反应球磨与脱氢再结合烧结制备纳米晶NdFeB磁体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米晶永磁材料作为一种新型永磁材料,由于具有潜在的高剩磁、高矫顽力与高磁能积,近年来受到了人们的广泛关注。目前纳米晶磁粉可以通过快淬法和机械合金化法来制造,这类磁粉主要用来制备粘结磁体。粘结磁体具有成型工艺简单、尺寸精度高及力学性能好等优点,但是粘结磁体密度很低而且磁体中存在粘结剂,影响了磁体的磁性能。为此,本文提出了“机械力驱动歧化与脱氢-再结合烧结法”制备高致密纳米晶NdFeB磁体的新工艺。本文系统地研究了机械力驱动下铸态NdFeB合金的氢化-歧化反应,歧化态NdFeB合金粉末的冷压致密工艺,歧化态NdFeB合金粉末坯的脱氢-再结合原位烧结工艺,探讨了工艺条件对纳米晶NdFeB磁体组织结构与性能的影响。同时,还研究了纳米晶NdFeB各向异性磁体的制备工艺,探讨了工艺条件对磁体取向程度与磁性能的影响,并对纳米晶NdFeB磁体的矫顽力机制进行了理论分析。
     利用X射线衍射(XRD)、穆斯堡尔谱(M?ssbauer)以及透射电镜(TEM)等分析手段,研究了铸态NdFeB合金在充氢球磨过程中组织与结构的变化。结果表明,由于Nd2Fe14B相的歧化反应激活能远高于氢化反应激活能,NdFeB合金在机械力驱动作用下与氢气反应的特点为:氢化与歧化反应并非同时或交替发生,而是按先氢化、后歧化的顺序进行;合金氢化后必须再经过适度延时球磨使原子被激活到相对高能状态,才能使歧化反应在随后的球磨过程中发生;氢化反应速度很快,歧化反应速度很慢。
     对机械力驱动下NdFeB合金氢化–歧化反应的热力学条件及动力学特征进行了研究,并建立了描述机械力驱动下NdFeB合金歧化反应特征的动力学公式。结果发现,在充氢球磨的过程中,合金的歧化反应速率受到球磨机转速、球料质量比、氢压以及合金成分这几个因素的影响。
     对纳米晶歧化态NdFeB合金粉末的室温压制性能进行了研究,结果表明,歧化态NdFeB合金粉末具有良好的压制性能,易于采用常规模压的方法压制成高致密冷压坯。在1400MPa的压制压力下,歧化态Nd16Fe76B8合金粉末可获得致密度0.9左右的冷压粉末坯。这种歧化态粉末坯中含有大量的α-Fe相,可以在室温下对之进行镦锻塑性变形,变形后的坯料组织中具有明显的α-Fe相{110}织构。
     利用XRD、M?ssbauer谱以及TEM等分析手段研究了纳米晶歧化态NdFeB合金粉末坯在烧结过程中的脱氢再结合反应,分析了烧结工艺参数对材料组织的影响。研究表明,歧化态NdFeB合金粉末坯经过780℃真空烧结30min后,获得了平均晶粒尺寸为50nm左右的纳米晶NdFeB致密磁体。
     利用振动样品磁强计(VSM)对在不同工艺条件下所获磁体的磁性能进行了分析,探讨了烧结温度与烧结时间对磁体磁性能的影响。实验研究获得的最佳制备工艺参数为:780℃×30min,在该工艺条件下,合金成分为Nd16Fe76B8的纳米晶各向同性致密磁体的磁能积达到106.3kJ/m3,抗压与抗弯强度分别达到301MPa与116.5MPa。与相同成分的各向同性磁体相比,各向异性纳米晶致密磁体的磁性能更高,达到135.2kJ/m3。
     对纳米晶NdFeB致密磁体的各向异性形成机理进行了研究,发现磁体的各向异性实际上源于歧化态NdFeB合金粉末变形坯中α-Fe相的{110}晶面织构。对所获得的纳米晶NdFeB磁体的磁化与反磁化机制进行了探讨,指出了再结合不完全的纳米晶磁体磁化与反磁化是由形核型和钉扎型两种机制共同作用的结果,而再结合完全的纳米晶磁体磁化与反磁化是由钉扎型机制作用的结果。
Nanocrystalline magnetic materials have attracted considerable attention in recent years because of their potential high remanence, coercivity, and maximum energy product. Nanocrystalline magnetic powders are usually synthesized by melt-spinning and mechanical alloying, and these powders are generally used for making bonded magnets. The bonded magnets have the advantage of easy processing, high dimension precision and good mechanical properties. However, the low density and the existence of polymer binder for the bonded magnets reduce the magnetic properties, leading to the low values of (BH)max. To solve this problem, a new technique, which combines mechanically activated disproportionation and desorption-recombination sintering, has been proposed to obtain nanocrystalline highly-densified NdFeB magnets. The mechanically activated hydrogenation– disproportionation of as-cast NdFeB alloy, the cold compaction process of as-disproportionated NdFeB alloy powders, and the desorption- recombination in situ sintering of as-disproportionated NdFeB alloy powder compacts were investigated systematically. The effect of processing parameters on the microstructures and magnetic properties of the nanocrystalline NdFeB magnets was studied. The production process of nanocrystalline anisotropic NdFeB magnets was investigated as well. The effect of processing parameters on the microstructure anisotropy and magnetic properties of the anisotropic magnets was studied, and the coercivity mechanism of such nanocrystalline NdFeB magnets was also analyzed
     Microstructural changes of as-cast NdFeB alloy during mechanical milling in hydrogen were characterized by XRD, M?ssbauer spectra and TEM analysis. The results showed that,since the disproportionation of Nd2Fe14B phase needs much higher activation energy than that for hydrogenation, the characteristics of the reaction between NdFeB alloy and hydrogen during milling could be interpreted as follows: the hydrogenation occurred much earlier than disproportionation; after hydrogenation, a further milling was needed to promote the energy level of the hydrogenated alloy so that the disproportionation reaction was activated; the kinetics of hydrogenation is much faster than that of disproportionation.
     The aspects of the thermodynamics and kinetics for the mechanically activated disproportionation were investigated, and the kinetic equation was derived. The results revealed that the disproportionation kinetics was affected by the rotation speed, ball to powder mass ratio, hydrogen pressure, and composition of the alloy.
     The cold compactability of the as-disproportionated NdFeB powder was investigated, and the results showed that the nano-structured as-disproportionated NdFeB alloy powder had good cold compactability, they could be cold pressed into highly-densified compacts by conventional die pressing. After cold pressing at 1400MPa, the relative density of the compacts can achieve above 0.9. The cold deformation process of the compacts was also studied, and it was shown that a strong {110} crystallographic texture of theα-Fe was formed after cold upsetting.
     The desorption–recombination behavior of as-disproportionated NdFeB alloy during vacuum sintering was investigated by the means of XRD, M?ssbauer spectra, and TEM analysis, and the effect of processing parameters on the microstructure of magnets was also analyzed. The results showed that nanocrystalline NdFeB magnets with average grain size of about 50nm was obtained by vacuum sintering at 780℃for 30 min.
     The magnetic properties of the nanocrystalline NdFeB magnets obtained at various parameters were measured by VSM. The influences of processing parameters on the microstructure and properties of the magnets were investigated. In the present study, the highest magnetic energy product of the nanocrystalline isotropic Nd16Fe76B8 magnets, was 106.3kJ/m3, the compressive strength and flexural strength of the magnets achieved 301MPa and 126.3MPa, respectively. The magnetic properties of the nanocrystalline anisotropic NdFeB magnet were higher than that of the isotropic NdFeB magnet, which achieved 135.2kJ/m3.
     The formation of magnetic anisotropy in nanocrystalline anisotropic NdFeB magnets was investigated by means of XRD, TEM and VSM. It was found that the magnetic anisotropy of the magnets was attributed to the seeding effect of the {110} crystal texture of theα-Fe phase in the as-deformed alloy. The mechanism of magnetization and demagnetization for the nanocrystalline NdFeB magnets was discussed. It was found that the coercivity was controlled by the domain wall pinning for the magnets obtained by completed desorption-recombination reaction and controlled by the nucleation-pinning co-working magnetization mechanism for the magnets obtained by uncompleted desorption-recombination reaction.
引文
1 J. F. Herbst, J. J. Crost, F. E. Pinkerton, et al. Relationships between crystal structure and magnetic properties in Nd2Fe14B. Phys. Rev, B. 1984, 29: 4176- 4178
    2 D. Givord, H. S. Li, L. M. Moreau. Magnetic properties and crystal structure of Nd2Fe14B. Solid state commun. 1984, 50: 497-499
    3 C. B. Shoemaker, D. P. Shoemaker, R. Fruchart. The structure of a new magnetic phase related to the sigma phase: Iron Neodymium Borides Nd2Fe14B. Acta. Cryst. 1984, 40:1665-1668
    4 Liu S. Effect of Nanograin Structure on Magnetic Properties of Rare Earth Permanent Magnets. Proc of the 18th Workshop on HPM. 2004, 2: 690-693
    5 R. Skomski and J. M. D. Coey. Giant energy product in nanostructured two-phase magnets. Phys. Rev. B. 1993, 48: 15812-15816
    6周寿增,董清飞.超强永磁体-稀土铁系永磁材料.冶金工业出版社. 2004
    7 J. H. Wernick and S. Geller. Transition element-rare earth compounds with the Cu5Ca structure. Acta. Cryst. 1959, 12(5): 662-665
    8 M. Merches, W. E. Wallace, and R. S. Craig. Magnetic and structural characteristics of some 2:17 rare earth-cobalts ystems. J. Magn. Magn. Mater. 1981, 24(7): 97-105
    9 J. J. Croat, J. F. Herbst, R. W. Lee, et al. Pr-Fe and Nd-Fe based materials: A new class of high-performance permanent magnets. J. Appl. Phys. 1984, 55(4): 2078-2082
    10 E. A. Nesbitt, H. J. Williams, J. H. Wernick, et al. Sherwood. Magnetic moments of intermetallic compounds of transition and rare-earth elements. J. Appl. Phys. 1962, 33(11): 1674-1678
    11张深根,于敦波,应启明,等.高性能烧结NdFeB生产关键技术研究.金属功能材料. 2001, 8(2): 12-18
    12严密,彭晓领.磁学基础与磁性材料.浙江大学出版社. 2008
    13 J. D. Livingston. Domanis in sintered Co-Cu-Fe-Sm magnets. J. Appl. Phys. 1975, 46(12): 5259-5262
    14 H. Nagel. Coercivity and microstructure of Sm(Co0.87Cu0.13)7.8 J. Appl. Phys. 1979, 50(2): 1026-1030
    15 K. N. Melton and R. S. Perkins. Magnetic properties of Sm:(Co,Cu) alloys. J. Appl. Phys. 1976, 47(6): 2671-2678
    16 J. J. Croat. Preparation and coercive force of melt-spun Pr-Fe alloys. Appl. Phys. Lett. 1980, 37: 1096-1098
    17 J. J. Croat et al. Magnetic properties of melt-spun Pr-Fe alloys. J. Appl. Phys. 1981, 52(3): 2509-2511
    18 N. C. Koon and B. N. Das. Magnetic properties of amorphous and crystallized (Fe0.82B0.18)0.9Tb0.05La0.05. Appl. Phys. Lett. 1981, 39(10): 840-842
    19 G. C. Hadjipanayis, R. C. Hazelton, K. R. Lawless. Cobalt-free permanent magnet materals based on iron-rare-earth alloys (invited). J. Appl. Phys. 1984, 55(6): 2073-2077
    20 R. Coehoorn, D. B. De Mooij, J. P. W. B. Duchateau, et al. Novel permanent magnetic materials made by rapid quenching. J.de Phys.c.8 Supplemen. 1988, 9: 669-670
    21高汝伟,代由勇,陈伟,等.纳米晶复合永磁材料的交换耦合相互作用和磁性能.物理学进展. 2001, 21(2):132-155
    22 V. G. Shadrov, L. V. Nemtsevich. Nanocrystalline magnetic materials. Fizikai Khimiya Obrabotki Materialov. 2002, 5: 50-61
    23 R. Gholamipour, A. Beitollahi, et al. Cu effects on coercivity and microstruc- tural features in nanocrystalline Nd–Fe–Co–B annealed melt-spun ribbons. Physica B: Condensed Matter. 2007, 398: 51-54
    24 C. Wang, M. Yan, Q. Li. Effects of Nd and B contents on the thermal stability of nanocomposite (Nd, Zr)2Fe14B/α-Fe magnets. Mater. Sci. and Eng: B. 2008, 150: 77-82
    25 I. Betancourt, G. Cruz-Arcos, T. Schrefl, et al. Coercivity enhancement in boron-enriched stoichiometric REFeB melt-spun alloys. Acta Mater. 2008, 56: 4890-4895
    26 M. Rajasekhar, D. Akhtar, V. Chandrasekaran, et al. Microstructure and magnetic properties of (Nd1?yPry)4.5Fe77B18.5 nanocomposite alloys. J. Alloy. Comp. 2009, 480: 670-673
    27罗阳.粘结NdFeB磁体产业的发展与困境.磁性材料与器件. 2007, 38(5): 1-7
    28罗阳.全球NdFeB磁体产业变化与发展的25年.磁性材料与器件. 2008, 139: 9-39
    29 M. Sagawa, S. Fujimura, N. Togawa, et al. New material for permanent magnets on a base of Nd and Fe (invited). J. Appl. Phys. 1984, 55(6): 2083-2087
    30 Hirosawa S. Recent developments and future perspectives of Nd-Fe-B permanent magnets for automotive applications. BM News, 2006, 3, 31: 135-154
    31 J. J. Croat. Technical Report of Magnequench. Delco Remy Div of GM. 1990
    32 Y. Honkura. Automotive motor innovation with anisotropic bonded magnet. Proc. of 19th International Workshop on REPM and their Applications. 2006, 2: 231-239
    33林河成.我国烧结钕铁硼永磁体的高速发展.上海有色金属. 2006, 27: 33-37
    34 A. Manaf, R. A. Buckley, H. A. Davis. New nanocrystalline high-remanence Nd-Fe-B alloys by rapid solidification. J. Magn. Magn. Mater. 1993, 128(3): 302-306
    35 M. J. Kramer, L. H. Lewis, L. M. Fabietti, et al. Solidification microstructural refinement and magnetism in Nd2Fe14B. J. Magn. Magn. Mater. 2002, 241: 144-155
    36 F. D. Saccone, L.G. Pampillo, M.I. Oliva, et al. First-order reversal curve analysis in the hysteretic behavior of boron-rich nanocomposite Nd-Fe-B ribbons. Physica B: Condensed Matter. 2007, 398: 313-316
    37 H. Mayot, O. Isnard, J-L. Soubeyroux. Magnetic properties and synthesis conditions of Nd2Fe23B3 melt-spun alloy. J. Magn. Magn. Mater. 2007, 316: 477-480
    38 V. ?osovi?, T. ?ák, N. Talijan, A. Gruji?, et al. Phase composition, structure and magnetic behaviour of low neodymium rapid-quenched Nd-Fe-B alloys. J. Alloy. Comp. 2008, 27: 299-302
    39 Hongchao Sheng, Xierong Zeng, Xiaohua Li, et al. Improvement of the magnetic properties of Nd9.5Fe81Zr3B6.5 nanocomposite magnets by semi-melt spinning. J. Magn. Magn. Mater. 2009, 321: 3042-3045
    40 L. Schultz, J. Wecker. Hard magnetic properties of Nd-Fe-B formed by mechanical alloying and solid state reaction. Mater. Sci. and Eng. 1987, 99: 127-130
    41 Yng Wang, Erde Wang. Effect of milling and crystallization conditions on microstructure of Nd2Fe14B/α-Fe powder. Trans. Nonferrous Met. Soc. China.2007, 17(1): 138-142
    42 V. Neu, P. Crespo, R. Schafer, et al. High remanence Nd-Fe-B-X (X=Cu, Si, Nb3Cu, Zr) powders by mechanical alloying. J. Magn. Magn. Mater. 1996, 157/158: 61-62
    43 I. Wnuk, J. J. Wys?ocki. The coercivity mechanism in nanocomposite Nd2Fe14B+α-Fe magnets. J. Mater. Proc. Technol. 2006, 175: 433-438
    44 Hyun Gil Cha, Young Hwan Kim, Chang Woo Kim, et al. Preparation for exchange-coupled permanent magnetic composite betweenα-Fe (soft) and Nd2Fe14B (hard). Current Applied Physics. 2007, 7: 400-403
    45 Ying Wang, Erde Wang. Effects of milling and crystallization conditions on microstructure of Nd2Fe14B/α-Fe powder. Trans. Nonferrous Met. Soc. China. 2007, 17: 138-142
    46 J. Jakubowicz. Particle analysis and properties of mechanically alloyed Nd16Fe76?xTixB8. Superlattices and Microstructures. 2008, 43: 315-323
    47 Hu Lianxi, Shi Gang, Wang Erde. Mechanically activated disproportionation of NdFeB alloy by ball milling in hydrogen. Trans. Nonferrous Met. Soc. China. 2003, 13: 1070-1074
    48 Shi Gang, Hu Lianxi, Guo Bin, et al. Microstructural study on Nd2Fe14B/α-Fe nanocomposites during disproportionation and desorption-recombination. Mater. Sci. Forum. 2005, 475-479: 2185-2188
    49 Hu Lianxi, Li Yuping, Yuan Yuan, et al. Desorption-recombination and microstructure change of a disproportionated nano-structured NdFeB alloy. J. Mater. Res. 2008, 23(2): 427-434
    50 Shi Gang, Hu Lianxi, Wang Erde. Preparation, microstructure, and magnetic properties of a nanocrystalline Nd12Fe82B6 alloy by HDDR combined with mechanical milling. J. Magn. Magn. Mater. 2006, 301: 319-324
    51石刚.机械球磨-HDDR制备纳米晶Nd2Fe14B/α-Fe永磁材料研究.哈尔滨工业大学博士生论文. 2005
    52李顺.纳米复合Nd2Fe14B/α-Fe(Fe3B)永磁合金的结构与磁性能.国防科学技术大学博士生论文. 2008: 13-14
    53 B. M. Ma, J.W. Herchenroeder, B. Smith, et al. Recent development in bonded NdFeB magnets. J. Magn. Magn. Mater. 2002, 239: 418-423
    54 W. F. Miao, J. Ding, McCormick P G, et al. Stricture and magnetic properties of mechanically milled Nd2xFe100-xBx(x=2-6). J. Alloy. Comp. 1996, 240:200-205
    55 J.F. Liu, H. A. Davies. Magnetic properties of cobalt substituted Nd2Fe14B/α- Fe nanocomposite magnets processed by overquenching and annealing. J. Magn. Magn. Mater. 1996, 157/158: 11-14
    56 J. Bauer, M. Seeger, A. Zern and H. Kronmüller. Nanocrystalline FeNdB permanent magnets with enhanced remanence. J. Appl. Phys. 1996, 80(3): 1667-1673
    57 Wang Zuocheng, Zhang Maocai, Li Fubiao, et al. High coercivity (NdDy)2(FeNb)14B/α-Fe nanocrystalline alloys. J. Appl. Phys. 1997, 81(8): 5097-5099
    58王晨,文玉华,严密. Nb和Zr对(Nd,Pr)2Fe14B/α-Fe磁体晶化行为和磁性能的影响.稀有金属材料与工程. 2005, 34(11): 1782-1785
    59高汝伟,孟宪洪. Nd-Fe-B永磁合金的微结构和晶粒相互作用.材料科学与工程, 1998, 16(3): 55-59
    60计齐根,都有为.晶粒边界对Nd2Fe14B/α-Fe纳米复合材料性能的影响.物理学报. 2000, 49(11): 2281-2286
    61李伟,杨丽,关颖,等.不同淬速下α-Fe/ Nd2Fe14B复合纳米晶结构的形成.功能材料. 2004, 1(35): 34-36
    62 C. R. Paik et al. Magnetic performance for magnet powders produced by crushing sinter NdFeB. IEEE Trans. Magn. 1987, 23: 2512-2515
    63 H. Stadelmaiter, et al. A method for producing magnet powder via crushing NdFeB ingot. Mater. Lett. 1986: 304-307
    64 C. R. Saki et al. Magnetic property of NdFeB powder produced by crushing sinter NdFeBCoAl magnet and sub heat-treatment. Pro. 10th Int. Workshopon RE Magnet and their Appl. 1989, Kyota: 613-615
    65 R. Coehoorn, et al. Crystal texture in melt spin NdFeB ribbon. Mater. Sci. and Eng. 1988, 99: 131-134
    66 LiJia Pang, Guangfei Sun, Jufang Chen, et al. Wenan Li, and Jinbiao Zhang. Preferred orientation in nanocomposite permanent magnet materials. Journal of rare earth. 2006, 24:76-80
    67庞利佳,乔祎,陈菊芳等.纳米复合永磁材料晶粒择优取向的研究.中国稀土学报. 2004, 22(6):773-777
    68 X. Y. Zhang, Y. Guan, L. Yang et al. Crystallographic texture and magneticanisotropy ofα-Fe/Nd2Fe14B nanocomposites prepared by controlled melt spinning. Appl. Phys. Lett. 2001, 79(15): 2426-2428
    69 S. Liesert, P. de Rango, J. L. Soubeyroux, et al. Anisotropic and coercive HDDR Nd-Fe-B powders prepared under magnetic field. J. Magn. Magn. Mater. 1996, 157/158: 57-58
    70 S. Liesert, D. Fruchart, P. de Rango, et al. HDDR process of Nd-Fe-B with an excess of intergranular Nd-rich phase under magnetic field. J. Alloy. Comp. 1997, 262-263: 366-371
    71连仙利,刘颖,李军等.磁场热处理对纳米复相Nd2Fe14B/α-Fe永磁体磁性能的影响.中国有色金属学报. 2004, 14(12): 2085-2089
    72计齐根,都有为.磁场热处理对Nd2Fe14B/α-Fe纳米材料磁性和微磁结构的影响.材料科学与工艺. 2000, 8(4): 22-251
    73 C. J. Yang, E. B. Park. The effect of magnetic field treatment on the enhanced exchange coupling of a Nd2 Fe14B/Fe3B magnet. J. Magn. Magn. Mater. 1997, 166: 243-248
    74 Gao Youhui, Zhu Jinghan, Weng Yuqing, et al. The enhanced exchange coupled interaction in nanocrystalline Nd2Fe14B/Fe3B+α-Fe alloys with improved microstructure. J. Magn. Magn. Mater. 1999, 191: 146-152
    75赵铁民,郝云彦,徐孝荣等.磁场热处理对NdFeB非晶快淬粉末的晶化与磁性的影响.材料研究学报. 1998, 12(5): 558-560
    76 W. Heisz and L. Schultz. Isotropic and anisotropic Nd-Fe-B-type magnets by mechanical alloying and hot pressing. Appl. Phys. Lett. 1988, 53(4): 342-343
    77 M. Leonowicz, D. Derewnicka, M. Wozniak, et al. Processing of high- performance anisotropic permanent magnets by die-upset forging. J. Mater. Proc. Technol. 2004, 153-154: 860-867
    78 A. Kirchner, J. Thomas, O. Gutfleisch, et al. HRTEM studies of grain boundaries in die-upset Nd–Fe–Co–Ga–B magnets. J. Alloy. Comp. 2004,365: 286-290
    79 D. Hinz, J. Lyubina, G. Fuchs, et al. Hot deformed (Nd,Pr)(Fe,Co)B magnets for low-temperature applications. J. Magn. Magn. Mater. 2004, 272-276: 321-322
    80 Tian Hao, Jin Dongzhe, Li Ying, et al. Microstructure and Magnetic Properties of Anisotropic Nd-Fe-B Magnets Fabricated by Single-Stage Hot Deformation. Journal of Rare Earths. 2006, 24: 318-320
    81 H. W. Kwon, G. C. Hadjipanayis. Anisotropy study of hybrid magnet consisting of Nd2Fe14B single phase and nanocomposite alloys. J. Magn. Magn. Mater. 2006, 304: 252-254
    82 H. W. Kwon, G. C. Hadjipanayis. Magnetic and microstructural study of hybrid magnet consisting of R-rich and R-lean Nd-Fe-B alloys. J. Magn. Magn. Mater. 2006, 310: 2575-2577
    83 Liu Xincai, Pan Jing. Easy-Magnetization-Axis Arrangements of Sm2Co17 and RE2Fe14B. J. Alloy. Comp. 2006, 24: 302-305
    84 Wojiciech Lipiec, Hywel A. Davies. The influence of the powder densification temperature on the microstructure and magnetic properties of anisotropic NdFeB magnets aligned hot deformation. J. Alloy. Comp. 2010, 491: 694-697
    85 W. R. Lee. Hot-pressed neodymium-iron-boron magnets. Appl. Phys. Lett. 1985, 46(8): 790-791
    86 Choong Jin Yang and R. Ray. Development of texture in extruded Fe-Nd-B magnets. J. Appl. Phys. 1988, 64(10): 5296-5298
    87 A. M. Gabay, Y. Zhang, and G. C. Hadjipanayis. Die-upset hybrid Pr-Fe-B nanocomposite magnets. Appl. Phys. Lett. 2004, 85(3): 446-448
    88 R. K. Mishra, V. Panchanathan, J. J. Croat. The Microstructure of hot formed Neodymium-Iron-Boron Magnets with energy product with 48MGOe, J. Appl. Phys. 1993, 73: 6470-6472
    89 Pengpeng Yi, Min Lin, Renjie Chen, et al. Enhanced magnetic properties and bending strength of hot deformed Nd-Fe-B magnets with Cu additions. J. Alloy. Comp. 2010, 491: 605-609
    90 O. Gutfleisch, A. Kirchner, W. Grünberger, et al. Backward extruded NdFeB HDDR ring magnets. J. Magn. Magn. Mater. 1998, 183: 359-364
    91 K. H. Müller, W. Grünberger, D. Hinz, et al. Hot deformed HDDR Nd-Fe-B permanent magnets. Mater. Letts. 1998, 34: 50-54
    92 S. Liesert, A. Kirchner, W. Grünberger, et al. Preparation of anisotropic NdFeB magnets with different Nd contents by hot deformation (die-upsetting) using hot-pressed HDDR powders. J. Alloy. Comp. 1998, 266: 260-265
    93 L. Schultz, K. Schnitzke and J. Wecker. Preparation and properties of mechanically alloyed rare earth permanent magnets. J. Magn. Magn. Mater. 1989, 80: 115-118
    94 R. W. Lee. Hot-pressed neodymim-iron-boron magnets. J Appl. Phys. Lett. 1985, 46:790-791
    95 A. Bezinge, H. F. Braun and J. Muller, et al. Tetragonal rare earth (R) iron borides, R1+epsilonFe4B4 (epsilon approximately = 0.1), with incommensurate rare earth and iron substructures. Solid State Commun. 1985, 55: 131-136
    96 TsungYao Chu, L. Rabenberg, R. K. Mishra. Evolution of the microstructure of rapidly solidified Nd-Fe-B permanent magnets. J. Appl. Phys. 1991, 69: 6046-6048
    97 M. Leonowicz, H. A. Davies. Effect of Nd content on induced anisotropy in hot deformed Fe-Nd-B magnets. Mater. Lett. 1994, 19: 275-279
    98 L. H. Lewis, T. R. Thurston, V. Panchanathan, et al. Spatial texture distribution in thermomechanically deformed 2-14-1-based magnets. J. Appl. Phys. 1997, 82(7): 3430-3441
    99 D. N. Brown, B. Smith, B. M. Ma, et al. The Dependece of magnetic properties and hot workability of rare earth-Iron-Boride magnets upon composition. IEEE Trans. Magn. 2004, 40: 2895-2897
    100姜忠良,森本耕一郎,周宏文等.热压/热变形Nd2Fe14B/α-Fe纳米双相永磁体的研究.粉末冶金技术. 2003, 21(2):80-85
    101 A. M. Gabay, Y. Zhang, G. C. Hadjipanayis. Effect of Cu and Ga additions on the anisotropy of R2Fe14B/α-Fe nanocomposite die-upset magnets (R=Pr, Nd). J. Magn. Magn. Mater. 2006, 302: 244-251
    102 O. Gutfleisch, I. R. Harris. Hydrogen assisted processing of rare earth permanent magnets. Proc-15th. Int. Workshop on rare earth magnets and their application. 1998:487
    103 O. M. Ragg, G. Keegan, H. Nagel and I. R. Harris. The HD and HDDR process in the production of Nd-Fe-B permanent magnets. Int. J. Hydrogen Energy. 1997, 22(2/3): 333-342
    104 M. Matsuura, K. Konno, M. Sakurai. Site preferences of Zr and Ga during the HDDR process for Nd2Fe14B-based magnets by XAFS. International Journal of Hydrogen Energy. 2006, 31(2): 303-305
    105 I. R. Harris, M. Kubis. Magnets: HDDR Processed. Encyclopedia of Materials: Science and Technology. 2008: 5111-5114
    106 Hu Lianxi, A. J. Williams, I. R. Harris. Effect of microstructural orientation on in situ electrical resistance monitoring during S-HDDR processing of a Nd16Fe76B8 alloy. J. Alloy. Comp. 2008, 460: 232-236
    107 F. M. Ahmed, I. R. Harris. Improvement of microstructure and magnetic properties of Nd-Fe-B alloys by Nb and Co additions. J. Magn. Magn. Mater.2008, 320: 2808-2813
    108 M. Liu, Y. Sun, G. B. Han, et al. Dependence of anisotropy and coercivity on microstructure in HDDR Nd-Fe-B magnet. J. Alloy. Comp. 2009, 478: 303-307
    109 D. Book, I. R. Harris. The disproportionation of Nd2Fe14B under hydrogen in Nd-Fe-B alloys. IEEE Trans. Magn. 1992, 28(5): 2145-2147
    110 T. Takeshita, R. Nakayama. Magnetic properties and Microstructures of the Nd-Fe-B Magnet powders produced by the Hydrogen treatment(Ш). Proc. 11th Int. workshop on Rare Earth Magnets and Their Applications, 1990, Pittsburgh: 49-71
    111 T. Takeshita, R. Nakayama. Magnetic properties and Microstructures of the Nd-Fe-B Magnet powders produced by HDDR process-(Ш). Proc. 12th Int. workshop on Rare Earth Magnets and Their Applications, 1992, Canberra: 670-674
    112 H. Nakamura, R. Suefuji, S. Sugimoto, et al. Effects of HDDR treatment conditions on magnetic properties of Nd-Fe-B anisotropic powders. J. App. Phys. 1994, 76(10): 6828-6830
    113 H. Nakamura, K. Kato, D. Book, et al. A thermodynamic study of the HDDR conditions necessary for anisotropic Nd-Fe-B powders. Proc. 15th Int. workshop on rare earth magnets and their applications, 1998, Dresden: 507-516
    114 H. Nakamura, K. Kato, D. Book, et al. Enhancement of coercivity in high remanence HDDR NdFeB powders. IEEE Trans. Magn. 1999, 35(5): 3274- 3276
    115 C. Mishima, N. Hamada, H. Mitarai, et al. Magnetic properies of NdFeB Anisotropic magnet powder produced by the d-HDDR method. Papers of technical meeting on magnetics. 2000, 28-43: 39-44
    116 I. R. Harris. Magnetic properties and anisotropy of Nd16Fe75.9B8.0Zr0.1 alloy. IEEE Trans. Magn. 1990, 26(5): 9-12
    117 I. R. Harris. The use of hydrogen in production of Nd-Fe-B type magnets and in the assessment of Nd-Fe-B alloys and permanent magnets-an update. Proc 12th Int. workshop on rare earth magnets and their application, 1992, Canberra: 347-371
    118 A. Ashfaq, M. Matsuura, N. Ikutaet al. Redistribution of Zr and Ga in Nd2Fe14B magnets during the hydrogen disproportionation desotption recombination process: An x-ray absorption fine structure study. J. Appl. Phys.1999, 85:5681-5683
    119 C. L. Short, P. Guegan, O. Gutfleisch, et al. HDDR process in Nd16Fe76-xZrxB8 alloy and the production of anisotropic magnets. IEEE Trans. Magn. 1996, 32(5): 4368-4370
    120 Jingzhi Han, Chengli Tong, Aizhi Sun, et al. Microstructure changes during the disproportionation of Nd13Fe80B7 alloys. J. Magn. Magn. Mater. 2004, 270: 136-141
    121韩景智. HDDR各向异性三元Nd13Fe80B7的制备工艺及其各向异性形成机理的研究.北京科技大学博士生论文. 2002: 59-70
    122 C. George. Hadjipanayis. Nanophase hard magnets. J.Magn.Magn.Mater. 1999, 200: 373-391
    123周玉,武高辉.材料分析测试技术—材料X射线衍射与电子显微分析.哈尔滨工业大学出版社. 2000:42-44
    124 H. P. Klug, L. E. Alexander. X-ray diffraction procedure for polycrystalline and amorphous materials. Wiley, New York, 1974: 687-690
    125 J .W. Christian, in: The Theory of the Phase Transformations in Metals and Alloys, Part 1, Pergamon Press, Oxford, 1975
    126 Takasaki Akito, Furuya Yoshiro. Mechanical alloying of the Ti-Al system in atmosphere of hydrogen and argon. Nanostructured Materials. 1999, 11(8): 1205-1217
    127 W. J. Botta, R. Tomasi, E. M. J. A. Pallone, and A. R. Yavari. Nanostructured composites obtained by reactive milling. Scripta Materialia. 2001, 44(8): 1735-1740
    128柳林.机械力驱动下Ta-N2氮化反应的研究.物理学报. 2002, 51(03): 603- 608
    129 EI-Eskandarany M. Sherif, K. Sumiyama, et al. Mechanism of solid-gas reaction for formation of metastable niobium-nitride alloy powders by reactive ball milling. J. Mater. Res. 1994, 9(11): 2891-2898
    130 M. Kubis, L. Gao, K-H. Müller, et al. Hydrogenation disproportionation desorption recombination on Sm2Fe17-xGax with high Ga content. J. phys. D: Appl. phys. 1997, 30: 51-54
    131 O. Gutfleisch, M. Kubis, A. Handstein, et al. Hydrogenation disproportion- ation desorption recombination in Sm-Co alloys by means of reactive milling. Appl. Phys. Lett. 1998, 73: 3001-3003
    132 D. Book, I.R. Harris. Hydrogen absorption/desorption and HDDR studies on Nd16Fe76B8 and Nd11.8Fe82.3B5.9. J. Alloy. Comp. 1995, 221: 187-192
    133 S. Sugimoto, O. Gutfleisch, and I. R. Harris. Resistivity measurements on hydrogenation desorption recombination phenomena in Nd-Fe-B alloys with Co, Ga, and Zr additions. J. Alloy. Comp. 1997, 260(1-2): 284-291
    134 A. Fujita and I. R. Harris. Hydrogen absorption and desorption study of Nd-TM-B system. IEEE Trans. Magn. 1994, 30: 860-862
    135 K. O’Donnell, X-L Rao, J. R. Cullen, et al. Exchange coupling and the grain boundary in magnetic nanocomposites. IEEE Trans. Magn. 1997, 33(5): 3886- 3888
    136 Minoru Yamasaki, Masaaki Hamano, Takayuki Kobayashi. M?ssbaue study on the crystallization process ofα-Fe/Nd2Fe14B type nanocomposite magnet alloy. Materals Transations. 2002, 43(11): 2885-2889
    137郭炳麟,李波,喻晓军等.氢破碎工艺热力学研究.金属功能材料. 2005: 16-18
    138 N. Hajime, K. Ken-ichi, D. Book, et al. Proc.15th Workshop on Rare Earth Magnets and Their Applications. 1998, Dresden: 507-516
    139 C. E. Rodríguez Torres, F. D. Saccone, F. H. Sánchez. Hydrogenation- disproportionation processes in Nd14.01Hf0.08Fe78.91B6.99 alloys. Mater. Sci. and Eng A. 2000, 292: 103-111
    140 S. B. Rybalka, V. A. Goltsov, V. A. Didus, et al. Fundamentals of HDDR treatment of Nd2Fe14B type alloys. J. Alloy. Comp. 2003, 356–357: 390–394
    141 M. Liu, G. B. Han, R. W. Gao. Anisotropic HDDR Nd-Fe-B magnetic powders prepared directly from strip casting alloy flakes. J. Alloy. Comp. 2009, 488: 310-313
    142 H. Sepehri-Amin, W. F. Li, T. Ohkubo, et al. Effect of Ga addition on the microstructure and magnetic properties of hydrogenation-disproportionation- desorption-recombination. processed Nd-Fe -B powder. Acta Mater. 2010, 58(4): 1309-1316
    143刘旭波. HDDR各向异性NdFeB及其各向异性形成机理的研究.北京科技大学博士生论文. 2000
    144 S.B. Rybalka, V.A. Goltsov, V.A. Didus, et al. Fundamentals of the HDDR treatment of Nd Fe B type alloys. J. Alloy. Comp. 2003, 356–357: 390-394
    145 O. Gutfleisch, M. Verdier, and I. R. Harris. Kinetic studies on solid-HDDRprocesses in Nd-Fe-B-type alloys. J. Appl. Phys. 1994, 76(10): 6256-6258
    146 M.Magini, A.Iasonna, and F.Padella. Ball milling: An experimental support to the energy transfer evaluated by the collision model. Scripta Materialia. 1996, 34(1): 13-19
    147 A.Iasonna and M.Magini. Power measurements during mechanical milling: An experimental way to investigate the energy transfer phenomena. Acta Mater. 1996, 44(3): 1109-1117
    148 M. Magini, N. Burgio, A. Iasonna, et al. J. Mar. Synfh. Proc. 1993, 1: 135
    149 M. Magini, C. Colella, W. Guo, et al. J. Mechanochem. Mech. Alloying. 1994, 1: 14-17
    150 Rai K. Rajamani, Poly Songfack, B.k. Mishra. Impact energy spectra of tumbling mills. Powder Technology. 2000, 108: 116-121
    151 Seeling R P, Walff J. The pressing operation in the fabrication of articles by powder metallurgy. Trans AIME. 1946, 166: 492-504
    152美国金属学会(韩凤麟译)金属手册-粉末冶金(第9版),第7卷.北京:机械工业出版社. 1994: 405-410
    153黄培云.粉末冶金原理.冶金工业出版社. 1982:172-189
    154雍歧龙.钢铁材料中的第二相.冶金工业出版社. 2006: 5-9
    155 J. M. Codogan, J. M. D Coey. Hydrogen absorption and desorption in Nd2Fe14B. Appl. Phys. Lett. 1986,48(6): 442-444
    156 Gutfleisch O, Martinez N, Verdier M, et al. Phase transformations during the disproportionation stage in the solid HDDR process in a Nd16Fe76B8 alloy. J. Alloy. Comp. 1994, 215(1-2): 127-233
    157 Gutfleisch O, Verdier M, Harris I R. Kinetic studies on solid-HDDR processes in Nd-Fe-B-type alloys. J. Appl. Phys. 1994, 76(10): 6265-6258
    158潘树明.稀土永磁合金高温相变及其应用.冶金工业出版社. 2005: 149-155
    159李小强.大塑性变形―反应烧结制备TiAl基合金的研究.哈尔滨工业大学博士论文. 2002
    160王尔德,胡连喜,李小强.高能球磨Ti/Al复合粉体的反应烧结致密行为.粉末冶金技术. 2003, 21: 259-263
    161张东涛,许刚,贺建等.块状纳米晶Sm2Co17烧结磁体的研究.功能材料. 2009, 6(40):909-911
    162 A. Bollero, O. Gutfleisch, M. Kubis, et al. Hydrogen disproportionation byreactive milling and recombination of Nd2(Fe1-xCox)14B alloys. Acta Mater. 2000, 48: 4929-4934.
    163 X.H. Zhang, W.H. Xiong, Y.F. Li, et al. Materials and Design. 2009, 30: 1386
    164 L.A. Dobrzański, M. Drak. Properties of composite materials with polymer matrix reinforced with Nd-Fe-B hard magnetic particles. J. Mater. Proc. Technol. 2006, 175: 149-156
    165 J. Li, Y. Liu, S. J. Gao, M. Li, et al. Effect of process on the magnetic properties of bonded NdFeB magnet. J. Magn. Magn. Mater. 2006, 299: 195- 204
    166 Gaolin Yan Effect of magnetization on hydrogen decrepitation for Nd16Fe76B8 sintered magnet. Appl. Phys. Lett. 2006, 89(172503): 1-3
    167 W. Chen, R. W. Gao, M. G. Zhu, et al. Magnetic proties and coercivity mechanism of isotropic HDDR NdFeB bonded magnets with Co and Dy addition. J. Magn. Magn. Mater. 2003, 261: 222-227.
    168 T. Ikegami, M. Uehara, S. Hirosawa. Improvements of irreversible thermal losses in anisotropic Nd2Fe14B-based resin-bonded permanent magnets made from HDDR powder. J. Alloy. Comp. 1998, 281: 64-68
    169韩景智,孙爱芝,刘涛等. HDDR三元NdFeB各向异性材料的制备.北京科技大学学报. 2002, 24(2): 137-140
    170韩景智,孙爱芝,刘涛等.高性能三元HDDR NdFeB各向异性材料的制备.功能材料. 2002, 33(6): 609-611
    171潘金生,仝健民,田民波.材料科学基础.清华大学出版社. 2004: 563-564
    172 T. Shima and A. Kamegawa. Overlayer-induced anisotropic alignment of Nd2Fe14B nanograins. Appl. Phys. Lett. 2001, 78: 2049-2051
    173 S. L. Chen, W. Liu, C. L. Chen, and Z. D. Zhang. Effects of buffer layer and substrate temperature on the surface morphology, the domain structure and magnetic properties of c-axis-oriented Nd2Fe14B films. J. Appl. Phys. 2005, 98(033907): 1-6
    174 Hongwei Zhang, Chuanbing Rong, Jian Zhang, et al. Coercivity of isotropic nanocrystalline Pr12Fe82B6 ribbons. Phys. Rev, B. 2002, 66(184436): 1-5
    175岳明,刘旭波,肖耀福等. HDDR各向异性Nd-Fe-B矫顽力机理的研究.稀有金属材料与工程. 2003, 32: 490-493
    176王公平,岳明,张久兴.放电等离子烧结NdFeB永磁材料的矫顽力研究.功能材料. 2004, 35: 613-616

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700