杜氏利什曼原虫两个发育阶段基因表达系列分析文库的构建及HSP90在其阶段转变过程中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利什曼原虫可在人体导致多种疾病,是对人体危害严重的人兽共患寄生虫病,其中最致命的是由杜氏利什曼原虫引起黑热病。杜氏利什曼原虫生活史有前鞭毛体及无鞭毛体两个时期。利什曼原虫由前鞭毛体向无鞭毛体的转变过程是一个复杂的包括形态学及生理学的改变。这一过程中发生的改变不仅导致前鞭毛体形态上的变化,还使其逃避了宿主巨噬细胞的杀伤存活下来。目前为止,各阶段疫苗都为利什曼原虫病的防治发挥着作用,但各阶段疫苗都存在缺陷。比如说还没找到一种或几种能激发对所有原虫产生保护免疫的抗原,疫苗的构建结构也不理想。但是,利什曼原虫在实验室很容易得到,并且一些新技术的应用都为解决这些问题提供了有效的途径和希望。研究这个过程中的基因表达谱的改变有助于我们找出与利什曼原虫阶段转变有关的一些重要基因。
     以前也有一些学者用双向电泳和基因芯片的方法对利什曼原虫的两个发育阶段的表达谱进行了研究。双向电泳由于技术的原因,找到的差异蛋白数量比较少;基因芯片的优点在于可以高通量的检测基因表达情况,但由于探针序列一般来自于已知基因的cDNA或EST库,只能检测已知基因,不能发现未知基因。因此,本研究以体外培养的前鞭毛体及无鞭毛体为研究对象,引入基因表达系列分析的方法,建立这两个发育阶段基因表达系列分析文库,希望为进一步的探讨其转化机制,以及转化过程与宿主的关系提供更多的线索。
     在以前的研究中,研究者们报道了多种利什曼原虫前鞭毛体的培养方法,简单重复文献中的培养方法没有成功得到杜氏利什曼原虫MHOM/CN/Gansu-8801种的无鞭毛体,总结后我们发现不同种的利什曼原虫其前鞭毛体的培养步骤和培养条件均有所不同。因此,在本研究中我们首先改进了杜氏利什曼原虫MHOM/CN/Gansu-8801种无外源细胞污染的无鞭毛体体外培养的方法,得到了大量的无鞭毛体供后续研究。接下来,我们应用基因表达系列分析(Serial analysis of gene expression, SAGE)的方法建立了杜氏利什曼原虫前鞭毛体及无鞭毛体两个发育阶段基因表达文库。一共获得总标签数为40,431个,在前鞭毛体文库和无鞭毛体文库中分别为20,299和20,132个标签。大约89%的基因在两个文库中均有表达,有968个基因的表达水平在两个文库之间有显著性差异。其中,326个基因在无鞭毛体文库中是表达下调的,642个基因表达上调。我们选取了两个文库中表达差异较大的标签,BLAST查找比对找到28个标签与其对应的基因,这其中包括histone 4,elongation factor 1-alpha,alpha tubulin,acidic ribosomal protein,LACK,ubiquitin-fusion protein,40S ribosomal protein S2,40S ribosomal protein S33,60S ribosomal protein l21,60S ribosomal protein L28等基因。在这其中,延长因子1-alpha和LACK基因已经用于制备多克隆抗体,做为新的抗利什曼原虫药物和疫苗研究的候选基因。而其它表达差异显著的基因也有可能成为新的药物靶标。
     我们用实时定量PCR的方法选取了7个基因对SAGE的结果进行了验证,结果表明实时定量PCR与SAGE所揭示的基因在杜氏利什曼原虫两个发育阶段表达变化是一致的。
     其次,在培养无鞭毛体的过程中,我们发现有研究报道用HSP90的特异性抑制剂葛尔德霉素(Geldanamycine, GA)可以在室温和碱性条件下诱导利什曼原虫前鞭毛体转变为无鞭毛体,而仅仅在碱性条件下提高培养温度到37℃又可以诱导前鞭毛体发生凋亡。因此,我们观测了HSP90特异性抑制剂GA在利什曼原虫前鞭毛体向无鞭毛体转化过程中的作用,在温度升高的条件下,GA抑制HSP90后会诱导前鞭毛体凋亡还是发生阶段转变?期望找到更多关于HSP90在这一转化过程中的作用的证据及其发挥作用的可能途径。结果发现,用GA处理后的细胞在光学显微镜下和扫描电镜下观察可见体积变小、细胞膜完整但出现发泡现象、染色质浓缩、边缘化,核膜裂解等典型的凋亡形态。用TUNEL原位末端标记法(TdT--mediated dUTP Nick-End Labeling)处理细胞后,在激光共聚焦显微镜下可以直观看到细胞有明显的绿色荧光的阳性凋亡信号,并随时间增加而增多。用TUNEL法经流式细胞仪检测细胞发生凋亡的情况及比例,结果显示,GA诱导杜氏利什曼原虫前鞭毛体在阶段转变过程中发生凋亡这一作用呈时间和剂量依赖性。我们用PI染色后,通过流式细胞仪分析了GA对杜氏利什曼原虫细胞周期的影响,GA处理24h后细胞阻滞于G0/G1期,伴有S期减少,并出现明显的凋亡峰。用PI染色分析细胞凋亡情况,结果与TUNEL法检测凋亡结果一致。以上结果表明GA可以诱导杜氏利什曼原虫前鞭毛体在阶段转变过程中发生凋亡和细胞周期改变。检测处理前后细胞内ROS和GSH水平变化后发现,GA对杜氏利什曼原虫前鞭毛体在阶段转变过程中的存活和分化的影响与其引起的ROS含量上升和GSH含量下降有关,而提高细胞内GSH水平可抑制其毒性作用。GA诱导杜氏利什曼原虫前鞭毛体发生凋亡这一作用可能是跟GA引起细胞线粒体功能障碍有关。进一步说明HSP90在细胞阶段转变中发挥着重要作用。我们还比较了不同培养基pH值在GA诱导利什曼原虫凋亡的过程中的影响,发现酸性环境可能有利于细胞存活。同时我们还选择了5个SAGE文库结果中表达差异显著的基因,检测了在GA处理的过程中这些基因的表达水平变化情况。用实时定量PCR方法分析发现GA可以影响基因表达变化,ATPase subunit 9和Ubiquitin-fusion protein h的表达量均明显增高,而Elongation factor 1-α和H3的表达量是降低的。Ribosomal subunit protein L31的表达量却无明显变化。相关性分析结果显示,Elongation factor 1-α和H3的表达量与细胞凋亡比例之间有相关性。提示这两个基因在GA诱导的细胞凋亡过程可能发挥一定作用。
Leishmania is a protozoan parasite known to cause widespread human diseases around the world. Leishmaniasis is a major and increasingly prevalent public health problem in many regions of the world, particularly in Africa, Asia, and South America. These protozoan parasites have a life cycle characterized by the presence of a flagellated promastigote stage within the sand fly host and a nonmotile amastigote stage within the mammalian host. The promastigote-to-amastigote cytodifferentiation is a profound morphological and physiological transformation. During the process of differentiation, the parasite loses its flagellum, rounds up, changes its glycoconjugate coat, and begins to express a set of metabolic enzymes optimally active at a low pH. The transformation of Leishmania promastigotes to amastigotes during the infection of the host macrophage appears to involve a series of steps. These steps not only result in morphologic transformation, but also allow survival within the parasitophorous vacuole. The promastigote-amastigote cytodifferentiation’s significance in establishing an infection within the mammalian host has prompted us to identify molecular events involved in this process.
     In this study, we examined the transcriptome of Leishmania donovani promastigotes and axenic amastigotes to identify differentially regulated mRNAs utilizing the serial analysis of gene expression (SAGE). The axenic culture of amastigotes was initiated from stationary-phase promastigotes. Transformation from promastigote to amastigote occurred when cultures in Medium 199 (pH 5.5), supplemented with 20% (v/v) FBS, were transferred from 26℃to 37℃. A total of 20,299 and 20,132 tags were generated from promastigote and amastigote libraries, respectively. The containing unique genes identified in these two SAGE libraries were 8,615 and 7,835, respectively.
     Characteristics of the expressed genes’frequency distribution were remarkably similar in both libraries: the most abundant tags (frequency≥20), whose levels were equal to or > 1.3% of the identified tags, constituted > 23% of the total sequenced tags. Correspondingly, 75.72%, or 71.65% of the genes accounted for those tags present at low abundance (frequency=1), contributed only 32.13%, or 27.89%, of the total tags. A total of 968 genes (11.2% of the total genes in promastigotes and 12.4% in amastigotes) were recorded to have statistically different transcript levels between promastigotes and axenic amastigotes. Of the 968 distinct total genes, there are 326 promastigote-enriched transcripts and 642 amastigote-enriched mRNAs. Additional confirmation of the SAGE data was obtained utilizing quantitative real-time PCR.
     The present study also investigates the role of geldanamycin (GA),a specific inhibitor of HSP90, during L. donovani promastigote-to- amastigote transformation stage in axenic conditions. Previous study demonstrated that promastigote-to-amastigote differentiation could be induced at a low temperature (25°C) and neutral pH by using GA. Curiously, another study has shown that heat stress triggers a process of programmed cell death in Leishmania infantum promastigotes. Hence, this prompted us to study the effects of GA and pH of media during the promastigote-to-amastigote transformation stage. Primary interest lies in knowing whether GA can induce apoptosis-like death or stage-transformation in L. donovani promastigote at a high temperature and a low pH. Moreover, finding a possible evidence of Hsp90 protection pathway is anticipated and the effects of media pH during GA treatment. In lieu of this, five selected gene expression levels between GA treated and untreated cells were also evaluated. These are selected from the previous results of serial analysis of gene expression (SAGE), which exhibited significantly different expression levels between L. donovani promastigote and amastigote stages.
     Promastigotes exhibited morphologic changes, including cell shrinkage, cell rounding, and cytoplasmic blebbing after GA treatment at a high temperature. The positive apoptosis cells could be observed in situ by TdT-dUTP terminal nick-end labeling (TUNEL). Flow cytometry analysis shows a significant increase (P<0.01) in proportion to apoptotic cells with the effect in a dose- and time-dependant manner. Meanwhile, cell cycle analysis with propidium iodide stain shows a significant increase in the G1/G0 phase and a decrease in the S and G2/M phases (P<0.05). In addition, cellular glutathione level was reduced and reactive oxygen species (ROS) was increased afterwards. Pretreatment with antioxidants bring down the percentage of GA induced cell apoptosis. After treatment, cultures in pH 5.5 showed a lower percentage of apoptosis than in pH 7.4(P<0.05), indicating that acidic environments with a high temperature may play a protective role during the transformation stage. In sum, this study provides further evidence that both the Hsp90 and acidic conditions are likely to be crucial to the transformation and survival of the parasite within its human host.
引文
1.詹希美主编,人体寄生虫学,北京,人民卫生出版社,2001,50-51
    2. World Health Report, The double burden: emerging epidemics and persistent problems, 1999.
    3.王兆俊,熊光华,管立人等,新中国黑热病流行病学与防治成就,中华流行病学杂志,2002,21(1):51-54.
    4. Bates PA. Axenic culture of Leishmania amastigotes. Parasitol Today. 1993 Apr; 9(4):143-6.
    5. Bates PA, Tetley L. Leishmania mexicana: induction of metacyclogenesis by cultivation of promastigotes at acidic pH. Exp Parasitol. 1993 Jun; 76(4):412-23.
    6. Bates PA. Characterization of developmentally-regulated nucleases in promastigotes and amastigotes of Leishmania mexicana. FEMS Microbiol Lett. 1993 Feb 15; 107(1):53-8.
    7. Bates PA, Robertson CD, Tetley L, Coombs GH. Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitology. 1992 Oct; 105:193-202.
    8. Ramamoorthy R, Donelson JE, Paetz KE et al. Three distinct RNAs for the surface protease gp63 are differentially expressed during development of Leishmania donovani chagasi promastigotes to an infectious form. J Biol Chem. 1992 Jan 25; 267(3):1888-95.
    9. Voth BR, Kelly BL, Joshi PB et al. Differentially expressed Leishmania major gp63 genes encode cell surface leishmanolysin with distinct signals for glycosylphosphatidylinositol attachment. Mol Biochem Parasitol. 1998 May 15; 93(1):31-41.
    10. Medina-Acosta E, Beverley SM, Russell DG. Evolution and expression of the Leishmania surface proteinase (gp63) gene locus. Infect Agents Dis. 1993 Feb;2(1):25-34.
    11. McConville MJ, Blackwell JM. Developmental changes in the glycosylatedphosphatidylinositols of Leishmania donovani. J Biol Chem. 1991 Aug 15; 266(23):15170-9.
    12. Uliana s RB, Goyal N, Freymüller E et al. Leishmania: overexpression and comparative structural analysis of the stage-regulated meta 1 gene. Exp Parasitol. 1999 Jul; 92(3):183-191.
    13. Ilg T. Proteophosphoglycans of Leishmania. Parasitol Today. 2000 Nov; 16(11):489-97.
    14. Arora SK, Sehgal S. Tryon VV, et al. Recombinant Leishmania donovani heat shock protein 70 is recognized by T cells from im2 mune individuals. Immunol Infect Dis, 1995, 5:282-287.
    15. Diefenbach A, Schindler H, Rollinghoff M et al. Equirement for type 2 NO synthase for IL212 signaling in innate immunity. Science ,1998 ,284 :951-955.
    16. Edrissian GH, Darabian P, Zovein Z et al. Application of the indirect fluorescent antibody test in the serodiagnosis of cutaneous and visceral leishmaniasis in Iran. Ann Trop Med Parasitol. 1981 Feb; 75(1):19-24.
    17. Zovein A, Edrissian GH, Nadim A. Application of the indirect fluorescent antibody test in serodiagnosis of cutaneous leishmaniasis in experimentally infected mice and naturally infected Rhombomys opimus. Trans R Soc Trop Med Hyg. 1984; 78(1):73-77.
    18. Croker BA, Handman E, Hayball JD, et al. Rac2 - deficient mice dis2play perturbed T - cell distribution and chemotaxis, but only minor abnormalities in Th1 responses. Immunol Cell Biol, 2002, 80 (3):231- 240.
    19. Rivier D, Bovay P, Shah R et al. Vaccination against Leishmania major in a CBA mouse model of infection: role of adjuvants and mechanismof protection. Parasite Immunol, 1999, 21 (9):461-473.
    20. Daneshvar H, Coombs GH, Hagan P et al. Leishmania mexicana and Leishmania major: attenuation of wild - type parasites and vaccination with the attenuated lines. J Infect Dis, 2003, 187 (10): 1662-1668.
    21. Gradoni L, Gramiccia M,Scalone A. Visceral Leishmaniasis treatment,Italy. Emerg Infect Dis, 2003, 9 (12):1617-1620.
    22. Maroli M, Mizzoni V, Siragusa C et al. Evidence for an impact on the incidence of canine leishmaniasis by the mass use of deltamethrin - impregnated dog collars in southern Italy.Med Vet Entomol , 2001,15 (4) :358-363.
    23. Khalil EA, EI Hassan AM, Zijlstra EE et al. Autoclaved Leishmania major vaccine for prevention of visceral Leishmaniasis : a randomised, double-blind, BCG-controlled trial in Sudan. Lancet, 2000, 356(9241):1565-1569.
    24. Mahmoodi M, Khamesipour A, Dowlati Y et al. Immune response measured in human volunteers vaccinated with autoclaved Leishmania major vaccine mixed with low dose of BCG. Clin Exp Immunol, 2003, 134(2):303-308.
    25. Price VL, Kieny MP. Vaccines for parasitic diseases. Curr Drug Targets Infect Disord, 2001, 1 (3):315-324.
    26. Watts AM, Kennedy RC. DNA vaccination strategies against infectious diseases. Int J Parasitol , 1999, 29(8) :1149-1163.
    27. Yang DM, Rogers MV, Liew FY. Identification and characterization of host-protective T-cell epitopes of a major surface glycoprotein (gp63) from Leishmania major. Immunology. 1991 Jan; 72(1):3-9.
    28. Melby PC. Vaccination against cutaneous leishmaniasis: current status. AmJ Clin Dermatol, 2002, 3(8):557-570.
    29. Jensen AT, Ismail A, Gaafar A et al. Humoral and cellular immune responses to glucose regulated protein 78 - a novel Leishmania donovani antigen. Trop Med Int Health, 2002, 7(5):471-476.
    30. Rafati S, Baba AA, Bakhshayesh M et al. Vaccination of BALB/c mice with Leishmania major amastigote - specific cysteine proteinase. Clin Exp Immunol, 2000, 120 (1):134-138.
    31. Kofta W, Wedrychowicz H. c - DNA vaccination against parasitic infections: advantages and disadvantages. Vet Parasitol, 2001, 100 (1- 2):3 - 12.
    32. Gomes RB, Brodskyn C, de Oliveira et al. Seroconversion against Lutzomyia longipalpis Saliva concurrent with the development of anti- Leishmania chagasi delayed - type hypersensitivity. J InfectDis, 2002, 186 (10): 1530 - 1534.
    33. Hieter P, Hieter BP. Functional genomics: It’s all how you read it. Science, 1997, 278: 601-602
    34.李子银,陈受宜植物的功能基因组学研究进展.遗传,2000,22(1)57-60
    35.师科荣,王爱国功能基因组学的研究方法.生物技术通讯,2002,13(4) 301-304
    36.陈杰大规模平行测序技术(MPSS)研究进展.生物化学与生物物理进展2004 ; 31(8): 761-765
    37. Wasinger VC, Cordwell SJ, Cerpa-Poljak A et al. Progress with gene-product mapping of the mollicutes: mycoplasma genitalium. Electrophoresis.1995, 16(7):1090-1094
    38.成海平,钱小红蛋白质组研究的技术体系及其进展.生物化学与生物物理进展,2000,27(6) 584-588
    39.李林蛋白质组学进展.生物化学与生物物理进展,2000,27(3) 227-231
    40.赵剑华,王秀琴,刘芝华等功能基因组学的研究内容与方法.生物化学与生物物理进展,2000,27(1): 6-8
    41. Cordwell SJ, Basseal DJ, Bjellqvist B et al Characterization of basic proteins from spiroplasm a melliferum jusing novel immobilized pH gradients. Electrophoresis 1997, 18(8):1393-1398
    42. Humphery-Smith L, Cordwell SJ, Blackstock WP. Proteome research: compementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis, 1997, 18(8): 1217-1242
    43.陈竺,黄薇,付刚等人类基因组计划的现状与展望.自然杂志, 2000,22(3): 125-133
    44. Woychik RP, Klebig Ml, Justric MJ et al. Functional genomics in the post-genome era.Mutation Research, 1998, 400(1-2): 3-14.
    45.吴学军,柴建华比较基因组学和人类基因组研究.生物工程进展,2000,20(1):57-59
    46.朱兴全,林瑞庆,宋慧群功能基因组学研究概述.中国兽医科技,203,33(7): 29-34
    47. Velculeacu VE, Zhang L. Serial analysis of gene expression. Science, 1995, 270: 484
    48. Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257: 967
    49. Cho, C. et al. Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat. Genet. 2001, 28, 82–86
    50.何志巍,姚开泰DNA微阵列(或芯片)技术原理及应用.生物化学与生物物理进展,1999,26:507
    51. Schena M, Shalon D, Davis RW et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarry. Science, 1995, 270: 467-470
    52.李宁,许红稻蛋白质研究现状与展望.生物技术通讯,2000,11(4): 281
    53. Dalton R, Abott A. Can researcher find recipe for proteins and chips. Nature, 1999, 402:718
    54.杨齐衡,李林酵母双杂交技术及其在蛋白质组研究中的应用.生物化学与生物物理学报,1999,31(3): 221
    55.李林蛋白质组学的进展.生物化学与生物物理进展,2000,27(3): 227-231
    56. Hubank M, Chatz DG. Identifying differences in mRNA expression by representation ddifference analysis of cDNA. Nucleic Acids Res. 1994, 22(25):5640-5648
    57.王玲基于知识发现的生物信息学.生物工程进展,2000,20(3): 27-29
    58.李伟,印丽萍基因组学相关概念及其研究进展.生物学通报,2000,35(11): 1-3
    59. Adams MD, Kelley JM, Gocayne JD et al. Complementary DNA sequencing: expressed sequence tags and the human genome project. Science, 1991, 252 (5013): 1651-1656.
    60. Parkinson J, Whitton C, Schmid R, et al. NEMBASE: a resource for parasitic nematode ESTs. Nucl Acid Res, 2004, 32, D427-430.
    61. Velculescu VE, Zhang L, Zhou W, et al. Characterization of the yeast transcriptome. Cell.1997, 88(2):243-251.
    62. Yamamoto M, Wakatsuki T, Hada A, et al. Use of serial analysis of geneexpression (SAGE) technology. J Immunol Methods, 2001, 250(1-2): 45-66.
    63. Datson NA, van der Perk-de Jong J, van den Berg MP, et al. MicroSAGE: a modified procedure for serial analysis of gene expression in limited amounts of tissue. Nucl Acid Res, 1999, 27:1300-1307.
    64. Parkinson J, Mitreva M, Hall N, et al. 400,000 nematode ESTs on the Net. Trends Parasitol, 2003, 19:283-286.
    65. Virlon B, Cheval L, Buhler JM, et al. Serial microanalysis of renal transcriptomes. Proc. Natl. Acad. Sci. U. S. A, 1999, 96:15286-15291.
    66. Neilson L, Andalibi A, Kang D, et al. Molecular phenotype of the human oocyte by PCR-SAGE. Genomics, 2000, 63: 13-24.
    67. Nadon, R. and Shoemaker, J. Statistical issues with microarrays: processing and analysis. Trends Genet, 2002, 18:265-271.
    68. Ye SQ, Zhang LQ, Zheng F, et al. miniSAGE: gene expression profiling using serial analysis of gene expression from 1 microg total RNA. Anal Biochem, 2000, 287(1):144-52.
    69. Powell J. Enhanced concatemer cloning-a modification to the SAGE (Serial Analysis of Gene Expression) technique. Nucl Acid Res, 1998, 26(14): 3445-6.
    70. Saha S, Sparks AB, Rago C, et al. Using the transcriptome to annotate the genome.Nat. Biotechnol, 2002, 20: 508-512.
    71. Pleasance ED, Marra MA, Jones SJ. Assessment of SAGE in transcript identification. Genome Res, 2003, 13:1203-1215.
    72. Matsumura H, Reich S, Ito A, et al. Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100:15718-15723.
    73. Lash AE, Tolstoshev CM, Wagner L, et al. SAGEmap: A public gene expression resource. Genome Res, 2000, 10(7): 1051-1060.
    74. Chen JJ, Janet DR, Wang SM. Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc Natl Acad Sci USA, 2000, 97(1): 349-353
    75. Anke van den Berg, Judith van der Lei, Sibrang P. Serial analysis of geneexpression: rapid RT-PCR analysis of unknown SAGE tags. Nucleic Acids Research. 1999, 27(17):17
    76. Wang SM, Janet DR. A strategy for genome-wide gene analysis: Intrgrated procedure for gene identification. Proc Natl Acad Sci USA, 1998, 95(20):11900-11910.
    77. Tuteja, R. and Tuteja, N. Serial Analysis of Gene Expression: Applications in Human Studies. J. Biomed. Biotechnol, 2004, 2004(2):113-120.
    78. Buzoni-Gatel D, Lepage AC, Dimier-Poisson IH,et al. Adoptive transfer of gut intraepithelial lymphocytes protects against murine infection with Toxoplasma gondii[J]. J. Immunol.1997, 158:5883-5889.
    79. Shires J, Theodoridis E, Hayday AC. Biological insights into TCRgammadeltaC and TCRalphabetaC intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity, 2001, 15:419-434.
    80. Radke JR, Behnke MS, Mackey AJ et al. The transcriptome of Toxsoplasma gondii. BMC Biology, 2005, 3: 26.
    81. McManus DP, Hu W, Brindley PJ et al. Schistosome transcriptome analysis at the cutting edge[J]. Trends Parasitol, 2004, 20:301-304.
    82. Munasinghe A, Patankar S, Cook BP et al. Serial analysis of gene expression (SAGE) in Plasmodium falciparum: application of the technique to AT rich genomes[J]. Mol. Biochem. Parasitol, 2001, 113:23-34.
    83. Patankar S, Munasinghe A, Shoaibi A et al. Serial analysis of gene expression in Plasmodium falciparum reveals the global expression profile of erythrocytic stages and the presence of anti-sense transcripts in the malarial parasite. Mol. Biol. Cell, 2001, 12: 3114-3125.
    84. Gunasekera AM, Patankar S, Schug J et al. Drug-induced alterations in gene expression of the asexual blood forms of Plasmodium falciparum[J]. Mol.Microbiol, 2003, 50:1229-1239.
    85. Jones SJ, Riddle DL, Pouzyrev AT et al. Changes in gene expression associated with developmental arrest and longevity in Caenorhabditis elegans[J]. Genome Res, 2001, 11: 1346-1352.
    86. Palm D, Weiland M, McArthur AG et al. Developmental changes in the adhesive disk during Giardia differentiation. Molecular & Biochemical Parasitology, 2005, 141: 199-207.
    87. Skuce PJ, Yaga R, Lainson FA et al. An evaluation of serial analysis of gene expression (SAGE) in the parasitic nematode, Haemonchus contortus. Parasitology, 2005, 130: 553-9.
    88. Hartl FU. Molecular chaperones in cellular protein folding. Nature. 1996 Jun 13; 381(6583):571-9.
    89. Kim HT, Nelson EL, Clayberger C et al. Gamma delta T cell recognition of tumor Ig peptide. J Immunol. 1995 Feb 15; 154(4):1614-23.
    90. Van Eden W, van der Zee R, Paul AG, Prakken BJ, Wendling U, Anderton SM, Wauben MH. Do heat shock proteins control the balance of T-cell regulation in inflammatory diseases? Immunol Today. 1998 Jul; 19(7):303-7.
    91. McDonnell JM, Fushman D, Milliman CL, et a1. Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell. 1999 Mar 5; 96(5):625-34.
    92. Saleh A, Srinivasula SM, Balkir L, et al. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol. 2000 Aug;2(8):476-83.
    93. Pandey P, Saleh A, Nakazawa A, et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 2000 Aug 15; 19(16):4310-22.
    94. Concannon CG, Orrenius S, Samali A. Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expr. 2001; 9(4-5):195-201.
    95. Ravagnan L, Gurbuxani S, Susin SA, et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol. 2001 Sep;3(9):839-43.
    96. Uchinami H, Yamamoto Y, Kume M, et al. Effect of heat shock preconditioning on NF-kappaB/I-kappaB pathway during I/R injury of the rat liver. Am J Physiol Gastrointest Liver Physiol. 2002 Jun; 282(6):G962-71.
    97. Kiemer AK, Gerbes AL, Bilzer M, et al. The atrial natriuretic peptide and cGMP:novel activators of the heat shock response in rat livers. Hepatology. 2002 Jan; 35(1):88-94.
    98. Marchetti PD,Decaudin A,Macho N, et al. Redox regulation of apoptosis: impact of thiol oxidation status on mitochondrial function. Eur J Immunol, 1997, 27:289-296.
    99. Macho A, Hirsch T, Marzo I, et al. Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J immunol, 1997, 158(10):4612-4619.
    100.Kaiser AM, Saluja AK, Lu L, et al. Effects of cycloheximide on pancreatic endonuclease activity, apoptosis, and severity of acute pancreatitis. Am J Physiol. 1996 Sep; 271(3 Pt 1):C982-93.
    101.Shirlee T, Tutaka S, Yuanbin L, et al. The regulation of reactive oxygen species production during programmed cell death. J cell biol, 1998, 141(6):1423-1432.
    102.Maconkey DJ, Orrenius S. The role of calcium in the regulation of apoptosis. Biochem Biophys Res Commun, 1997, 239:357-366.
    103.Hochman A, Sternin H, Gorodin S, et al. Enhanced oxidative stress and altered antioxidants in brains of bcl-2 deficient mice. J neurochem, 1998, 71(2):741-748.
    104.Kane DJ, Sarafian TA, Anton R, et al. Bcl-2 inhibition of neural death: decreased generation of ROS.Science,1993,262(5137):1274-1277.
    105.Satoh T, Enokido Y, Aoshima H, et al. Changes in mitochondrial membrane potential during oxidative stress induced apoptosis in PC12 cells. J neurosci Res, 1997, 50(3):413-420.
    106.Moty1 T, Grzelkoroske K, Zimowoka W, et al. Expression of bcl-2 and bax in tGF-betal induced apoptosis of L1210 leukemia cells. Eur J cell biol, 1998, 75(4):367-374.
    107.Kruman I, Guo Q, Mattson MP. Calcium and reactive oxygen species mediate staurosporine induced mitochondrial dysfunction and apoptosis in PC12 cells. J Neurosci Res, 1998, 51(3):293-308.
    108.Ahlemeyer B, Krieglstein J. Retinoic acid reduces staurosporine induced apoptoic damage in chick embryonic neurons by suppressing reactive oxygenspecies production. Neurosci Lett, 1998, 246(2):93-96.
    109.Rollet LE, Grange MJ, Elbim C, et al. Hydroxyl radical as a potential intracelluar mediator of polymorphonuclear neutrophil apoptosis. Free radic Biol Med, 1998, 24(4):563-572.
    110.Lee JM. Inhibition of p53 dependent apoptosis by KIT tyrosine kinase: regulation of mitochondrial permeability transition and reactive oxygen species generation. Oncogene, 1998, 17(13):1653-1662.
    111.Dobmeyer TS, Findhammer S, Dobmeyer JM, et al. Ex vivo induction of apoptosis in lymphocytes is mediated by oxidative stress:role for lymphocyte loss in HIV infection. Free Radic Biol Med,1997,22(5):775-785.
    112.Friesen C, Fulda S, Debatin KM, et al. Induction of CD95 ligand and apoptosis by doxorubicin is modulated by the redox state in chemosensitive and drug resistant tumor cells. Cell Death Differ, 1999,6(5):471-480.
    113.Dai J, Rona S, Weinberg, et al. Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood, 1999,93(1):268-277.
    114.Sun SY, Li W, Yue P, et al. Mediation of N-(4-hydoxyphenyl) retinamide induced apoptosis in human cancer cells by different mechanisms. Cancer res, 1999, 59(10):2493-2498.
    115.Newton CJ, Drummond N, Burgoyne CH, et al. Functional inactivation of the oestrogen receptor by the antioestrogen, ZM 182780, sensitises tumour cells to reactive oxygen species. J Endocrinol, 1999, 161(2):199-210.
    116.Muller I, Niethammer D, Bruchelt G. Anthracycline derived chemotherapeutics in apoptosis and free fadical cytotoxicity. Int J Mol med, 1998, 1(2):491-494.
    117.Tang DG, Li L, Zhu Z, et al. BMD188, A novel hydroxamic acid compound,demonstrates potent anti-prostate cancer effects in vitro and in vivo by inducing apoptosis:requirements for mitochondria, reactive oxygen species, and proteases. Pathol Oncol Res, 1998, 4(3):179-190.
    118.王克信,宋葆华,尹美珍等.杜氏利什曼原虫前鞭毛体的培养和染色方法的改进.寄生虫与医学昆虫学报. 2000; 17:127-128.
    119.Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res.1997; 7:986-995.
    120.Lopez M, Cherkasov A, Nandan D. Molecular architecture of leishmania EF-1alpha reveals a novel site that may modulate protein translation: a possible target for drug development. Biochem Biophys Res Commun. 2007; 356(4):886-892.
    121.Doyle PS, Engel JC, Pimenta PF, da Silva PP, Dwyer DM. Leishmania donovani: long-term culture of axenic amastigotes at 37 degrees C. Exp Parasitol.1991; 73:326-334.
    122.Debrabant A, Joshi MB, Pimenta PF, Dwyer DM. Generation of Leishmania donovani axenic amastigotes: their growth and biological characteristics. Int J Parasitol.2004; 34:205-217.
    123.Bente M, Harder S, Wiesgigl M, Heukeshoven J, Gelhaus C, Krause E, Clos J, Bruchhaus I. Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. Proteomics.2003; 3:1811-1829.
    124.Holzer TR, McMaster WR, Forney JD. Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Mol Biochem Parasitol.2006; 146:198-218.
    125.Singh N, Almeida R, Kothari H, Kumar P, Mandal G, Chatterjee M, Venkatachalam S, Govind MK, Mandal SK, Sundar S. Differential gene expression analysis in antimony-unresponsive Indian kala azar (visceral leishmaniasis) clinical isolates by DNA microarray. Parasitology.2007; 134:777-787.
    126.Leifso K, Cohen-Freue G, Dogra N, Murray A, McMaster WR. Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: The Leishmania genome is constitutively expressed. Mol Biochem Parasitol.2007; 152:35-46.
    127.Du Z, Scott AD, May GD. Amplification of high-quantity serial analysis of geneexpression ditags and improvement of concatemer cloning efficiency. Biotechniques, 2003, 35(1):66-67.
    128.Gowda M, Jantasuriyarat C, Dean RA, et al. Robust-LongSAGE(RL-SAGE):a substantially improved LongSAGE method for gene discovery and transcriptome analysis. Plant Physiol. 2004 Mar; 134(3):890-7.
    129. Van den Berg A, van der Leij J, Poppema S. Serial analysis of gene expression: rapid RT-PCR analysis of unknown SAGE tags. Nucleic acids research.1999; 27: e17.
    130. Chen JJ, Rowley JD, Wang SM. Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc Natl Acad Sci.2000; 97:349-353.
    131.Ritossa P. [Problems of prophylactic vaccinations of infants. Riv Ist Sieroter Ital. 1962 Mar-Apr; 37:79-108.
    132.Tissières A, Mitchell HK, Tracy UM. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol. 1974 Apr 15; 84(3):389-98.
    133.Wiesgigl M.; and J. Clos. Heat shock protein 90 homeostasis controls stage differentiation in Leishmania donovani. Mol. Biol. Cell. 2001; 12:3307-3316.
    134. Raina P. and Kaur S. Chronic heat-shock treatment driven differentiation induces apoptosis in Leishmania donovani. Mol Cell Biochem. 2006; 289:83-90.
    135. Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, Pearl LH. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin.J Med Chem. 1999 Jan 28; 42(2):260-266.
    136.Graefe S.E.; Wiesgigl M.; Gaworski I.; Macdonald A.; Clos J. Macdonald and J. Clos. Inhibition of HSP90 in Trypanosoma cruzi induces a stress response but no stage differentiation. Eukaryot Cell. 2002; 1:936–943.
    137.Sawada T, Hashimoto S, Furukawa H, et al. Generation of reative oxygen species is required for bucillamine,a novel anti rheumatic drug to induce apoptosis in concert with copper. Immunopharmaco-logy, 1997, 35(35):195-202.
    138.Luque-Ortega JR, Rivero-Lezcano OM, Croft SL, et al. In vivo monitoring ofintracellular ATP levels in Leishmania donovani promastigotes as a rapid method to screen drugs targeting bioenergetic metabolism, Antimicrob Agents Chemother,2001, 45: 1121-1125.
    139.Mukherjee S.B.; Das M.; Sudhandiran G.; Shaha C. Increase in cytosolic Ca2+ levels through the activation of non-selective cation channels induced by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes. J Biol Chem.2002, 277:24717-24727.
    140.Alzate JF, Arias AA, Moreno-Mateos D, et al. Mitochondrial superoxide mediates heat-induced apoptotic-like death in Leishmania infantum. Mol Biochem Parasitol. 2007, 152:192-202.
    141.Verma NK, Singh G, Dey CS. Miltefosine induces apoptosis in arsenite-resistant Leishmania donovani promastigotes through mitochondrial dysfunction. Exp Parasitol. 2007, 116:1-13.
    142.Das R, Roy A, Dutta N, et al. Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani. Apoptosis. 2008, 13:867-882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700