过渡金属与手性磷酸联合催化的不对称反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在众多的有机转化反应中,有机小分子催化剂与过渡金属所组成的联合催化体系已经成为一种极为重要和高效的合成方法。该类反应突破了以往单一催化体系的局限性,实现了由简单易得的起始原料,通过一步反应直接合成出结构复杂的目标分子。手性布朗斯特酸和过渡金属催化剂具有很好的兼容性,为协同以及接力催化模式的发展提高了广阔的空间。其中以BINOL骨架为基础所衍生出的一系列手性磷酸催化剂不仅能够活化底物,而且还往往能够与一些过渡金属如金、钯、钌等原位生成具有更高活性的金属磷酸盐,通过这种灵活多变的活化形式促进反应的立体选择性控制。
     我们通过一价金配合物和手性磷酸接力催化的方式,由简单易得的原料水杨醛、芳香炔醇、芳香胺出发,在温和的反应条件下一步合成出了结构复杂的具有光学活性的手性芳香螺环缩酮类化合物。该反应具有很好的立体选择控制结果,为螺环缩酮类化合物的不对称合成提供了重要借鉴。
     双组份催化剂体系已经研究的相对较多,然而多组分催化体系却很少被研究。我们运用金配合物/钯配合物/磷酸所组成的三分组催化剂体系,通过接力催化与协同催化共存的方式高效的合成了手性吡咯烷类化合物。在此反应中,一价金络合物首先催化第一步的关环反应,生成的反应烯胺中间体在零价钯和磷酸的协同催化下进行烯丙基化反应。
     此外,我们还对高价钯和手性磷酸所组成的催化体系进行了研究,派生出了有机高价碘催化的不对称C-H键官能化反应。该反应从简单的二芳香酰胺化合物出发,通过手性有机高价碘催化氧化,四个C-H键被同时立体选择性活化,最终实现了手性螺环氧化吲哚类化合物的不对称催化合成。
Transition metal catalysis combined with organocatalysis has been shown to be an efficient asymmetric synthetic methodology. Various limitations of the traditional single catalyst system for asymmetric catalytic reactions were completely broken through by this robust catalytic method. A wide range of structurally diverse optically active products could be directly synthesized by employing simple and available substrates under the catalysis of transition metal/organocatalyst dual catalyst system in only one step. Chiral Br(?)nsted acids, especially chiral phosphoric acids derived from BINOL, have been demonstrated to be privileged catalysts enabling a diverse range of enantioselective transformations. More recently, the combination of Bronsted acids and transition metal complexes has emerged as a powerful tool in organic chemistry today.
     An asymmetric relay catalytic multicomponent reaction by using gold(Ⅰ) complex/chiral phosphoric acid was disclosed, which is able to assemble the readily available and easily accessible substrates into enantioenriched aromatic spiroacetals. The method provided an important alternative of known methods to directly access highly enantioenriched spiroacetals and would be potentially applied to the synthesis of spiroacetal motifs presented in natural products.
     Moreover, we have demonstrated a combination of the relay and cooperative catalysis with palladium/gold/phosphoric acid ternary system providing an unprecedented entry to pyrrolidine derivatives in high yields. In this cascade reaction, the gold complex serves a catalyst responsible for the hydroamination while palladium and Br(?)nsted acid cooperatively catalyze the allylic alkylation.
     Additionally, during the investigation of Pd(Ⅱ)/chiral phosphoric acid dual catalysts system, an asymmetric organocatalytic direct C-H/C-H oxidative coupling reaction of N1,N3-diphenylmalonamides was well established by using chiral organoiodine compounds as catalysts, wherein four C-H bonds were stereoselectively functionalized to give structurally diverse spirooxindoles with high levels of enantioselectivity.
引文
1. Han, Z.-Y.; Xiao, H.; Chen, X.-H.; Gong, L.-Z. Consecutive Intramolecular Hydroamination/Asymmetric Transfer Hydrogenation under Relay Catalysis of an Achiral Gold Complex/Chiral Bronsted Acid Binary System. J. Am. Chem. Soc., 2009,131,9182-9183.
    2. Liu, X.-Y.; Che, C.-M. Highly Enantioselective Synthesis of Chiral Secondary Amines by Gold(Ⅰ)/Chiral Br(?)nsted Acid Catalyzed Tandem Intermolecular Hydroamination and Transfer Hydrogenation Reactions. Org. Lett.,2009,11, 4204-4207.
    3. Wang, C.; Han, Z.-Y.; Luo, H.; Gong, L.-Z. Highly Enantioselective Relay Catalysis in Three-Component Reaction for Direct Construction of Structurally Complex Heterocycles. Org. Lett.,2010,12,2266-2269.
    4. Muratore, M. E.; Holloway, C. A.; Pilling, A. W.; Storer, R. I.; Trevitt G.; Dixon, D. J. Enantioselective Br(?)nsted Acid-Catalyzed N-Acyliminium Cyclization Cascades.J. Am. Chem. Soc.2009,131,10796-10797.
    5. Han, Z.-Y.; Guo, R.; Wang, P.-S.; Chen, D.-F.; Xiao, H.; Gong, L.-Z. Enantioselective concomitant creation of vicinal quaternary stereogenic centers via cyclization of alkynols triggered addition of azlactones. Tetrahedron Lett., 2011,52,5963-5967.
    6. Han, Z.-Y.; Chen, D.-F.; Wang, Y.-Y.; Guo, R.; Wang, P.-S.; Wang, C.; Gong, L.-Z. Hybrid Metal/Organo Relay Catalysis Enables Enynes To Be Latent Dienes for Asymmetric Diels-Alder Reaction. J. Am. Chem. Soc.,2012,134,6532-6535.
    7. Wang, P.-S.; Li, K.-N.; Zhou, X.-L.; Wu, X.; Han, Z.-Y.; Guo, R.; Gong, L.-Z. Enantioselective Relay Catalytic Cascade Intramolecular Hydrosiloxylation and Mukaiyama Aldol Reaction. Chem.-Eur. J.,2013,19,6234-6238.
    8. For reviews see:(a) Perron, F.; Albizati, K. F. Chemistry of Spiroketals. Chem. Rev.1989,89,1617-1661. (b) Aho, J. E.; Pihko, P. M.; Rissa, T. K. Nonanomeric Spiroketals in Natural Products:Structures, Sources, and Synthetic Strategies. Chem. Rev.2005,105,4406-4440. (c) Zinzalla, G.; Milroy, L.; Ley, S. V. Chemical Variation of Natural Product-like Scaffolds:Design and Synthesis of Spiroketal Derivatives. Org. Biomol. Chem.2006,4,1977-2002. (d) Milroy, L.; Zinzalla, G.; Prencipe, G.; Michel, P.; Ley, S. V.; Gunaratnam, M.; Beltran, M.; Neidle, S. Chemical Variation of Natural-Product-Like Scaffold:Design, Synthesis, and Biological Activity of Fused Bicyclic Acetal Derivatives. Angew. Chem. Int. Ed.2007,46,2493-2496. (e) Yuen, T.; Yang, S.; Brimble, M. A. Total Synthesis of Paecilospirone. Angew. Chem. Int. Ed.2011,50,8350-8353.
    9. (a) Marsini, M. A.; Huang, Y.; Lindsey, C. C.; Wu, K.; Pettus, T. R. R. Diastereoselective Syntheses of Chroman Spiroketals via [4+2] Cycloaddition of Enol Ethers and o-Quinone Methides. Org. Lett.2008,10,1477-1480. (b) Wilson, Z. E.; Hubert, J. G.; Brimble, M. A. A Flexible Approach to 6,5-Benzannulated Spiroketals. Eur. J. Org. Chem.2011,3938-3945. (c) Simith, M. J.; Furkert, D. P.; Sperry, J.; Brimble, M. A. Efficient Synthesis of Spiroacetal Core of Paecilospirone via Oxidative Radical Cyclisation. Synlett 2011,1395-1398. (d) Butkevich, A. N.; Corbu, A.; Meerpoel, L.; Stansfield, I.; Angibaud, P.; Bonnet, P.; Cossy, J. Two-Step One-Pot Synthesis of Benzoannulated Spiroacetals by Suzuki-Miyaura Coupling/Acid-Catalyzed Spiroacetalization. Org. Lett.2012,14, 4998-5001.
    10. Wang, X.; Han, Z.; Wang, Z.; Ding, K. Catalytic Asymmetric Synthesis of Aromatic Spiroketals by SpinPhox/Iridium(I)-Catalyzed Hydrogenation and Spiroketalization of a, a'-Bis(2-hydroxyarylidene) Ketones. Angew. Chem. Int. Ed.2012,51,936-940.
    11. Coric, I.; List, B. Asymmetric Spiroacetalization Catalysed by Confined Bronsted Acids. Nature.2012,483,315.
    12. Sun, Z.; Winschel, G. A.; Borovika, A.; P. Nagorny. Chiral Phosphoric Acid-Catalyzed Enantioselective and Diastereoselective Spiroketalizations. J. Am. Chem. Soc.2012,134,8074.
    13. For reviews on combining organocatalysis with metal catalysis, see:(a) Shao, Z.; Zhang, H. Combining Transition Metal Catalysis and Organocatalysis:A Broad New Concept for Catalysis. Chem. Soc. Rev.2009,38,2745-2755. (b) de Armas, P.; Tejedor, D.; Garcia-Tellado, F. Asymmetric Alkynylation of Imines by Cooperative Hydrogen Bonding and Metal Catalysis. Angew. Chem. Int. Ed.2010, 49,1013-1016. (c) Rueping, M.; Koenigs, R. M.; Atodiresei, I. Unifying Metal and Br(?)nsted Acid Catalysis-Concepts, Mechanisms, and Classifications. Chem. Eur. J.2010,16,9350-9365. (d) Zhong, C.; Shi, X. When Organocatalysis Meets Transition-Metal Catalysis. Eur. J. Org. Chem.2010,2010,2999-3025. (e) Zhou, J. Recent Advances in Multicatalyst Promoted Asymmetric Tandem Reactions. Chem. Asian J.2010,5,422-434. (f) Han, Z.-Y.; Wang, C.; Gong, L.-Z. Organocatalysis Combined with Metal Catalysis or Biocatalysis. Science of Synthesis:Asymmetric Organocatalysis, (Ed.:Maruoka, K), Georg Thieme Verlag, Stuttgart,2012, Vol.2, p 697. (g) N. T. Patil, V. S. Shinde, B. Gajula. A One-Pot Catalysis:the Strategic Classification with Some Recent Examples. Org. Biomol. Chem.2012,10,211-224.
    14. Barluenga, J.; Mendoza, A.; Rodriguez, F.; Fananas, F. J. A Palladium(Ⅱ) Catalyzed Synthesis of Spiroacetals through a One-Pot Multicomponent Cascade Reaction. Angew. Chem. Int. Ed.2009,48,1644-1647.
    15. (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Br(?)nsted Acid. Angew. Chem., Int. Ed.2004,43, 1566-1568. (b) Uraguchi, D.; Terada, M. Chiral Bransted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation. J. Am. Chem. Soc.2004,126, 5356-5357. For reviews, see:(c) Akiyama, T. Stronger Bronsted Acids. Chem. Rev. 2007,107,5744-5758. (d) Doyle, A. G.; Jacobsen, E. N. Small-Molecule H-Bond Donors in Asymmetric Catalysis. Chem. Rev.2007,107,5713-5743. (e) Terada, M. Binaphthol-Derived Phosphoric Acid as a Versatile Catalyst for Enantioselective Carbon-Carbon Bond Forming Reactions. Chem. Commun.2008, 4097-4112. (f) Terada, M. Chiral Phosphoric Acids as Versatile Catalysts for Enantioselective Transformations. Synthesis,2010,1929-1982. (h) Rueping, M.; Lin, M. Y. Catalytic Asymmetric Mannich-Ketalization Reaction:Highly Enantioselective Synthesis of Aminobenzopyrans. Chem. Eur. J.2010,16, 4169-4172. (i) Bernardi, L.; Comes-Franchini, M.; Fochi, M.; Leo, V.; Mazzanti, A.; Ricci, A. Catalytic Asymmetric Inverse-Electron-Demand (IED) [4+2] Cycloaddition of Salicyladimines:Preparation of Optically Active 4-Aminobenzopyran Derivatives. Adv. Synth. Catal.2010,352,3399-3406.
    16. Tamaki, A.; Magennis, S. A.; Kochi, J. K. Catalysis by Gold. Alkyl Isomerization, cis-trans Rearrangement, and Reductive Elimination of Alkylgold(Ⅲ) Complex. J. Am. Chem. Soc.1974,96,6140-6148.
    1. Alper, H.; Hamel, N., Asymmetric-Synthesis of Acids by the Palladium-Catalyzed Hydrocarboxylation of Olefins in the Presence of (R)-(-)-1,1'-Binaphthyl-2,2'-Diyl or (S)-(+)-1,1'-Binaphthyl-2,2'-Diyl Hydrogen Phosphate. J. Am. Chem. Soc.1990, 112,2803-2804.
    2. Chai, Z.; Rainey, T. J. Pd(II)/Br(?)nsted Acid Catalyzed Enantioselective Allylic C-H Activation for the Synthesis of Spirocyclic Rings. J. Am. Chem. Soc.2012, 734,3615-3618.
    3. Zhang, D.; Qiu, H.; Jiang, L.; Lv, F.; Ma, C.; Hu, W. Enantioselective Palladium(II) Phosphate Catalyzed Three-Component Reactions of Phyrrole, Diazoesters, and Imines. Angew. Chem. Int. Ed.2013,52,13356-13360.
    4. Yu, S.; Zhang, H.; Gao, Y.; Mo, L.; Wang, S.; Yao, Z. Asymmetric Cascade Annulation Based on Enantioselective Oxa-Diels-Alder Cycloaddition of in Situ Generated Isochromenyliums by Cooperative Binary Catalysis of Pd(OAc)2 and (S)-Trip. J. Am. Chem. Soc.2013,135,11402-11407.
    5. (a) Chen, G.; Deng, Y.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C. K.; Chan, A. S. C. Palladium-Catalyzed Allylic Alkylation of tert-Butyl(diphylmethylene)-Glycinate with Simple Allyl Esters under Chiral Phase Transfer Conditions. Tetrahedron:Asymmetry.2001,12,1567-1571. (b) Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. Chiral Phosphine-Free Pd-Mediated Asymmetric Allylation of Prochiral Enolate with a Chiral Phase-Transfer Catalyst. Org. Lett. 2001,3,3329-3331.
    6. Mukherjee, S.; List, B. Chiral Counteranions in Asymmetric Transition-Metal Catalysis:Highly Enantioselective Pd/Br(?)nsted Acid-Catalyzed Direct a-Allylation of Aldehydes. J. Am. Chem. Soc.2007,129,11336-11337.
    7. Jiang, G.; List, B. Direct Asymmetric a-Allylation of Aldehydes with Simple Allylic Alcohols Enabled by the Concerted Action of Three Different Catalysts. Angew. Chem., Int. Ed.2011,50,9471-9474.
    8. Tao, Z.; Zhang, W.; Chen,D.; Adele, A.; Gong, L. Pd-Catalyzed Asymmetric Allylic Alkytlation of Pyrazol-5-ones with Allylic Alcohols:The Role of the Chiral Phosphoric Acid in C-JO Bond Cleavage and Stereocontrol. J. Am. Chem. Soc.2013,135,9255-9258.
    9. (a) Nakajima, N.; Tanizawa, K.; Tanaka, K.; Soda, K. Enantioselective Synthesis of Various D-amino Acids by a Multi-enzyme System. J. Biotechnol.1988,8, 243-248. (b) Bae, H.; Hong. S.; Lee, S.; Kwak, M.; Esako, N.; Sung, M. Application of a Thermostable Glutamate Racemase from Bacillus sp. SK-1 for the Production of D-phenylalanine in a Multi-enzyme System. J. Mol. Catal. B: Enzym.2002,17,223-233.
    10. For an early review on organogold dual metal catalysis, see:Hirner, J. J.; Shi, Y.; Blum, S. A. Organogold Reactivity with Palladium, Nickel, and Rhodium: Transmetalation, Cross-Coupling, and Dual Catalysis. Acc. Chem. Res.2011,44, 603-613.
    11.第一章,Ref.13.
    12.第一章,Ref.1.
    13. (a) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L. Expanding Pd-Catalyzed C-N Bond-Forming Processes:The First Amidation of Aryl Sulfonates, Aqueous Amination, and Complementarity with Cu-Catalyzed Reactions. J. Am. Chem. Soc.2003,125,6653-6655. (b) Aranyos, A.; Old, D. W.; Kiyomori, A.; Sadighi, J. P.; Buchwald, S. L. Novel Electron-Rich Bulky Phosphine Ligands Facilitate the Palladium-Catalyzed Preparation of Diaryl Ethers. J. Am. Chem. Soc.1999,121,4369-4378.
    1. For selected reviews, see:(a) Stang, P. J.; Zhdankin, V. V. Organic Polyvalent Iodine Compounds. Chem. Rev.1996,96,1123-1178. (b) Zhdankin, V. V.; Stang, P. J. Recent Developments in the Chemistry of Polyvalent Iodine Compounds. Chem. Rev.2002,102,2523-2584. (c) Zhdankin, V. V.; Stang, P. J. Chemistry of Polyvalent Iodine. Chem. Rev.2008,108,5299-5358. (d) Zhdankin, V. V. Organoiodine(V) Reagents in Organic Synthesis. J. Org. Chem.2011,76, 1185-1197.
    2. Selected reviews:(a) Richardson, R. D.; Wirth, T. Hypervalent Iodine Goes Catalytic. Angew. Chem. Int. Ed.2006,45,4402-4404. (b) Ochiai, M.; Miyamoto, K. Catalytic Version of and Reuse in Hypervalent Organo-λ3 - and -λ5-Iodine Oxidation. Eur. J. Org. Chem.2008,4229-4235. (c) Dohi, T.; Kita, Y. Hypervalent Iodine Reagents as a New Entrance to Organocatalysts. Chem. Commun.2009, 2073-2085.
    3. Selected examples:(a) Ray Ⅲ, D. G.; Koser, G. F. Iodinanes with Iodine(Ⅲ)-Bond Homochiral Alkoxy Ligands:Preparation and Utility for the Synthesis of Alkoxysulfonium Salts and Chiral Sulfoxides.J. Am. Chem. Soc. 1990,112,5672-5673. (b) Ochiai, M.; Kitagawa, Y.; Takayama, N.; Takaoka, Y.; Shiro, Motoo. Synthesis of Chiral Diaryliodonium Salts,1, 1'-Binaphthyl-2-yl(phenyl)iodonium Tetrafluoroborates:Asymmetric a-Phenylation of β-Keto Ester Enolates. J. Am. Chem. Soc.1999,121,9233-9234.
    4. Fujita, M.; Okuno, S.; Lee, H. J.; Sugimura, T.; Okuyama, T. Enantiodifferentiating Tetrahydrofuranylation of But-3-enylcarboxylates Using Optically Active Hypervalent Iodine(III) Reagents via a 1,3-Dioxan-2-yl Cation Intermediate. Tetrahedron Lett.2007,48,8691-8694.
    5. Fujita, M.; Yoshida, Y.; Miyata, K.; Wakisaka, A.; Sugimura, T. Enantiodifferentiating endo-Selective Oxylactonization of ortho-Alk-1-enylbenzoate with a Lactate-Derived Aryl-λ3-Iodine. Angew. Chem. Int. Ed.2010, 49,7068-7071.
    6. Fujita, M.; Wakita, M.; Sugimura, T. Enantioselective Prevost and Woodward. Reactions Using Chiral Hypervalent Iodine(Ⅲ):Switchover of Stereochemical Course of an Optically Active 1,3-Dioxolan-2-yl Cation. Chem. Commum.2011, 47,3983-3985.
    7. Roben, C.; Souto, J. A.; Gonzalez, Y.; Lishchynskyi, A.; Muniz, K. Enantioselective Metal-Free Diamination of Styrenes. Angew. Chem. Int. Ed.2011, 50,9478-9482.
    8. Farid, U.; Wirth, T.; Highly Stereoselective Metal-Free Oxyaminations Using Chiral Hypervalent Iodine Reagents. Angew. Chem. Int. Ed.2012,51,3462-3465.
    9. Farid, U.; Malmedy, F.; Claveau, R.; Albers, L.; Wirth, T. Stereoselective Rearrangements with Chiral Hypervalent Iodine Reagents. Angew. Chem. Int. Ed. 2013,52,7018-7022.
    10. Kong, W.; Feige, P.; de Haro, T.; Nevao, C. Regio-and Enantioselective Aminofluorination of Alkenes. Angew. Chem. Int. Ed.2013,52,2469-2473.
    11.Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. Iodobenzene-Catalyzed a-Acetoxylation of Ketones. In Situ Generation of Hypervalent (Diacyloxyiodo)benzenes Using m-Chloroperbenzoic Acid. J. Am. Chem. Soc.2005,127,12244-12245.
    12. Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Versatile Hypervalent-Iodine(Ⅲ)-Catalyzed Oxidations with m-Chloroperbenzoic Acid as a Cooxidant. Angew. Chem. Int. Ed.2005,44,6193-6196.
    13. Altermann, S. M.; Richardson, R. D.; Page, T. K.; Schmidt, R. K.; Holland, E.; Mohammed, U.; Paradine, S. M.; French, A. N.; Richter, C.; Bahar, A. M.; Witulski, B.; Wirth, T. Catalytic Enantioselective a-Oxysulfonylation of Ketones Mediated by Iodoarenes. Eur. J. Org. Chem.2008,5315-5328.
    14. Quideau, S.; Lyvinec, G.; Marguerit, M.; Bathany, K.; Ozanne-Beaudenon, A.; Buffeteau, T.; Cavagnat, D.; Chenede, A. Asymmetric Hydroxylative Phenol Dearomatization through In Situ Generation of lodanes from Chiral Iodoarenes and m-CPBA. Angew. Chem. Int. Ed.2009,48,4605-4609.
    15. Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y; Fujioka, H.; Caemmerer, S. B.; Kita, Y. A Chiral Hypervalent Iodine(Ⅲ) Reagent for Enantioselective Dearomatization of Phenols. Angew. Chem. Int. Ed.2008,47, 3787-3790.
    16. Uyanik, M.; Yasui, T.; Ishihara, K. Enantioselective Kita Oxidative Spirolactonization Catalyzed by In Situ Generated Chiral Hypervalent Iodine(Ⅲ) Species. Angew. Chem. Int. Ed.2010,49,2175-2177.
    17. Volp, K. A.; Harned, A. M. Chiral Aryl Iodine Catalysts for the Enantioselective Synthesis of para-Quinols. Chem. Commun.2013,49,3001-3003.
    18. Uyanik, M.; Yasui, T.; Ishihara, K. Hydrogen Bonding and Alcohol Effects in Asymmetric Hypervalent Iodine Catalysis:Enantioselective Oxidative Dearomatization of Phenols. Angew. Chem. Int. Ed.2013,52,9215-9218.
    19. Uyanik, M.; Okamoto, H.; Yasui, T.; Ishihara, K. Quaternary Ammonium (Hypo)iodite Catalysis for Enantioselective Oxidative Cycloetherification. Science, 2010,328,1376-1379.
    20. For selected reviews, see:(a) Yu, J.; Giri, R.; Chen, X. σ-Chelation-Directed C-H Functionalizations Using Pd(Ⅱ) and Cu(Ⅱ) Catalysts:Regioselectivity, Stereoselectivity and Catalytic Turnover. Org. Biomol. Chem.2006,4,4041-4047. (b) Giri, R.; Shi, B.; Engle, K. M.; Maugel, N.; Yu, J. Transition Metal-Catalyzed C-H Activation Reactions:Diastereoselectivity and Enantioselectivity. Chem. Soc. Rev.2009,38,3242-3272. (c) Li, C. Cross-Dehydrogenative Coupling (CDC): Exploring C-C Bond Formations beyond Functional Group Transformations. Acc. Chem. Res.2009,42,335-344. (d) Yeung, C. S.; Dong, V. M. Catalytic Dehydrogenative Cross-Coupling:Forming Carbon-Carbon Bonds by Oxidizing Two Carbon-Hydrogen Bonds. Chem. Rev.2011, 111,1215-1292. (e) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Bond Formations between Two Nucleophiles: Transition Metal Catalyzed Oxidative Cross-Coupling Reactions. Chem. Rev. 2011,111,1780-1824. (f) Engle, K. M.; Mei, T.; Wasa, M.; Yu, J. Weak Coordination as a Powerful Means for Developing Broadly Useful C-H Functionalization Reactions. Acc. Chem. Res.2012,45,788-802.
    21. Kang, Y. K.; Kim, S. M.; Kim, D. Y. Enatioselective Organocatalytic C-H Bond Functionalization via Tandem 1,5-Hydride Transfer/Ring. Closure:Asymmetric Synthesis of Tetrahydroquinolines. J. Am. Chem. Soc.2010,132,11847-11849.
    22. Mori, K.; Sueoka, S.; Akiyama, T. Expeditious Construction of a Carbobicyclic Skeleton via sp3-C-H Functionalization:Hydride Shift from an Aliphatic Tertiary Position in an Internal Redox Process. J. Am. Chem. Soc.2011,133,2424-2426.
    23. He, Y.; Du, Y.; Luo, S.; Gong. L. Asymmetric sp3 C-H Functionalization via a Chiral Br(?)nsted Acid-Catalyzed Redox Reaction for the Synthesis of Cyclic Aminals. Tetrahedron Lett.2011,52,7064-7066.
    24. Jiao, Z.; Zhang, S.; He, C.; Tu, Y; Wang, S.; Zhang, F.; Zhang, Y.; Li, H. Organocatalytic Asymmetric Direct Csp3-H Functionalization for Esters:A Highly Effcient Approach to Chiral Spiroethers. Angew. Chem. Int. Ed.2012,51, 8811-8815.
    25. Wasa, M.; Yu, J. Synthesis of β-, γ-, and δ-Lactams via Pd(Ⅱ)-Catalyzed C-H Activation Reactions.J. Am. Chem. Soc.2008,130,14058-14059.
    26. Kikugawa, Y; Kawase, M. An Electrophilic Aromatic Substitution by N-Methoxyamides via Hypervalent Iodine Intermediates. Chem. Lett.1990, 581-582.
    27. Wang, J.; Yuan, Y; Xiong, R.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Phenyliodine Bis(trifluoroacetate)-Mediated Oxidative C-C Bond Formation:Synthsis of 3-Hydroxy-2-oxindoles and Spirooxindoles from Anilides. Org. Lett.2012,14, 2210-2213.
    28. Singh, F. V.; Wirth, T. Hypervalent Iodine-Catalyzed Oxidative Functionalizations Including Stereoselective Reactions. Chem. Asian J.2014,9,950-971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700