用户名: 密码: 验证码:
模拟深海环境下热液气体的拉曼光谱实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底热液物质的探测与研究,是近几十年海洋地质调查研究的重要内容。激光拉曼光谱(Laser Raman Spectrometry)技术能够原位、实时、连续探测海底目标物。我国“十一五”科技攻关计划中作为目标导向类课题“深海原位激光拉曼系统”得到重点立项。本论文立足于该课题的研究,在实验室搭建激光拉曼光谱系统同时利用高温高压实验平台,探测了深海热液区主要气体成分水溶液的拉曼光谱;研究了CO2、CH4、C2H6和C3H8水溶液的拉曼特征峰;得到了各水溶液气体在不同温度及压力下的拉曼特征峰及其变化规律;采用高斯拟合、多项式拟合、线性拟合等多种方法处理低信噪比的复杂拉曼光谱数据,为深海环境下应用激光拉曼技术反演物质成分及环境信息提供参考。
     本文在实验室中搭建由激发波长532nm的Nd:YAG激光器,单光栅光谱仪和CCD组成的激光拉曼光谱系统,利用高温高压平台模拟深海热液口环境(最高压力40MPa,最高温度350℃),对深海热液区的主要成分CO2、CH4、C2H6和C3H8及部分混合物的水溶液在不同压力和温度条件下的拉曼光谱进行探测和分析,结果显示:常温40MPa压力下CO2水溶液的Fermi双峰分别位于1384.9cm-1和1278.3cm-1处,CH4的水溶液拉曼峰ν1位于2912.1cm-1处,C2H6有三个拉曼特征峰,分别对应于ν3(C-C伸缩振动)997.4cm-1,ν1(CH3对称伸缩振动)2893.7cm-1和2ν11(CH3扭曲伸缩振动)2950.4cm-1;而C3H8结构最复杂拉曼峰也最多,本文得到C3H8的四个拉曼特征峰,分别位于908.6cm-1(C-C伸缩振动),2835.5、2882.8和2960.8cm-1(C-H伸缩振动),均比其气相的拉曼频移低3~8cm-1;常温下,由于水分子的影响各自水溶液的拉曼特征峰随压力(≤40MPa)的变化均无明显移动;在40MPa的压力下随着温度的升高(≤350℃),CO2水溶液的Fermi双峰分别向高波数区移动了约3.4cm-1和7.0cm-1,而CH4水溶液的拉曼峰ν1向低波数区移动了约3.1cm-1,C2H6和C3H8水溶液的拉曼特征峰也均向低波数区有不同程度的移动;在CO2和CH4混合水溶液升温过程中CO2的双峰分别向高波数区移动了约4.3cm-1和3.8cm-1,CH4的特征峰ν1向低波数区移动了4.5cm-1。对其进行线性拟合,相关系数R>0.83说明在室温到350℃范围内温度的变化对其水溶液拉曼频移有影响,频移量与温度线性相关。
The measurement and study of underwater hydrothermal materials has been an important topic of marine geological research for the recent decades. The technology of Laser Raman Spectrometry can measure underwater target in situ, in real time and continuously. Deep-sea in-situ laser Raman system, one of the guide- line subjects in China's“Eleventh Five-Year Plan”for scientific research, has been established as a key project. The work of this thesis is carried out under this key project. We constructed a Laser Raman Spectrometry system in our laboratory, and utilized a high-temperature, high-pressure experimental platform to carry out the following studies: Raman spectra measurement of the aqueous solution of the main gas compositions in deep-sea hydrothermal areas; study of Raman peaks of CO2, CH4, C2H6 and C3H8 in aqueous solutions; recording these Raman peaks and their changes under different temperature and pressure; processing of complex Raman spectra with low signal-to-noise ratio with various methods including Gaussian fitting, polynomial fitting and linear regression. These studies provide data and reference for using laser Raman technology to extrapolate material composition and environmental information in deep-sea environment.
     In this thesis, we built a Nd: YAG laser with an emission wavelength of 532nm, a single-grating spectrometer and a laser Raman spectroscopy system with CCD. We used a high-temperature high-pressure platform to simulation the environment of a deep-sea hydrothermal vent (with maximum pressure of 40MPa and maximum temperature of 350℃). Under different pressure and temperature, we measured and analyzed the Raman spectra of the key compositions of deep-sea hydrothermal area, i.e. the aqueous solutions of CO2, CH4, C2H6, C3H8 and some of their admixture. The results show that at room temperature and 40MPa, the CO2 solution exhibits Fermi double peaks at 1384.9cm-1and 1278.3cm-1; the CH4 solution shows the Raman peakν1 at 2912.1cm-1; the C2H6 shows three Raman peaks that correspond toν3 (C-C stretch) at 997.4cm-1,ν1 (CH3 sym stretch) at 2893.7cm-1, and 2ν11 (CH3 d-stretch) at 2950.4cm-1, respectively; C3H8 has the most complicated structure and therefore the most Raman peaks. We obtained four peaks for that are located at 908.6cm-1 (C-C stretch), 2835.5, 2882.8 and 2960.8cm-1 (C-H stretch). All the peaks are shifted by 3~8cm-1 compared to the corresponding Raman peaks in gaseous phase. At room temperature no Raman peak of the aqueous solutions exhibit significant shift with changing pressure (≤40MPa), due to the presence of water molecules. At 40MPa and with increasing temperature (≤350℃), the Fermi peaks of CO2 solution shift toward higher wave number by 3.4cm-1 and 7.0cm-1, respectively; theν1 peak of CH4 solution is shifted to lower wave number by 3.1cm-1, Raman peaks of C2H6 solution and C3H8 solution are all shifted to lower wave number with varying magnitude; in the aqueous solution of CO2 and CH4 mixture, the CO2 Fermi double peaks are shifted higher by 4.3cm-1 and 3.8cm-1 respectively during the increase of temperature, while the CH4ν1 peak is shifted lower by 4.5cm-1. After a linear regression of these data, a correlation coefficient of R > 0.83 is obtained, which shows that from room temperature to 350℃, temperature changes affects the Raman frequency shift, the amount of which is linearly correlated with temperature.
引文
[1]高爱国.海底热液活动研究综述.海洋地质与第四纪地质,1996,16(1):103~110
    [2]陈弘,朱本铎,崔兆国.海底热液矿床地质和地球化学特点研究.热带海洋学报,2006,25(2):79~84
    [3]曹志敏,安伟,于新生,等.现代海底热液活动异常条件探测关键技术研究,高技术通讯,2006, 16(5):545~550
    [4]吴怀超,陈鹰,杨灿军,等.海底热液口原位多点温度测量系统的机电集成与实现海底热流原位测量技术研究,中国科学E辑:技术科学,2007,37(3):438~445
    [5]李官保,刘保华.海底热流原位测量技术研究.海洋技术,2006,25(2):28~33
    [6]汪品先.从海底观察地球——地球系统的第三个观测平台.自然杂志,2007,29 (3):125~130
    [7]潘德炉,王迪峰.我国海洋光学遥感应用科学研究的新进展.地球科学进展,2004,19 (4):506~512
    [8]吕万军,I-Ming Chou, Robert C B,等.拉曼光谱原位观测水合物形成后的饱和甲烷浓度.地球化学,2005,34(2) :187-192
    [9]黄霞,邬黛黛,杨灿军,等.海底pH的原位探测镀Nafion膜的Ir/ IrO2电极.传感技术学报, 2006, 19(6):2505-2508
    [10] Short R T, Fries D P, Kerr M L, et al. Underwater Mass Spectrometers for in situ Chemical Analysis of the Hydrosphere. Journal of the American Society for Mass Spectrometry,2001, 12(6):676~682
    [11] Brewer P G, Malby G, Pasteris J D, et al. Development of a laser Raman spectrometer for deep-ocean science, Deep-Sea Res.I,2004,51(7):739~753
    [12] Hester KC, White SN, Peltzer E T, et al. Raman spectroscopic measurements of synthetic gas hydrates in the ocean. Marine Chemistry,2006,98(2):304~314
    [13] White SN, Dunk R M, Peltzer E T, et al. In situ Raman analyses of deep-sea hydrothermal and cold seep systems (Gorda Ridge and Hydrate Ridge).Geochemistry Geophysics Geosystems,2006,7(5):1~12
    [14] Lehaitre M,Charlou J L, Donval J P, et al. Raman Spectroscopy: new perspectives for in situ shallow or deep ocean exploration. Geophysical Research Abstracts,2005, 7
    [15] Schmidt H, Ha N B, Pfannkuche, et al. Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS).Marine Pollution Bulletin, 2004,49(3):229~234
    [16]李世伦,侯继伟,叶树明,等.深海极端环境模拟平台控制系统研究.浙江大学学报,39(11):1769~1772
    [17]郭迎峰,尤静林,蒋国昌,等.磷酸钠结构的高温拉曼光谱研究.光谱学与光谱分析,2003, 23(5): 855~858
    [18]张鼐,张大江,张水昌,等.氯盐溶液的拉曼光谱特征及测试探讨.岩矿测试,2005,24(1):40~46
    [19]苏静,于锡玲,尤静林,等.甲酸钠/甲酸锂溶液的拉曼光谱研究.光谱学与光谱分析,2005,25(4):532~536
    [20]马艳梅,崔启良,周强,等.橄榄石原位高温拉曼光谱研究.吉林大学学报(地球科学版),2006,36(3): 342~345
    [21]孙墙,郑海飞,陈晋阳.立方氧化锆压腔下冰VI-VII相变的Raman散射光谱研究.自然科学进展,2002,12(6):656~657
    [22]李敏,郑海飞.常温高压下水的拉曼谱峰标定压力的研究.高压物理学报,2004,18(4): 376
    [23]陈晋阳,张红,郑海飞,等.高温高压下水中有机质降解过程的原位观测.石油实验地质, 2006, 28(1):75
    [24]乔二伟,郑海飞.高压下正十五烷的拉曼光谱研究.光谱学与光谱分析,2007,27(1): 79~80
    [25]陈晋阳,金鹿江,程洪斌.高温高压水中干酪根热解的拉曼光谱原位研究.分析测试学报,2008,27(2):193~195
    [26]陈晋阳,郑海飞,曾贻善.以合成包裹体作压腔进行高温下NaCl-CO2-H2O混合流体的拉曼光谱原位分析.光谱实验室,2002,19(4):428~429
    [27]陈晋阳,郑海飞,曾贻善.等容条件下H2O-CO2-CH4混合流体的高温拉曼光谱就位分析.高压物理学报,2003,17(1):10~14
    [28]陈勇,周瑶琪,刘超英,等. CH4-H2O体系流体包裹体均一过程激光拉曼光谱定量分析.地学前缘(中国地质大学(北京);北京大学), 2005,12(4):594~596
    [29]陈勇,周瑶琪,倪培.一种获取包裹体内压的新方法—二氧化碳拉曼光谱法.岩矿测试,2006, 25(3):212~213
    [30]陈勇,周瑶琪.天然流体包裹体中甲烷水合物生成条件原位变温拉曼光谱研究.光谱学与光谱分析,2007,27(8): 1548~1549
    [31]陈勇,周瑶琪,查明,等. CH4-H2O体系流体包裹体拉曼光谱定量分析和计算方法.地质评论, 2007,53(6):815~821
    [32]张延会,吴良平,孙真荣,等.拉曼光谱技术应用进展.化学教学,2006,(4):32~35
    [33]陆同兴,路轶群.激光光谱技术原理与应用.合肥:中国科学技术大学出版社,1999
    [34]里佐威.近代Raman光谱技术.物理实验,2001,22(1):3~7
    [35]乔惠君,李雪飞,黄洪亮.傅立叶变换近红外拉曼光谱技术研究介绍.河北建筑工程学院学报,2007,25(2):120~121
    [36]张琳娜,何玲洁,蔡素华,等.分子振动光谱及其在化学上的应用.福建分析测试综述,1995,4(2):258~275
    [37]王国文,原子与分子光谱导论[M].北京:北京大学出版社,1985;226,
    [38]伍林,欧阳兆辉,曹淑超,等.拉曼光谱技术的应用及研究进展.光散射学报,2005,17(2): 180~186
    [39]高小玲,巴特勒.应用拉曼光谱法进行定量分析的几个关键性技术问题.分析试验室,1995,14(4):52~56
    [40]谢晓明,廖延彪.用于实时分析的光谱学方法.激光杂志,2004,25(2):1~5
    [41]李光晓.拉曼光谱技术的新进展.光电子技术与信息,1998,11(1):1~7
    [42]肖新民.拉曼光谱的广泛应用及分辨率的重要性.现代科学仪器,2005, (2):45~48
    [43]杨修文,魏芳波,王绍明,等.光纤探针在拉曼光谱仪中的应用.郧阳师范高等专科学校学报, 2006,26(3):15~16
    [44]骆智训,方炎.表面增强拉曼散射光谱的应用进展.光谱学与光谱分析, 2006,26(2):358~364
    [45]薛苏云,冯效良.拉曼光谱实验中的计算机控制.河海大学常州分校学报, 2002,16(2): 51~53
    [46]吴乔锋,叶勇,胡继明,等.拉曼光纤探针的研究进展及应用.生命科学仪器,2003, (Z1): 64~68
    [47] Rolf Bombach. the ERCOFTAC summer school "Introduction to Numerical and Experimental Methods in Combustion research" ETH Zürich, March 15-21, 2002:3~9.
    [48]刘光启,马连湘,刘杰.化学化工物性数据手册(无机卷).北京:化学工业出版社,2002: 85
    [49] Chapoy A, Mohammadi A H, Richon D, et al. Gas solubility measurement and modeling for methane-water and methane-ethane-n-butane-water systems at low temperature conditions [J]. Fluid Phase Equil, 2004, 220(1):116~117.
    [50]于增慧,翟世奎.海底热液沉积物中流体包裹体的研究进展.海洋地质与第四纪地质, 2000,20(1):93~94
    [51]杜同军,翟世奎,任建国.海底热液活动与海洋科学研究.中国海洋大学学报,2002,32(4):597
    [52]杨作升,范德江,李云海,等.热液羽状流研究进展.地球科学进展,2006,21(10):999
    [53]庞艳春,林丽,朱利东,等.热液喷口生物群的研究现状.成都理工学院学报,2002,29(4):449
    [54]王丽玲,林景星,胡建芳.深海热液喷口生物群落研究进展.地球科学进展,2008,23(6):605~609
    [55]李淑玲.二氧化碳-水体系的拉曼光谱研究.岩矿测试,1998,17(3):178~179
    [56] Garrabos Y. Density effect on the Raman Fermi resonance in the fluid phase of CO2 [J] . Chem Phys Lett, 1989, 160: 252.
    [57] Thomas A V, Pasteris J D, Bray C J, et al. H2O-CH4-NaCl-CO2 inclusions from the footwall contact of the Tanco granitic pegmatite: Estimates of internal pressure and composition from microthermometry, laser Raman spectroscopy, and gas chromatography [J]. Geochimica et Cosmochimica Acta, 1990, 54: 564.
    [58] Y. Gu, Y. Zhou, H. Tang, et al. Pressure dependence of vibrational Raman scattering of narrow-band, 248-nm, laser light by H2, N2, O2, CO2, CH4, C2H6, and C3H8 as high as 97 bar. Applied Physics B, 2000,71:867~868
    [59] K. M. Rosso , R. J. BODNAR. Microthermometric and Raman spectroscopic detection limits of CO2 in fluid inclusions and the Raman spectroscopic characterization of CO2. Geochimica et Cosmochimica Acta, 1995,59(19):3963~3965
    [60]王国文.原子与分子光谱导论.北京:北京大学出版社,1985;226
    [61]李维华,段玉然.甲烷的拉曼光谱特征.光谱学与光谱分析,1998,18(4):429~430
    [62] Raman spectroscopic characterization of gas mixtures. I. Quantitative composition and pressure determination of CH4,N2, and their mixtures. American Journal of science, 1993,293:303~309
    [63] Jeffery C. Seitz, Jill Dill Pasteris, I-Ming Chou. Raman spectroscopic characterization of gas mixturesⅡ. Quantitative composition and pressure determination of the CO2-CH4 system. American Journal of science, 1996,296:584~594
    [64] K.C. Hester , S.N. White , E.T. Peltzer. Raman spectroscopic measurements of synthetic gas hydrates in the ocean. Marine Chemistry, 2006,98:309~310
    [65] G. Gauglitz , T. Vo-Dinh. Handbook of Spectroscopy. WILEY-VCH Verlag GmbH & Co. KGaA, 2003:99~101
    [66]陈刚,温志渝,吴英,等.采用多项式拟合进行谱峰定位的误差分析.半导体光电,2002,23(2):132
    [67]刘前林,王立世,黄新建.结合非对称最小二乘法与傅立叶变换对差分吸收光谱的解析.分析测试学报, 2008,27(6):616
    [68] Fabre D, Oksengorn B. Pressure and density dependence of the CH4 and N2 Raman lines in an equimolar CH4/N2 gas mixture. Applied Spectroscopy, 1992, 46(3): 468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700