening layer are greatly influenced by laser parameters and the convection strength of melt pool is affected by laser power density. Given laser power density, with a higher scanning speed, the coatings with a finer microstructure, a higher hardness and a thinner thickness can be obtained. However, excessive high scanning speed will result in the crack of the coatings. According to the experimental results, a set of proper parameters of laser power density:700-800W/mm2, scanning speed:12-14mm/s, overlap:30% and argon flow rate:20L/min, was obtained:
     The results showed that the average hardness of the layer was more than 350 HV, which was much higher than that of the A12024 substrate(less than 120 HV). The wear resistance of the strengthening layer was 4 times higher compared with the Al 2024 substrate. The strengthening layer also has a strong oxidation resistance at elevated temperatures compared with the coatings laser fabricated with TiC50%+SiC50%. Exposed to 400℃for 24 hours, the latter was crack but the former wasn't.
引文
[1]于先涛.铝合金表面激光熔覆Ni基合金及其摩擦学特性研究[D].武汉理工大学博士学位论文,2005.
    [2]洪蕾.激光制造技术基础[M].北京:人民交通出版社,2007.
    [3]Watkims k G, Liu Z, Memahon M. Influence of the over lapped area on the corrosion behaviour of laser treated aluminum alloy[J]. Materials Science and Engineering,1998,252: 292-300.
    [4]左铁钏.21世纪的先进制造—激光技术与工程[M].北京:科学出版社,2007.
    [5]张光钧,李军,李文戈.激光表面改性的发展趋势[J].金属热处理,2006,31(11):1-6.
    [6]陈继民,徐向阳,肖荣诗.激光现代制造技术[M].北京:国防工业出版社,2007.
    [7]丁阳喜,周立志.激光表面处理技术的现状及发展[J].材料热处理,2006,36(6):69-72.
    [8]雷仕湛.激光技术手册[M].北京:科学出版社,1992.
    [9]浦井直树,陆恩常.CO2激光加工的应用[J].国外金属加工,1989,(2):12-15.
    [10]张成军,尤显清,宋雪峰.激光在材料表面改性中的应用及研究进展[J].五金科技,2006,(3):4-8.
    [11]赵新.铝合金激光熔覆及光束优化技术的研究[D].天津大学博士论文,1999.
    [12]王新洪,邹增大,曲仕尧.表面熔融凝固强化技术[M].北京:化学工业出版社,2005.
    [13]reinhart poprawe,张东云译.激光制造工艺[M].北京:清华大学出版社,2008.
    [14]刘江龙.激光表面合金化技术发展中的问题[J].金属热处理,1992,(3):3-6.
    [15]刘晓微.铝合金表面激光熔覆NiCrBSi合金的组织和性能[D].沈阳工业大学硕士论文,2007.
    [16]黄跃进.锌铝合金表面涂敷氧化铝激光重熔的结晶过程[J].上海有色金属,2003,25(1):9-10.
    [17]吴一雷,李永伟,强俊等.超高强度铝合金的发展与应用[J].航空材料学报1994,14(1):49-55.
    [18]黄晓艳,刘波.舰船用结构材料的现状与发展[J].船舶,2004,(3):21-24.
    [19]孙丹丹,李文东.铝合金在汽车中的应用[J].山东内燃机,2003,(1):34-36.
    [20]纪红,许越,吕祖舜.铝合金激光表面强化的研究进展[J].材料科学与工艺,2003,11(2):221-224.
    [21]左铁钏.高强铝合金的激光加工[M].北京:国防工业出版社,2002.
    [22]蔡殉,杨晓豫,陈秋龙.铸造铝合金激光表面重熔(LSM)改性层的组织结构[J].材料工程,2000,(4):6-10.
    [23]孙福娟.激光表面重熔对LY12CZ性能的影响[J].中国激光,2007,34(8):1159-1162.
    [24]Tomida S, Nakata K. Improvement in wear resistance of hyper-eutectic Al-Si cast alloy by laser surface remelting [J]. Surface and Coatings Technology,2003,169:468-471.
    [25]曹晓明,温鸣,杜安.现代金属表面合金化技术[M].北京:化学工业出版社,2007.
    [26]Aleksandrov VD. Modification of the surface of aluminium alloys by laser treatment[J]. Materials Science Heat Treatment,2002,44(4):33-36.
    [27]李新,刘卫,余先涛.ZL108的激光表面合金化[J].武汉理工大学报,2006,28(4):38-40.
    [28]周龙早,刘顺洪,黄安国.铸造铝合金激光表面合金化的研究[J].激光技术,2004,28(6):565-568.
    [29]Gholam Reza Gordani, Reza Shojarazavi, Sayed Hamid Hashemi. Laser surface alloying of an electroless Ni-P coating with A1-356 substrate[J]. Optics and Lasers in Engineering,2008, 46:550-557.
    [30]H.C.Man, Zhang S, Cheng F T. Improving the wear resistance of AA6061 by laser surface alloying with NiTi[J]. Materials Letters,2007,61:4058-4061.
    [31]张春华,张松,张希川.铝合金表面激光合金化Al2Nb金属间化合物涂层[J].稀有金属,2004,28(5):852-855.
    [32]胡芳友,J. Mazumder,王茂才.Al319激光表面合金化[J].应用激光,2002,22(2):73-75.
    [33]L. Dubourg, J. Archambeault. Technological and scientific landscape of laser cladding process in 2007 [J]. Surface & Coatings Technology,2008,202:5863-5869.
    [34]张春华,张松,刘常升.6061Al合金表面激光熔覆Ni基合金的组织及性能[J].稀有金属材料与工程,2005,34(5):701-704.
    [35]张松,张春华,刘常升.铝合金表面激光熔覆NiCrBSi的空泡腐蚀性能[J].稀有金属材料与工程,2002,31(2):99-102.
    [36]王维夫,孙凤久,王茂才.铝合金表面激光熔覆铜基合金涂层研究[J].激光技术,2008,32(3):240-243.
    [37]Yue T M, Huang K J, Man H C. Formation of ammphous Al2O3phase on aluminum alloy by insitu laser cladding [J]. Journal of materials science,2004,39:6599-6602.
    [38]胡木林,潘邻,谢长生.铝合金表面激光熔覆铁基合金涂层过渡区的特征[J].材料保护,2005,38(5):51-53.
    [39]Uenishi K, Ogata Y, Iwatani S. Laser cladding of Fe-Cu based alloys on aluminum. Diffusion and Defect Data Part B (Solid State Phenomena) [J].2007,127:331-335.
    [40]Wang A H, Xie C S, Nie J H. Microstructure characteristics of iron based laser clad on Ai-Si alloy [J]. Materials Science and Technology,1999,15(8):957-959.
    [41]Wang A H, Xie C S, Nie J H. Bond strength of a laser-clad iron-base alloy coating on AI-Si alloy substrate and its fracture behavior[J]. Materials Characterization,2001,47:1-3.
    [42]Mei Z, Wang W Y, Wang A H. Transmission electron microscopy characterization of laser-clad iron-based alloy on Al-Si alloy[J]. Materials Characterization,2006,56:185-187.
    [43]李春彦,张松,康熠平.综述激光熔覆材料的若干问题[J].激光杂志,2002,23(3):5-9.
    [44]Kadolkar p. Variation of structure with input energy during laser surface engineering of ceramic coatings on aluminum alloys [J]. Applied Surface Science,2002,199:222-233.
    [45]Man H C, Zhang S. In situ synthesis of TiC reinforced surface MMC on A16061 by laser surface alloying [J]. Scripta Materialia,2002,46:229-234.
    [46]Vreeling J A. Formation of y-Al2O3 in reaction coatings produced with lasers[J]. Scripta materialia,2001,44(4):643-649.
    [47]Huang K J, Lin X, Xie C S. Microstructure and Wear Behaviour of Laser-Induced Thermite Reaction Al2O3 Ceramic Coatings on Pure Aluminum and AA7075 Aluminum Alloy [J]. Journal of Wuhan University of Technology-Materials,2008,23(1):89-94.
    [48]Xu J, Liu W J. Wear characteristic of in situ synthetic TiB2 particulatere inforced Al matrix composite formed by laser cladding [J]. Wear,2006,260:486-492.
    [49]Xu J, Liu W J. Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy [J]. Materials and Design,2006,27(5):405-410.
    [50]朱文慧,徐江,陈哲源.铝合金表面激光熔覆原位自生颗粒增强耐磨涂层的研究[J].材料热处理学报,2007,28(增刊):222-227.
    [51]孙建军.激光熔覆反应合成TiC/Al基复合涂层研究[J].金属热处理,2008,33(3):70-72.
    [52]张松,张春华,张录廷.铝合金表面激光熔覆SiC颗粒增强表层金属基复合材料的组织及空泡腐蚀性能[J].材料工程,2002,31(2):99-102.
    [53]李华玲,王茂才,赵吉宾.铝合金Nd:YAG脉冲激光SiC复合化涂层组织特征[J].中国激光,2004,31(6):765-768.
    [54]蒋义斌,何欢.铝合金表面激光熔覆金属基复合材料涂层[J].材料导报,2008,(22):424-426.
    [55]董世运,徐滨士,粱秀兵.铝合金表面激光熔覆铜合金层中的裂纹及其有限元分析[J].中国表面工程,2001,(4):15-17.
    [56]Wu W X, Zeng X Y, Zhu B D. Cracking tendency of laser cladding Ni-based WC composite coatings[J]. Chinese Journal of lasers,1997,24(6):570-576.
    [57]宋武林,朱蓓蒂,曾晓雁.镍含量对激光熔覆Fe-Cr-Ni涂层物理性能和裂纹敏感性的影响[J].热处理学报,1996,17(1):62-66.
    [58]王福德,胡乾午,曾晓雁.ZL108镍基粉末激光表面合金化气孔与裂纹的研究[J].应用激光,2004,24(5):265-268.
    [59]余民芳,邓琦林,葛志军.铝合金上激光熔覆锡铜合金的工艺研究[J].电加工与模具,
    2007,(4):3 1-33.
    [60]刘卫,李新,余先涛.铝合金表面激光合金化工艺研究[J].国外建材科技,2006,27(4):56-58.
    [61]李会山,杨洗陈,王惠滨.铝合金表面激光熔覆SiC复合涂层工艺研究[J].表面技术,2005,34(6):60-61.
    [62]齐鑫哲,魏琪,栗卓新.铝合金及铝化物涂层发展现状[J].机械工程材料,2005,26(6):4-7.
    [63]S. C. Deevi, V. K. Sikka. Nickel and iron aluminides:an overview on properties, processing, and applications[J]. Intermetallics,1996,4(5):357-375.
    [64]陈自强.金属间化合物及其应用[J].上海有色金属,2005,26(4):191-196.
    [65]Mishin Y, Herzig C, Diffusion in the Ti-Al system[J]. Acta Materialia,2000,48(3):589-623.
    [66]Keisuke U, Kojiro F, Kobayashi. Formation of surface layer based on Al3Ti on aluminum by laser cladding and its compatibility with ceramics[J]. Intermetallics,1999,7(5):553-559.
    [67]赵玉厚,周敬恩,严文.Al3Ti/ZL101原位复合材料中增强相Al3Ti结构及强化机理[J].热加工工艺,2002,(5):47-49.
    [68]M. D. Salvador, V. Amigo, N. Martinez, D. J. Busquets. Microstructure and mechanical behaviour of Al-Si-Mg alloys reinforced with Ti-Al intermetallics[J]. Journal of Materials Processing Technology,2003, (143):605-611.
    [69]Debdas Roy, Bikramjit Basu, Amitava Basu Mallick. Tribological properties of Ti-aluminide reinforced Al-based in situ metal matrix composite.[J]. Intermetallics,2005,13(7):733-740.
    [70]Buta Singh Sidhu, S. Prakash. Evaluation of the corrosion behaviour of plasma-sprayed Ni3Al coatings on steel in oxidation and molten salt environments at 900℃ [J]. Surface and Coatings Technology,2003,166(1):89-100.
    [71]J.L. He, C. H. Yu, A. Leyland, A.D. Wilson, A. Matthews. A comparative study of the cyclic thermal oxidation of PVD nickel aluminide coatings [J]. Surface and Coatings Technology, 2002,155(1):67-79.
    [72]Liang G Y, Li C L, Su J Y. Segregation phenomena of laser alloyed Ni-Cr-Al coating on Al-Si alloy [J]. Materials Science Engineering,1997,224A:173-176.
    [73]Cai X, Yang X Y, Bu X M. Laser surface modification of Ai-Si alloy-laser surface alloying [J]. Journal of shanghai Jiaotong University,1999,33(7):36-40.
    [74]梁工英,贺柏龄,苏俊义.铝合金强化Ni-WC涂层的组织与性能[J].中国激光,1998,25A:950-954.
    [75]刘常升,张滨,李智.2024铝合金涂敷Ni、Fe和Cu激光表面合金化[J].东北大学学报,1997,18(6):610-612.
    [76]唐传芳,冯燕武.铝活塞激光表面合金化关键技术研究[J].金属热处理,1999,(12):29-31.
    [77]周慧,肖国珍.对LY12铝合金离子镀氮化钛涂层的增强接合力的研究[J].真空,2000,(2):45-47.
    [78]黄卫东.激光立体成型[M].西安:西北工业大学出版社,2007.
    [79]张永振.材料的干摩擦学[M].北京:科学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700