各向异性及中空微球的制备和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有特殊功能和形貌的微球近年来受到了广泛的关注,我们因此研究了制备功能性各向异性和中空微球的新方法。通过改变反应条件来调控它们的形貌和性能,研究了各向异性粒子作为粒乳化剂在稳定乳液及制备多层次结构材料的应用,中空微球作为载体在医药和催化领域的应用。本论文的主要研究内容如下:
     1.发展了一种由γ射线引发的种子乳液聚合制备雪人球型磁性/非磁性各向异性纳米复合粒子的方法。通过在无皂乳液聚合制备的聚(苯乙烯-二乙烯苯-丙烯酸)(P(St-DVB-AA))微球表面原位生成磁性四氧化三铁粒子,形成了树莓状的磁性纳米复合粒子(RMNPs);以RMNPs为种子,通过γ射线辐射引发第二单体的种子乳液聚合,获得雪人型各向异性纳米复合粒子。我们研究了表面活性剂的种类、第二单体的种类及用量、溶胀剂的用量等对最终纳米复合粒子形貌的影响,发现当使用可聚合的Y型小分子12-丙烯酰氧-9-油酸(AOA)作为乳化剂,以苯乙烯为第二单体,添加溶胀剂2-丁酮的情况下,可以制备出典型的雪人型磁性/非磁性各向异性纳米复合粒子(SMNAPs).所制备的SMNAPs容易吸附在油水界面上,能够作为外界磁场可控的颗粒乳化剂来稳定水油混合溶液。
     2.蠕虫状P(St-AA)@Fe3O4/SiO2磁性复合粒子的合成:利用无皂乳液聚合及原位化学沉淀法成功制备了头部为超顺磁性的P(St-AA)@Fe3O4复合粒子;并以CTAB为模板,通过溶胶-凝胶法在复合粒子的一端形成蠕虫状的二氧化硅。我们研究了CTAB浓度、TEOS量、氨水的量、前驱体的组成以及乳化剂的组成等对最终P(St-AA)@Fe3O4/SiO2复合粒子形貌的影响。值得一提的是,虽然所得蠕虫状复合粒子整体都呈现出相对亲水的性质,但由于头和身体部分两亲性的差异以及这种粒子的特殊形貌,它们仍能作为颗粒乳化剂来稳定油水混合溶液,这点与球形均一粒子不同。这种蠕虫型颗粒乳化剂为Pickering乳液的稳定以及构建多层次结构材料提供了一种新的途径。
     3.利用先溶胀种子微球再包覆无机壳层,最后进行辐射种子乳液聚合的方法,制备了具有两亲性的雪人型P(St-DVB-AA)@SiO2/P(St-DVB)粒子。我们研究了第二单体及无机前驱体的用量和种类、不同的辐射聚合条件(剂量率及吸收剂量)等因素对所得复合粒子形貌的影响。这种各向异性粒子可以用作理想的颗粒乳化剂来稳定油包水型的乳液;在此基础上,进一步辐射聚合水相或者油相中的单体之后,就可以得到无皂的多层次结构微球或块状材料。
     4.描述了在同一体系中,利用水解缩合与辐射种子乳液聚合相结合的方法来制备多种形貌(树莓型、多头、三角型和雪人型等)的P(St-DVB-AA)/P(MPS-St)复合粒子。通过简单地改变加入的第二单体或者无机前驱体的量,就能达到控制复合粒子形貌的目的。所得的树莓型复合粒子制成颗粒膜并进行疏水改性后,可以使接触角提高到146°。同时,所得雪人型复合粒子可以用作颗粒乳化剂来稳定油水混合液;并且在聚合油相后,可以得到多层次结构多孔块状材料。我们也尝试了这种无皂多孔块状材料在污水处理方面的简单应用。
     5.研究了一种制备Fe3O4@m-SiO2磁性中空微球的简单方法。以树莓型P(St-AA)@Fe3O4粒子为种子,通过溶胶-凝胶法形成介孔SiO2壳层,同时聚合物核在高浓度氨水乙醇溶液中可被溶解掉,从而一步获得Fe3O4@m-SiO2磁性中空微球,免去了移除内核模板的步骤。我们研究了氨水、CTAB、TEOS的加入量,溶剂的组成和溶胶凝胶反应时间对最终产物结构的影响,并初步探索了这种磁性中空介孔微球的药物释放效果。
     6.利用乳液作为界面聚合的模板,发展了一种简易的可大规模制备壳层可控的中空沸石咪唑酯框架材料(ZIF-8)微球的方法。另外,贵金属纳米粒子(NMNPs,如Pd)可以在乳化阶段加入,从而作为催化反应的活性中心。由于外层的ZIF-8具有固定尺寸的晶体孔道以及可调控的整体结构,使得Pd@ZIF-8成为α-β不饱和醛选择性加氢反应中的一种非常有前景的催化材料。
Recently, microspheres with special functions or morphologies have gained increased attentions. In this thesis, we developed new approaches for the fabrication of anisotropic and hollow microspheres. Their properties and structures were tuned by adjusting the reaction conditions. Anisotropic microspheres were applied as solid surfactants to stabilize emulsions and then to construct hierarchical materials via radiation emulsion polymerization, while hollow microspheres were used as carriers in the field of drug delivery and catalysis. Detailed contents in this thesis were shown as follows:
     1. We described the synthesis of snowman-like magnetic/none-magnetic nanocomposite asymmetric particles (SMNAPs) via seeded emulsion polymerization initiated by y-ray radiation. In-situ formation of magnetite in the presence of the emulsified poly(styrene-divinylbenzene-acrylic acid)[P(St-DVB-AA)] microspheres affords raspberry-like magnetic nanocomposite particles (RMNPs), which are used as seeds for further seeded emulsion polymerization induced by y-ray radiation. We study the effect of the kind of surfactant, the kind and content of second monomer, and the content of swelling agent on the morphologies of the final nanocomposite particles. It is found that SMNAPs can be fabricated in high yield using12-acryloxy-9-octadecenoic acid (AOA) as the surfactant and styrene as the second monomer with the addition of2-butanone (a swelling agent). The as-synthesized SMNAPs may serve as magnetically-controllable solid surfactants to stabilize O/W immiscible mixtures, which preferentially orientated at the interface.
     2. Novel worm-like P(St-AA)@Fe3O4/SiO2Janus nanocomposite particles were successfully prepared. Fe3O4nanoparticles were formed at the surface of P(St-AA) microspheres by in situ chemical deposition, leading to the formation of raspberry-like superparamagnetic P(St-AA)@Fe3O4nanocomposite particles. Based on the CATB micelle template, worm-like silica body was formed at one side of the P(St-AA)@Fe3O4composite particle by a sol-gel process. The effects of different variables such as the amount of cetyltrimethyl ammonium bromide (CTAB), tetraethyl orthosilicate (TEOS) and ammonia, the composition of inorganic precursors and surfactants on the morphologies of final particles were studied. It is worth mentioning that although owing relative hydrophilic properties, the as-prepared worm-like particles can serve as solid surfactants to stabilize oil/water mixtures due to the amphiphilic difference between the two parts as well as their special morphologies, which is different from uniform spherical particles. That might provide a new category of functional solid surfactants in Pickering emulsions and the fabrication of hierarchical materials.
     3. Snowman-like P(St-DVB-AA)@SiO2/P(St-DVB) asymmetric composite particles could be obtained via y-ray initiated seeded emulsion polymerization after a hydrolytic condensation process on the surface of second monomer swollen P(St-DVB-AA) seeds. Effects of the amounts and kinds of second monomer and inorganic precursor, different radiation polymerization conditions including dose rates and absorbed doses on the morphology of the obtained particles were investigated. The obtained anisotropic particles can serve as ideal solid surfactants to stabilize the water-in-oil (W/O) emulsions, and soap-free hierarchical materials were obtained by polymerization of monomers in water or oil phase.
     4. By combining radiation seeded emulsion polymerization with hydrolytic condensation, P(St-DVB-AA)/poly[3-(methacryloxy)propyl trimethoxysilane-styrene][P(MPS-St)] hybrid particles could be facilely obtained. The morphologies of the particles could be tuned from raspberry-like to snowman-like by simply changing the feeding amount of second monomer or inorganic precursor. The fabricated raspberry-like ones could be modified to obtain hydrophobic surface with a contact angle up to146°. And the snowman-like ones could be used as solid surfactant to stabilize water/styrene (W/St) mixtures, thus hierarchical porous materials could be obtained after the polymerization of monomer phase. The preliminary application of such soap-free porous block materials in oil-polluted water treatment was also investigated.
     5. Superparamagnetic mesoporous hollow Fe3O4@m-SiO2particles were obtained by a simple method. Raspberry-like P(St-AA)@Fe3O4particles were used as seed particles, and P(St-AA) core could be dissolved simultaneously during the formation of mesoporous silica shell by sol-gel process, avoiding the damage to hollow shell or the troublesome post-treatments. The effects of variables as the feeding amount of CTAB, TEOS and ammonia, the composition of solvent and the sol-gel reaction time on the structure of the final particles were investigated. The preliminary application of hollow Fe3O4@m-SiO2particles as drug carrier was also studied.
     6. We demonstrated a facile emulsion-based interfacial reaction method for large-scale synthesis of hollow zeolitic imidazolate framework (ZIF-8) microspheres with controllable shell thickness. Noble metal nanoparticles (NMNPs, as Pd) could be encapsulated during the emulsification process thus worked as active centers for catalysis. The inherent crystalline nature of the MOF shell as well as the tunable integral structures make the Pd@ZIF-8spheres promising catalysts in selective hydrogenation of a, β-unsaturated aldehydes.
引文
[1]Wurm F, Kilbinger A F M. Polymeric Janus Particles [J]. Angew Chem Int Edit,2009,48(45): 8412-8421.
    [2]Jiang S, Chen Q, Tripathy M, et al. Janus Particle Synthesis and Assembly [J]. Adv Mater, 2010,22(10):1060-1071.
    [3]Takahara Y K, Ikeda S, Ishino S, et al. Asymmetrically modified silica particles:A simple particulate surfactant for stabilization of oil droplets in water [J]. J Am Chem Soc,2005, 127(17):6271-6275.
    [4]Glotzer S C, Solomon M J. Anisotropy of building blocks and their assembly into complex structures [J]. Nat Mater,2007,6(8):557-562.
    [5]Berger S, Synytska A, Ionov L, et al. Stimuli-Responsive Bicomponent Polymer Janus Particles by "Grafting from"/"Grafting to" Approaches [J]. Macromolecules,2008,41(24): 9669-9676.
    [6]Hu J, Zhou S X, Sun Y Y, et al. Fabrication, properties and applications of Janus particles [J]. Chem Soc Rev,2012,41(11):4356-4378.
    [7]Yang S M, Kim S H, Lim J M, et al. Synthesis and assembly of structured colloidal particles [J]. J Mater Chem,2008,18(19):2177-2190.
    [8]Yoon J, Lee K J, Lahann J. Multifunctional polymer particles with distinct compartments [J]. J Mater Chem,2011,21(24):8502-8510.
    [9]Hwang S, Roh K H, Lim D W, et al. Anisotropic hybrid particles based on electrohydrodynamic co-jetting of nanoparticle suspensions [J]. Phys Chem Chem Phys, 2010,12(38):11894-11899.
    [10]Voets I K, Fokkink R, Hellweg T, et al. Spontaneous symmetry breaking:formation of Janus micelles [J]. Soft Matter,2009,5(5):999-1005.
    [11]Cayre O, Paunov V N, Velev O D. Fabrication of asymmetrically coated colloid particles by microcontact printing techniques [J]. J Mater Chem,2003,13(10):2445-2450.
    [12]Wang Y, Guo B H, Wan X, et al. Janus-like polymer particles prepared via internal phase separation from emulsified polymer/oil droplets [J]. Polymer,2009,50(14):3361-3369.
    [13]Erhardt R, Zhang M F, Boker A, et al. Amphiphilic Janus micelles with polystyrene and poly(methacrylic acid) hemispheres [J]. J Am Chem Soc,2003,125(11):3260-3267.
    [14]Dendukuri D, Doyle P S. The Synthesis and Assembly of Polymeric Microparticles Using Microfluidics [J]. Adv Mater,2009,21(41):4071-4086.
    [15]Li Z F, Lee D Y, Rubner M F, et al. Layer-by-layer assembled Janus microcapsules [J]. Macromolecules,2005,38(19):7876-7879.
    [16]Lu Y, Xiong H, Jiang X C, et al. Asymmetric dimers can be formed by dewetting half-shells of gold deposited on the surfaces of spherical oxide colloids [J]. J Am Chem Soc,2003, 125(42):12724-12725.
    [17]Shepherd R F, Conrad J C, Rhodes S K, et al. Microfluidic assembly of homogeneous and janus colloid-filled hydrogel granules [J]. Langmuir,2006,22(21):8618-8622.
    [18]Roh K H, Yoshida M, Lahann J. Water-stable biphasic nanocolloids with potential use as anisotropic imaging probes [J]. Langmuir,2007,23(10):5683-5688.
    [19]Roh K H, Martin D C, Lahann J. Biphasic Janus particles with nanoscale anisotropy [J]. Nat Mater,2005,4(10):759-763.
    [20]Courbaron A C, Cayre O J, Paunov V N. A novel gel deformation technique for fabrication of ellipsoidal and discoidal polymeric microparticles [J]. Chem Commun,2007,6:628-630.
    [21]Howse J R, Jones R A L, Ryan A J, et al. Self-motile colloidal particles:From directed propulsion to random walk [J]. Phys Rev Lett,2007,99(4):
    [22]Takei H, Shimizu N. Gradient sensitive microscopic probes prepared by gold evaporation and chemisorption on latex spheres [J]. Langmuir,1997,13(7):1865-1868.
    [23]Lattuada M, Hatton T A. Synthesis, properties and applications of Janus nanoparticles [J]. Nano Today,2011,6(3):286-308.
    [24]Pfau A, Sander R, Kirsch S. Orientational ordering of structured polymeric nanoparticles at interfaces [J]. Langmuir,2002,18(7):2880-2887.
    [25]Tang C, Zhang C L, Liu J G, et al. Large Scale Synthesis of Janus Submicrometer Sized Colloids by Seeded Emulsion Polymerization [J]. Macromolecules,2010,43(11):5114-5120.
    [26]Kim J W, Larsen R J, Weitz D A. Synthesis of nonspherical colloidal particles with anisotropic properties [J]. J Am Chem Soc,2006,128(44):14374-14377.
    [27]Tanaka T, Okayama M, Kitayama Y, et al. Preparation of "Mushroom-like" Janus Particles by Site-Selective Surface-Initiated Atom Transfer Radical Polymerization in Aqueous Dispersed Systems [J]. Langmuir,2010,26(11):7843-7847.
    [28]Ahmad H, Saito N, Kagawa Y, et al. Preparation of micrometer-sized, monodisperse "Janus" composite polymer particles having temperature-sensitive polymer brushes at half of the surface by seeded atom transfer radical polymerization [J]. Langmuir,2008,24(3):688-691.
    [29]Perro A, Reculusa S, Ravaine S, et al. Design and synthesis of Janus micro-and nanoparticles [J]. J Mater Chem,2005,15(35-36):3745-3760.
    [30]Schick I, Lorenz S, Gehrig D, et al. Multifunctional Two-Photon Active Silica-Coated Au@MnO Janus Particles for Selective Dual Functionalization and Imaging [J]. J Am Chem Soc,2014,136(6):2473-2483.
    [31]Ling X Y, Phang I Y, Acikgoz C, et al. Janus Particles with Controllable Patchiness and Their Chemical Functionalization and Supramolecular Assembly [J]. Angew Chem Int Edit,2009, 48(41):7677-7682.
    [32]Lin C C, Liao C W, Chao Y C, et al. Fabrication and Characterization of Asymmetric Janus and Ternary Particles [J]. Acs Appl Mater Inter,2010,2(11):3185-3191.
    [33]Montagne F, Mondain-Monval O, Pichot C, et al. Highly magnetic latexes from submicrometer oil in water ferrofluid emulsions [J]. J Polym Sci Pol Chem,2006,44(8): 2642-2656.
    [34]Rahman M M, Montagne F, Fessi H, et al. Anisotropic magnetic microparticles from ferrofluid emulsion [J]. Soft Matter,2011,7(4):1483-1490.
    [35]Ge X P, Wang M Z, Yuan Q, et al. The morphological control of anisotropic polystyrene/silica hybrid particles prepared by radiation miniemulsion polymerization [J]. Chem Commun, 2009,19:2765-2767.
    [36]Qiang W, Wang Y, He P, et al. Synthesis of asymmetric inorganic/polymer nanocomposite particles via localized substrate surface modification and miniemulsion polymerization [J]. Langmuir,2008,24(3):606-608.
    [37]Chen K M, Zhu Y, Zhang Y F, et al. Synthesis of Magnetic Spherical Polyelectrolyte Brushes [J]. Macromolecules,2011,44(3):632-639.
    [38]Teo B M, Suh S K, Hatton T A, et al. Sonochemical Synthesis of Magnetic Janus Nanoparticles [J]. Langmuir,2011,27(1):30-33.
    [39]Mori Y, Kawaguchi H. Impact of initiators in preparing magnetic polymer particles by miniemulsion polymerization [J]. Colloid Surface B,2007,56(1-2):246-254.
    [40]Lu W, Chen M, Wu L M. One-step synthesis of organic-inorganic hybrid asymmetric dimer particles via miniemulsion polymerization and functionalization with silver [J]. J Colloid Interf Sci,2008,328(1):98-102.
    [41]Wang Y L, Xu H, Ma Y S, et al. Facile One-Pot Synthesis and Morphological Control of Asymmetric Superparamagnetic Composite Nanoparticles [J]. Langmuir,2011,27(11): 7207-7212.
    [42]Lattuada M, Hatton T A. Preparation and controlled self-assembly of janus magnetic nanoparticles [J]. J Am Chem Soc,2007,129(42):12878-12889.
    [43]Liu B, Zhang C L, Liu J G, et al. Janus non-spherical colloids by asymmetric wet-etching [J]. Chem Commun,2009,26:3871-3873.
    [44]Paulus M, Degen P, Brenner T, et al. Sticking Polydisperse Hydrophobic Magnetite Nanoparticles to Lipid Membranes [J]. Langmuir,2010,26(20):15945-15947.
    [45]Xu Q A, Kang X W, Bogomolni R A, et al. Controlled Assembly of Janus Nanoparticles [J]. Langmuir,2010,26(18):14923-14928.
    [46]Walther A, Hoffmann M, Muller A H E. Emulsion polymerization using Janus particles as stabilizers [J]. Angew Chem Int Edit,2008,47(4):711-714.
    [47]Ruhland T M, Groschel A H, Wather A, et al. Janus Cylinders at Liquid-Liquid Interfaces [J]. Langmuir,2011,27(16):9807-9814.
    [48]Kim J W, Lee D, Shum H C, et al. Colloid surfactants for emulsion stabilization [J]. Adv Mater,2008,20(17):3239-3243.
    [49]Liang F X, Shen K, Qu X Z, et al. Inorganic Janus Nanosheets [J]. Angew Chem Int Edit, 2011,50(10):2379-2382.
    [50]Das S K, Mandal S S, Bhattacharyya A J. Ionic conductivity, mechanical strength and Li-ion battery performance of mono-functional and bi-functional ("Janus") "soggy sand" electrolytes [J]. Energ Environ Sci,2011,4(4):1391-1399.
    [51]Liu B, Liu J G, Liang F X, et al. Robust Anisotropic Composite Particles with Tunable Janus Balance [J]. Macromolecules,2012,45(12):5176-5184.
    [52]Hu S H, Gao X H. Nanocomposites with Spatially Separated Functionalities for Combined Imaging and Magnetolytic Therapy [J]. J Am Chem Soc,2010,132(21):7234-7237.
    [53]Yin S N, Wang C F, Yu Z Y, et al. Versatile Bifunctional Magnetic-Fluorescent Responsive Janus Supraballs Towards the Flexible Bead Display [J]. Adv Mater,2011,23(26): 2915-2919.
    [54]Xu C J, Wang B D, Sun S H. Dumbbell-like Au-Fe3O4 Nanoparticles for Target-Specific Platin Delivery [J]. J Am Chem Soc,2009,131(12):4216-4217.
    [55]Chen Q, Whitmer J K, Jiang S, et al. Supracolloidal Reaction Kinetics of Janus Spheres [J]. Science,2011,331(6014):199-202.
    [56]Yuan J K, Laubernds K, Zhang Q H, et al. Self-assembly of microporous manganese oxide octahedral molecular sieve hexagonal flakes into mesoporous hollow nanospheres [J]. J Am Chem Soc,2003,125(17):4966-4967.
    [57]Zhu Y F, Fang Y, Kaskel S. Folate-Conjugated Fe3O4@SiO2 Hollow Mesoporous Spheres for Targeted Anticancer Drug Delivery [J]. J Phys Chem C,2010,114(39):16382-16388.
    [58]Zhu Y C, Socheat D, Bounlu K, et al. Application of dipstick dye immunoassay (DDIA) kit for the diagnosis of schistosomiasis mekongi [J]. Acta Trop,2005,96(2-3):137-141.
    [59]Zhong Z Y, Yin Y D, Gates B, et al. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads [J]. Adv Mater,2000, 12(3):206-209.
    [60]Tu K N, Gosele U. Hollow nanostructures based on the Kirkendall effect:Design and stability considerations [J]. Appl Phys Lett,2005,86(9):
    [61]Niu K Y, Park J, Zheng H M, et al. Revealing Bismuth Oxide Hollow Nanoparticle Formation by the Kirkendall Effect [J]. Nano Lett,2013,13(11):5715-5719.
    [62]Smith J G, Yang Q, Jain P K. Identification of a Critical Intermediate in Galvanic Exchange Reactions by Single-Nanoparticle-Resolved Kinetics [J]. Angew Chem Int Edit,2014,53(11): 2867-2872.
    [63]Chen M, Wu L M, Zhou S X, et al. A method for the fabrication of monodisperse hollow silica spheres [J]. Adv Mater,2006,18(6):801-806.
    [64]Wang Z X, Chen M, Wu L M. Synthesis of monodisperse hollow silver spheres using phase-transformable emulsions as templates [J]. Chem Mater,2008,20(10):3251-3253.
    [65]Xu D L, Xue D F. Chemical bond analysis of the crystal growth of KDP and ADP [J]. J Cryst Growth,2006,286(1):108-113.
    [66]Yan X X, Xu D L, Xue D F. SO42-ions direct the one-dimensional growth of 5Mg(OH)(2) center dot MgSO4 center dot 2H(2)O [J]. Acta Mater,2007,55(17):5747-5757.
    [67]Liu J, Liu F, Gao K, et al. Recent developments in the chemical synthesis of inorganic porous capsules [J]. J Mater Chem,2009,19(34):6073-6084.
    [68]Cao L, Chen D H, Caruso R A. Surface-Metastable Phase-Initiated Seeding and Ostwald Ripening:A Facile Fluorine-Free Process towards Spherical Fluffy Core/Shell, Yolk/Shell, and Hollow Anatase Nanostructures [J]. Angew Chem Int Edit,2013,52(42):10986-10991.
    [69]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature,2001,414(6861):359-367.
    [70]Cheng F Y, Ma H, Li Y M, et al. Nil-xPtx (x=0-0.12) hollow spheres as catalysts for hydrogen generation from ammonia borane [J]. Inorg Chem,2007,46(3):788-794.
    [71]Li Z Z, Wen L X, Shao L, et al. Fabrication of porous hollow silica nanoparticles and their applications in drug release control [J]. J Control Release,2004,98(2):245-254.
    [72]Zhang Q, Ge J P, Goebl J, et al. Rattle-Type Silica Colloidal Particles Prepared by a Surface-Protected Etching Process [J]. Nano Res,2009,2(7):583-591.
    [73]Fuertes A B, Sevilla M, Valdes-Solis T, et al. Synthetic route to nanocomposites made up of inorganic nanoparticles confined within a hollow mesoporous carbon shell [J]. Chem Mater, 2007,19(22):5418-5423.
    [74]Farha O K, Yazaydin A O, Eryazici I, et al. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities [J]. Nat Chem,2010, 2(11):944-948.
    [75]Corma A, Garcia H, Xamena F X L I. Engineering Metal Organic Frameworks for Heterogeneous Catalysis [J]. Chem Rev,2010,110(8):4606-4655.
    [76]Murray L J, Dinca M, Long J R. Hydrogen storage in metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1294-1314.
    [77]Ma L Q, Falkowski J M, Abney C, et al. A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis [J]. Nat Chem,2010,2(10): 838-846.
    [78]Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1477-1504.
    [79]Shimomura S, Higuchi M, Matsuda R, et al. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer [J]. Nat Chem,2010,2(8): 633-637.
    [80]Gascon J, Kapteijn F. Metal-Organic Framework Membranes-High Potential, Bright Future? [J]. Angew Chem Int Edit,2010,49(9):1530-1532.
    [81]Hurd J A, Vaidhyanathan R, Thangadurai V, et al. Anhydrous proton conduction at 150 degrees C in a crystalline metal-organic framework [J]. Nat Chem,2009,1(9):705-710.
    [82]Chen B L, Xiang S C, Qian G D. Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules [J]. Accounts Chem Res,2010,43(8):1115-1124.
    [83]Xiang S C, Zhou W, Zhang Z J, et al. Open Metal Sites within Isostructural Metal-Organic Frameworks for Differential Recognition of Acetylene and Extraordinarily High Acetylene Storage Capacity at Room Temperature [J]. Angew Chem Int Edit,2010,49(27):4615-4618.
    [84]Huang L M, Wang H T, Chen J X, et al. Synthesis, morphology control, and properties of porous metal-organic coordination polymers [J]. Micropor Mesopor Mat,2003,58(2): 105-114.
    [85]Tranchemontagne D J, Hunt J R, Yaghi O M. Room temperature synthesis of metal-organic frameworks:MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0 [J]. Tetrahedron,2008, 64(36):8553-8557.
    [86]Cravillon J, Munzer S, Lohmeier S J, et al. Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework [J]. Chem Mater,2009,21(8):1410-1412.
    [87]Scherb C, Schodel A, Bein T. Directing the structure of metal-organic frameworks by oriented surface growth on an organic monolayer [J]. Angew Chem Int Edit,2008,47(31): 5777-5779.
    [88]Shekhah O, Wang H, Kowarik S, et al. Step-by-step route for the synthesis of metal-organic frameworks [J]. J Am Chem Soc,2007,129(49):15118-15119.
    [89]Lee H J, Cho W, Oh M. Advanced fabrication of metal-organic frameworks: template-directed formation of polystyrene@ZIF-8 core-shell and hollow ZIF-8 microspheres [J]. Chem Commun,2012,48(2):221-223.
    [90]Li A L, Ke F, Qiu L G, et al. Controllable synthesis of metal-organic framework hollow nanospheres by a versatile step-by-step assembly strategy [J]. Crystengcomm,2013,15(18): 3554-3559.
    [91]Russell J T, Lin Y, Boker A, et al. Self-assembly and cross-linking of bionanoparticles at liquid-liquid interfaces [J]. Angew Chem Int Edit,2005,44(16):2420-2426.
    [92]Chai G Y, Krantz W B. Formation and Characterization of Polyamide Membranes Via Interfacial Polymerization [J]. J Membrane Sci,1994,93(2):175-192.
    [93]Crespy D, Stark M, Hoffmann-Richter C, et al. Polymeric nanoreactors for hydrophilic reagents synthesized by interfacial polycondensation on miniemulsion droplets [J]. Macromolecules,2007,40(9):3122-3135.
    [94]Ameloot R, Vermoortele F, Vanhove W, et al. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability [J]. Nat Chem,2011,3(5): 382-387.
    [95]Kuppler R J, Timmons D J, Fang Q R, et al. Potential applications of metal-organic frameworks [J]. Coordin Chem Rev,2009,253(23-24):3042-3066.
    [96]Guo Z Y, Xiao C X, Maligal-Ganesh R V, et al. Pt Nanoclusters Confined within Metal-Organic Framework Cavities for Chemoselective Cinnamaldehyde Hydrogenation [J]. ACS Catalysis,2014,4:1340-1348.
    [97]Lu G, Li S Z, Guo Z, et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation [J]. Nat Chem,2012,4(4):310-316.
    [98]Zhao M T, Deng K, He L C, et al. Core-Shell Palladium Nanoparticle@Metal-Organic Frameworks as Multifunctional Catalysts for Cascade Reactions [J]. J Am Chem Soc,2014, 136(5):1738-1741.
    [99]Kuo C H, Tang Y, Chou L Y, et al. Yolk-Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control [J]. J Am Chem Soc,2012, 134(35):14345-14348.
    [100]Liu Y Y, Zhang W N, Li S Z, et al. Designable Yolk-Shell Nanoparticle@MOF Petalous Heterostructures [J]. Chem Mater,2014,26(2):1119-1125.
    [1]Shum H C, Abate A R, Lee D, et al. Droplet Microfluidics for Fabrication of Non-Spherical Particles [J]. Macromol Rapid Comm,2010,31(2):108-118.
    [2]Misra A, Urban M W. Acorn-Shape Polymeric Nano-Colloids:Synthesis and Self-Assembled Films [J]. Macromol Rapid Comm,2010,31(2):119-127.
    [3]Haghgooie R, Toner M, Doyle P S. Squishy Non-Spherical Hydrogel Microparticles [J]. Macromol Rapid Comm,2010,31(2):128-134.
    [4]Yoo J W, Doshi N, Mitragotri S. Endocytosis and Intracellular Distribution of PLGA Particles in Endothelial Cells:Effect of Particle Geometry [J]. Macromol Rapid Comm,2010, 31(2):142-148.
    [5]McConnell M D, Kraeutler M J, Yang S, et al. Patchy and Multiregion Janus Particles with Tunable Optical Properties [J]. Nano Lett,2010,10(2):603-609.
    [6]Hosein I D, Ghebrebrhan M, Joannopoulos J D, et al. Dimer Shape Anisotropy:A Nonspherical Colloidal Approach to Omnidirectonal Photonic Band Gaps [J]. Langmuir, 2010,26(3):2151-2159.
    [7]Choi J, Zhao Y H, Zhang D Y, et al. Patterned fluorescent particles as nanoprobes for the investigation of molecular interactions [J]. Nano Lett,2003,3(8):995-1000.
    [8]Glotzer S C, Solomon M J. Anisotropy of building blocks and their assembly into complex structures [J]. Nat Mater,2007,6(8):557-562.
    [9]Nisisako T, Torii T, Takahashi T, et al. Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system [J]. Adv Mater,2006,18(9): 1152-1156.
    [10]Walther A, Hoffmann M, Muller A H E. Emulsion polymerization using Janus particles as stabilizers [J]. Angew Chem Int Edit,2008,47(4):711-714.
    [11]Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by colloidal particles [J]. Adv Colloid Interfac,2003,100:503-546.
    [12]Binks B P, Lumsdon S O. Pickering emulsions stabilized by monodisperse latex particles: Effects of particle size [J]. Langmuir,2001,17(15):4540-4547.
    [13]Tsuji S, Kawaguchi H. Thermosensitive pickering emulsion stabilized by poly(N-isopropylacrylamide)-carrying particles [J]. Langmuir,2008,24(7):3300-3305.
    [14]Pickering S J.1907,91:2001-2021.
    [15]Ramsden W. Proc R Sco London,1903,72:156-164.
    [16]Binks B P, Fletcher P D I. Particles adsorbed at the oil-water interface:A theoretical comparison between spheres of uniform wettability and "Janus" particles [J]. Langmuir,2001, 17(16):4708-4710.
    [17]Madivala B, Vandebril S, Fransaer J, et al. Exploiting particle shape in solid stabilized emulsions [J]. Soft Matter,2009,5(8):1717-1727.
    [18]Guzowski J, Tasinkevych M, Dietrich S. Capillary interactions in Pickering emulsions [J]. Phys Rev E,2011,84(3):031401.
    [19]Lele P P, Furst E M. Assemble-and-Stretch Method for Creating Two-and Three-Dimensional Structures of Anisotropic Particles [J]. Langmuir,2009,25(16): 8875-8878.
    [20]Hong L, Jiang S, Granick S. Simple method to produce Janus colloidal particles in large quantity [J]. Langmuir,2006,22(23):9495-9499.
    [21]Liu B, Zhang C L, Liu J G, et al. Janus non-spherical colloids by asymmetric wet-etching [J]. Chem Commun,2009,26):3871-3873.
    [22]Liu B, Wei W, Qu X Z, et al. Janus colloids formed by biphasic grafting at a pickering emulsion interface [J]. Angew Chem Int Edit,2008,47(21):3973-3975.
    [23]Suzuki D, Tsuji S, Kawaguchi H. Janus microgels prepared by surfactant-free pickering emulsion-based modification and their self-assembly [J]. J Am Chem Soc,2007,129(26): 8088-8089.
    [24]Shepherd R F, Conrad J C, Rhodes S K, et al. Microfluidic assembly of homogeneous and janus colloid-filled hydrogel granules [J]. Langmuir,2006,22(21):8618-8622.
    [25]Dendukuri D, Pregibon D C, Collins J, et al. Continuous-flow lithography for high-throughput microparticle synthesis [J]. Nat Mater,2006,5(5):365-369.
    [26]Nie Z H, Li W, Seo M, et al. Janus and ternary particles generated by microfluidic synthesis: Design, synthesis, and self-assembly [J]. J Am Chem Soc,2006,128(29):9408-9412.
    [27]Seo M, Nie Z H, Xu S Q, et al. Continuous microfluidic reactors for polymer particles [J]. Langmuir,2005,21(25):11614-11622.
    [28]Sheu H R, Elaasser M S, Vanderhoff J W. Phase-Separation in Polystyrene Latex Interpenetrating Polymer Networks [J]. J Polym Sci Pol Chem,1990,28(3):629-651.
    [29]Kim J W, Larsen R J, Weitz D A. Synthesis of nonspherical colloidal particles with anisotropic properties [J]. J Am Chem Soc,2006,128(44):14374-14377.
    [30]Kim J W, Lee D, Shum H C, et al. Colloid surfactants for emulsion stabilization [J]. Adv Mater,2008,20(17):3239-3243.
    [31]Qiang W, Wang Y, He P, et al. Synthesis of asymmetric inorganic/polymer nanocomposite particles via localized substrate surface modification and miniemulsion polymerization [J], Langmuir,2008,24(3):606-608.
    [32]Tanaka T, Okayama M, Minami H, et al. Dual Stimuli-Responsive "Mushroom-like" Janus Polymer Particles as Particulate Surfactants [J]. Langmuir,2010,26(14):11732-11736.
    [33]Lee K J, Yoon J, Lahann J. Recent advances with anisotropic particles [J]. Curr Opin Colloid In,2011,16(3):195-202.
    [34]Stoeva S I, Huo F W, Lee J S, et al. Three-layer composite magnetic nanoparticle probes for DNA [J]. J Am Chem Soc,2005,127(44):15362-15363.
    [35]Tartaj P, Serna C J. Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites [J]. J Am Chem Soc,2003,125(51):15754-15755.
    [36]Tartaj P, Morales M P, Gonzalez-Carreno T, et al. Advances in magnetic nanoparticles for biotechnology applications [J]. J Magn Magn Mater,2005,290:28-34.
    [37]Zhang J L, Srivastava R S, Misra R D K. Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer:Synthesis, characterization, and LCST of viable drug-targeting delivery system [J]. Langmuir,2007,23(11):6342-6351.
    [38]Schmidt A M. Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles [J]. Macromol Rapid Comm,2006,27(14):1168-1172.
    [39]Schneider J J. Magnetic core/shell and quantum-confined semiconductor nanoparticles via chimie douce organometallic synthesis [J]. Adv Mater,2001,13(7):529-533.
    [40]Lee J, Lee Y, Youn J K, et al. Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts [J]. Small,2008,4(1):143-152.
    [41]Horak D, Babic M, Mackova H, et al. Preparation and properties of magnetic nano-and microsized particles for biological and environmental separations [J]. J Sep Sci,2007,30(11): 1751-1772.
    [42]Melle S, Lask M, Fuller G G. Pickering emulsions with controllable stability [J]. Langmuir, 2005,21(6):2158-2162.
    [43]Brugger B, Richtering W. Magnetic, thermosensitive microgels as stimuli-responsive emulsifiers allowing for remote control of separability and stability of oil in water-emulsions [J]. Adv Mater,2007,19(19):2973-2978.
    [44]Montagne F, Mondain-Monval O, Pichot C, Elaissari A. Highly magnetic latexes from submicrometer oil in water ferrofluid emulsions [J]. J Polym Sci Pol Chem,2006,44: 2642-2656.
    [45]Isojima T, Lattuada M, Vander Sande J B, et al. Reversible clustering of pH-and temperature-responsive Janus magnetic nanoparticles [J]. Acs Nano,2008,2(9):1799-1806.
    [46]Feyen M, Weidenthaler C, Schuth F, et al. Regioselectively Controlled Synthesis of Colloidal Mushroom Nanostructures and Their Hollow Derivatives [J]. J Am Chem Soc,2010,132(19): 6791-6799.
    [47]Teo B M, Suh S K, Hatton T A, et al. Sonochemical Synthesis of Magnetic Janus Nanoparticles [J]. Langmuir,2011,27(1):30-33.
    [48]Wang Y L, Xu H, Ma Y S, et al. Facile One-Pot Synthesis and Morphological Control of Asymmetric Superparamagnetic Composite Nanoparticles [J]. Langmuir,2011,27(11): 7207-7212.
    [49]Tang C, Zhang C L, Liu J G, et al. Large Scale Synthesis of Janus Submicrometer Sized Colloids by Seeded Emulsion Polymerization [J]. Macromolecules,2010,43(11):5114-5120.
    [50]Wang Y H, Zhang C L, Tang C, et al. Emulsion Interfacial Synthesis of Asymmetric Janus Particles [J]. Macromolecules,2011,44(10):3787-3794.
    [51]Akiva U, Marge S. New micrometer-sized hemispherical magnetic/non-magnetic monodispersed polystyrene/poly(methyl methacrylate) composite particles:synthesis and characterization [J]. J Mater Sci,2005,40(18):4933-4935.
    [52]Park J G, Forster J D, Dufresne E R. High-Yield Synthesis of Monodisperse Dumbbell-Shaped Polymer Nanoparticles [J]. J Am Chem Soc,2010,132(17):5960-5961.
    [53]Hu X, Liu H R, Ge X P, et al. Preparation of Submicron-sized Snowman-like Polystyrene Particles via Radiation-induced Seeded Emulsion Polymerization [J]. Chem Lett,2009,38(8): 854-855.
    [54]Huang H F, Liu H R. Synthesis of the Raspberry-Like PS/PAN Particles with Anisotropic Properties via Seeded Emulsion Polymerization Initiated by gamma-Ray Radiation [J]. J Polym Sci Pol Chem,2010,48(22):5198-5205.
    [55]Huang Z B, Tang F Q. Preparation, structure, and magnetic properties of polystyrene coated by Fe3O4 nanoparticles [J]. J Colloid Interf Sci,2004,275(1):142-147.
    [56]Pich A, Bhattacharya S, Adler H J P. Composite magnetic particles:1. Deposition of magnetite by heterocoagulation method [J]. Polymer,2005,46(4):1077-1086.
    [57]Holzwarth U, Gibson N. The Scherrer equation versus the'Debye-Scherrer equation'[J]. Nat Nanotechnol,2011,6(9):534-534.
    [58]Lu Z Y, Qin Y Q, Fang J Y, et al. Monodisperse magnetizable silica composite particles from heteroaggregate of carboxylic polystyrene latex and Fe(3)O(4) nanoparticles [J]. Nanotechnology,2008,19(5):055602.
    [59]Ni Y H, Ge X W, Zhang Z C, et al. Fabrication and characterization of the plate-shaped gamma-Fe2O3 nanocrystals [J], Chem Mater,2002,14(3):1048-1052.
    [60]Zhu C H, Hai Z B, Cui C H, et al. Small,2012,8:930-936.
    [61]Lu Y, Yin Y D, Mayers B T, et al. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach [J]. Nano Lett,2002,2(3):183-186.
    [62]Ugelstad J, Mork P C. Swelling of Oligomer-Polymer Particles-New Methods of Preparation of Emulsions and Polymer Dispersions [J]. Adv Colloid Interfac,1980,13(1-2): 101-140.
    [63]Li T T, Liu H R, Zeng L, et al. Macroporous magnetic poly(styrene-divinylbenzene) nanocomposites prepared via magnetite nanoparticles-stabilized high internal phase emulsions [J]. J Mater Chem,2011,21(34):12865-12872.
    [64]Ma G H, Omi S. Mechanism of formation of monodisperse polystyrene hollow particles prepared by membrane emulsification technique. Effect of hexadecane amount on the formation of hollow particles [J]. Macromol Symp,2002,179:223-240.
    [65]Wu W T, Shen J, Gai Z, et al. Multi-functional core-shell hybrid nanogels for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery [J]. Biomaterials,2011, 32(36):9876-9887.
    [1]Jun Y W, Seo J W, Cheon A. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences [J]. Accounts Chem Res,2008,41(2):179-189.
    [2]Loget G, Kuhn A. Bulk synthesis of Janus objects and asymmetric patchy particles [J]. J Mater Chem,2012,22(31):15457-15474.
    [3]Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by colloidal particles [J]. Adv Colloid Interfac,2003,100:503-546.
    [4]Walther A, Hoffmann M, Muller A H E. Emulsion polymerization using Janus particles as stabilizers [J]. Angew Chem Int Edit,2008,47(4):711-714.
    [5]Nisisako T, Torii T, Takahashi T, et al. Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system [J]. Adv Mater,2006,18(9): 1152-1156.
    [6]McConnell M D, Kraeutler M J, Yang S, et al. Patchy and Multiregion Janus Particles with Tunable Optical Properties [J]. Nano Lett,2010,10(2):603-609.
    [7]Shum H C, Abate A R, Lee D, et al. Droplet Microfluidics for Fabrication of Non-Spherical Particles [J]. Macromol Rapid Comm,2010,31(2):108-118.
    [8]Glotzer S C, Solomon M J. Anisotropy of building blocks and their assembly into complex structures [J]. Nat Mater,2007,6(8):557-562.
    [9]Qiang W, Wang Y, He P, et al. Synthesis of asymmetric inorganic/polymer nanocomposite particles via localized substrate surface modification and miniemulsion polymerization [J]. Langmuir,2008,24(3):606-608.
    [10]Kim J W, Larsen R J, Weitz D A. Synthesis of nonspherical colloidal particles with anisotropic properties [J]. J Am Chem Soc,2006,128(44):14374-14377.
    [11]Sheu H R, Elaasser M S, Vanderhoff J W. Phase-Separation in Polystyrene Latex Interpenetrating Polymer Networks [J]. J Polym Sci Pol Chem,1990,28(3):629-651.
    [12]Kim J W, Lee D, Shum H C, et al. Colloid surfactants for emulsion stabilization [J]. Adv Mater,2008,20(17):3239-3243.
    [13]Liu B, Zhang C L, Liu J G, et al. Janus non-spherical colloids by asymmetric wet-etching [J]. Chem Commun,2009,26:3871-3873.
    [14]Liu B, Wei W, Qu X Z, et al. Janus colloids formed by biphasic grafting at a pickering emulsion interface [J]. Angew Chem Int Edit,2008,47(21):3973-3975.
    [15]Dendukuri D, Pregibon D C, Collins J, et al. Continuous-flow lithography for high-throughput microparticle synthesis [J]. Nat Mater,2006,5(5):365-369.
    [16]Shepherd R F, Conrad J C, Rhodes S K, et al. Microfluidic assembly of homogeneous and janus colloid-filled hydrogel granules [J]. Langmuir,2006,22(21):8618-8622.
    [17]Nie Z H, Li W, Seo M, et al. Janus and ternary particles generated by microfluidic synthesis: Design, synthesis, and self-assembly [J]. J Am Chem Soc,2006,128(29):9408-9412.
    [18]Lattuada M, Hatton T A. Preparation and controlled self-assembly of Janus magnetic nanoparticles [J]. J Am Chem Soc,2007,129(42):12878-12889.
    [19]Chen K M, Zhu Y, Zhang Y F, et al. Synthesis of Magnetic Spherical Polyelectrolyte Brushes [J]. Macromolecules,2011,44(3):632-639.
    [20]Koo H Y, Yi D K, Yoo S J, et al. A snowman-like array of colloidal dimers for antireflecting surfaces [J]. Adv Mater,2004,16(3):274-277.
    [21]He J, Perez M T, Zhang P, et al. A General Approach to Synthesize Asymmetric Hybrid Nanoparticles by Interfacial Reactions [J]. J Am Chem Soc,2012,134(8):3639-3642.
    [22]He J, Zhang P, Gong J L, et al. Facile synthesis of functional Au nanopatches and nanocups [J]. Chem Commun,2012,48(59):7344-7346.
    [23]Jiang S, Granick S. Controlling the geometry (Janus balance) of amphiphilic colloidal particles [J]. Langmuir,2008,24(6):2438-2445.
    [24]Chen Q, Whitmer J K, Jiang S, et al. Supracolloidal Reaction Kinetics of Janus Spheres [J]. Science,2011,331(6014):199-202.
    [25]Hong L, Cacciuto A, Luijten E, et al. Clusters of amphiphilic colloidal spheres [J]. Langmuir, 2008,24(3):621-625.
    [26]Yan J, Chaudhary K, Bae S C, et al. Colloidal ribbons and rings from Janus magnetic rods [J]. Nat Commun,2013,4:1516.
    [27]He J, Liu Y J, Hood T C, et al. Asymmetric organic/metal(oxide) hybrid nanoparticles: synthesis and applications [J]. Nanoscale,2013,5(12):5151-5166.
    [28]He J, Yu B Y, Hourwitz M J, et al. Wet-Chemical Synthesis of Amphiphilic Rodlike Silica Particles and their Molecular Mimetic Assembly in Selective Solvents [J]. Angew Chem Int Edit,2012,51(15):3628-3633.
    [29]Madivala B, Vandebril S, Fransaer J, et al. Exploiting particle shape in solid stabilized emulsions [J]. Soft Matter,2009,5(8):1717-1727.
    [30]Binks B P, Fletcher P D I. Particles adsorbed at the oil-water interface:A theoretical comparison between spheres of uniform wettability and "Janus" particles [J]. Langmuir,2001, 17(16):4708-4710.
    [31]Guzowski J, Tasinkevych M, Dietrich S. Capillary interactions in Pickering emulsions [J]. Phys Rev E,2011,84(3):
    [32]Tang C, Zhang C L, Liu J G, et al. Large Scale Synthesis of Janus Submicrometer Sized Colloids by Seeded Emulsion Polymerization [J]. Macromolecules,2010,43(11):5114-5120.
    [33]Wang Y H, Zhang C L, Tang C, et al. Emulsion Interfacial Synthesis of Asymmetric Janus Particles [J]. Macromolecules,2011,44(10):3787-3794.
    [34]Teo B M, Suh S K, Hatton T A, et al. Sonochemical Synthesis of Magnetic Janus Nanoparticles [J]. Langmuir,2011,27(1):30-33.
    [35]Wang Y L, Xu H, Ma Y S, et al. Facile One-Pot Synthesis and Morphological Control of Asymmetric Superparamagnetic Composite Nanoparticles [J]. Langmuir,2011,27(11): 7207-7212.
    [36]Wang F W, Liu H R, Zhang J D, et al. Synthesis of snowman-like magnetic/nonmagnetic nanocomposite asymmetric particles via seeded emulsion polymerization initiated by gamma-ray radiation [J]. J Polym Sci Pol Chem,2012,50(22):4599-4611.
    [37]Qian Z, Zhang Z C, Song L Y, et al. A novel approach to raspberry-like particles for superhydrophobic materials [J]. J Mater Chem,2009,19(9):1297-1304.
    [38]Yang S, Liu H R. A novel approach to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via interfacial polymerization [J]. J Mater Chem,2006,16(46): 4480-4487.
    [39]Lu Z Y, Qin Y Q, Fang J Y, et al. Monodisperse magnetizable silica composite particles from heteroaggregate of carboxylic polystyrene latex and Fe(3)O(4) nanoparticles [J]. Nanotechnology,2008,19(5):055602
    [40]Liu B, Zhang W, Zhang D W, et al. Facile method for large scale synthesis of magnetic inorganic-organic hybrid anisotropic Janus particles [J]. J Colloid Interf Sci,2012,385: 34-40.
    [41]Han Y, Zhao L, Ying J Y. Entropy-driven helical mesostructure formation with achiral cationic surfactant templates [J]. Adv Mater,2007,19(18):2454-2459.
    [42]Zhuang W, Bi L F, Zhang M, et al. Structural Control of Mesoporous 1,4-Phenylene-silica Using the Mixture of CTAB/SDS [J]. Chinese J Chem,2011,29(5):883-887.
    [43]Wang F W, Liu H R, Zhang Y, et al. Synthesis of Snowman-like Polymer-Silica Asymmetric Particles by Combination of Hydrolytic Condensation Process with y-Ray Radiation Initiated Seeded Emulsion Polymerization [J]. J Polym Sci Pol Chem,2014,52:339-348.
    [44]Zhang L, Zhang F, Wang Y S, et al. Magnetic colloidosomes fabricated by Fe3O4-SiO2 hetero-nanorods [J]. Soft Matter,2011,7(16):7375-7381.
    [45]Wang F W, Liu H R, Zhang X Y. Facile fabrication of polymer-inorganic hybrid particles with various morphologies by combination of hydrolytic condensation process with radiation seeded emulsion polymerization [J]. Colloid Pol Sci,2014, DOI: 10.1007/s00396-014-3166-3.
    [46]Meng X H, Guan Y Y, Zhang Z D, et al. Fabrication of a Composite Colloidal Particle with Unusual Janus Structure as a High-Performance Solid Emulsifier [J]. Langmuir,2012,28(34): 12472-12478.
    [1]Prasad N, Perumal J, Choi C H, et al. Generation of Monodisperse Inorganic-Organic Janus Microspheres in a Microfluidic Device [J]. Adv Funct Mater,2009,19(10):1656-1662.
    [2]McConnell M D, Kraeutler M J, Yang S, et al. Patchy and Multiregion Janus Particles with Tunable Optical Properties [J]. Nano Lett,2010,10(2):603-609.
    [3]Hu S H, Gao X H. Nanocomposites with Spatially Separated Functionalities for Combined Imaging and Magnetolytic Therapy [J]. J Am Chem Soc,2010,132(21):7234-7237.
    [4]Seh Z W, Liu S H, Low M, et al. Janus Au-TiO2 Photocatalysts with Strong Localization of Plasmonic Near-Fields for Efficient Visible-Light Hydrogen Generation [J]. Adv Mater,2012, 24(17):2310-2314.
    [5]Tanaka T, Okayama M, Minami H, et al. Dual Stimuli-Responsive "Mushroom-like" Janus Polymer Particles as Particulate Surfactants [J]. Langmuir,2010,26(14):11732-11736.
    [6]Tang C, Zhang C L, Sun Y J, et al. Janus Anisotropic Hybrid Particles with Tunable Size from Patchy Composite Spheres [J]. Macromolecules,2013,46(1):188-193.
    [7]Kim J W, Lee D, Shum H C, et al. Colloid surfactants for emulsion stabilization [J]. Adv Mater,2008,20(17):3239-3243.
    [8]Lu Y, Xiong H, Jiang X C, et al. Asymmetric dimers can be formed by dewetting half-shells of gold deposited on the surfaces of spherical oxide colloids [J]. J Am Chem Soc,2003, 125(42):12724-12725.
    [9]Koo H Y, Yi D K, Yoo S J, et al. A snowman-like array of colloidal dimers for antireflecting surfaces [J]. Adv Mater,2004,16(3):274-277.
    [10]Dendukuri D, Doyle P S. The Synthesis and Assembly of Polymeric Microparticles Using Microfluidics [J]. Adv Mater,2009,21(41):4071-4086.
    [11]He J, Perez M T, Zhang P, et al. A General Approach to Synthesize Asymmetric Hybrid Nanoparticles by Interfacial Reactions [J]. J Am Chem Soc,2012,134(8):3639-3642.
    [12]He J, Zhang P, Gong J L, et al. Facile synthesis of functional Au nanopatches and nanocups [J]. Chem Commun,2012,48(59):7344-7346.
    [13]Kim J W, Larsen R J, Weitz D A. Synthesis of nonspherical colloidal particles with anisotropic properties [J]. J Am Chem Soc,2006,128(44):14374-14377.
    [14]Lu W, Chen M, Wu L M. One-step synthesis of organic-inorganic hybrid asymmetric dimer particles via miniemulsion polymerization and functionalization with silver [J]. J Colloid Interf Sci,2008,328(1):98-102.
    [15]Teo B M, Suh S K, Hatton T A, et al. Sonochemical Synthesis of Magnetic Janus Nanoparticles [J]. Langmuir,2011,27(1):30-33.
    [16]Wang Y L, Xu H, Ma Y S, et al. Facile One-Pot Synthesis and Morphological Control of Asymmetric Superparamagnetic Composite Nanoparticles [J]. Langmuir,2011,27(11): 7207-7212.
    [17]Qiang W, Wang Y, He P, et al. Synthesis of asymmetric inorganic/polymer nanocomposite particles via localized substrate surface modification and miniemulsion polymerization [J]. Langmuir,2008,24(3):606-608.
    [18]Feyen M, Weidenthaler C, Schuth F, et al. Regioselectively Controlled Synthesis of Colloidal Mushroom Nanostructures and Their Hollow Derivatives [J]. J Am Chem Soc,2010,132(19): 6791-6799.
    [19]Parvole J, Chaduc I, Ako K, et al. Efficient Synthesis of Snowman-and Dumbbell-like Silica/Polymer Anisotropic Heterodimers through Emulsion Polymerization Using a Surface-Anchored Cationic Initiator [J]. Macromolecules,2012,45(17):7009-7018.
    [20]Liu B, Wei W, Qu X Z, et al. Janus colloids formed by biphasic grafting at a pickering emulsion interface [J]. Angew Chem Int Edit,2008,47(21):3973-3975.
    [21]Liu B, Zhang C L, Liu J G, et al. Janus non-spherical colloids by asymmetric wet-etching [J]. Chem Commun,2009,26:3871-3873.
    [22]Tang C, Zhang C L, Liu J G, et al. Large Scale Synthesis of Janus Submicrometer Sized Colloids by Seeded Emulsion Polymerization [J]. Macromolecules,2010,43(11):5114-5120.
    [23]Yoon K, Lee D, Kim J W, et al. Asymmetric functionalization of colloidal dimer particles with gold nanoparticles [J]. Chem Commun,2012,48(72):9056-9058.
    [24]Liu B, Liu J G, Liang F X, et al. Robust Anisotropic Composite Particles with Tunable Janus Balance [J]. Macromolecules,2012,45(12):5176-5184.
    [25]Wang F W, Liu H R, Zhang J D, et al. Synthesis of snowman-like magnetic/nonmagnetic nanocomposite asymmetric particles via seeded emulsion polymerization initiated by gamma-ray radiation [J]. J Polym Sci Pol Chem,2012,50(22):4599-4611.
    [26]Xu D Z, Wang M Z, Ge X W, et al. Fabrication of raspberry SiO2/polystyrene particles and superhydrophobic particulate film with high adhesive force [J]. J Mater Chem,2012,22(12): 5784-5791.
    [27]Huang H F, Liu H R. Synthesis of the Raspberry-Like PS/PAN Particles with Anisotropic Properties via Seeded Emulsion Polymerization Initiated by gamma-Ray Radiation [J]. J Polym Sci Pol Chem,2010,48(22):5198-5205.
    [28]Meng X H, Guan Y Y, Zhang Z D, et al. Fabrication of a Composite Colloidal Particle with Unusual Janus Structure as a High-Performance Solid Emulsifier [J]. Langmuir,2012,28(34): 12472-12478.
    [29]Hu X, Liu H R, Ge X P, et al. Preparation of Submicron-sized Snowman-like Polystyrene Particles via Radiation-induced Seeded Emulsion Polymerization [J]. Chem Lett,2009,38(8): 854-855.
    [30]Pickering. Emulsions [J]. Journal of chemical society,1907,91:2001-2021.
    [1]Nisisako T, Torii T, Takahashi T, et al. Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system [J]. Adv Mater,2006,18(9): 1152-1156.
    [2]Glotzer S C, Solomon M J. Anisotropy of building blocks and their assembly into complex structures [J]. Nat Mater,2007,6(8):557-562.
    [3]Ahmed A, Abdelmagid W, Ritchie H, et al. Investigation on synthesis of spheres-on-sphere silica particles and their assessment for high performance liquid chromatography applications [J]. J Chromatogr A,2012,1270:194-203.
    [4]Reculusa S, Poncet-Legrand C, Ravaine S, et al. Syntheses of raspberrylike silica/polystyrene materials [J]. Chem Mater,2002,14(5):2354-2359.
    [5]Shum H C, Abate A R, Lee D, et al. Droplet Microfluidics for Fabrication of Non-Spherical Particles [J]. Macromol Rapid Comm,2010,31(2):108-118.
    [6]Liu Y C, Li M L, Chen G F. A new type of raspberry-like polymer composite sub-microspheres with tunable gold nanoparticles coverage and their enhanced catalytic properties [J]. J Mater Chem A,2013,1(3):930-937.
    [7]Hu J, Zhou S X, Sun Y Y, et al. Fabrication, properties and applications of Janus particles [J]. Chem Soc Rev,2012,41(11):4356-4378.
    [8]Reculusa S, Mingotaud C, Bourgeat-Lami E, et al. Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites [J]. Nano Lett,2004,4(9):1677-1682.
    [9]Ahmed A, Ritchie H, Myers P, et al. One-Pot Synthesis of Spheres-on-Sphere Silica Particles from a Single Precursor for Fast HPLC with Low Back Pressure [J]. Adv Mater,2012,24(45): 6042-6048.
    [10]McConnell M D, Kraeutler M J, Yang S, et al. Patchy and Multiregion Janus Particles with Tunable Optical Properties [J]. Nano Lett,2010,10(2):603-609.
    [11]Tsai H J, Lee Y L. Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces [J]. Langmuir,2007,23(25):12687-12692.
    [12]Puretskiy N, Ionov L. Synthesis of Robust Raspberry-like Particles Using Polymer Brushes [J]. Langmuir,2011,27(6):3006-3011.
    [13]Cheng X J, Chen M, Zhou S X, et al. Preparation of SiO2/PMMA composite particles via conventional emulsion polymerization [J]. J Polym Sci Pol Chem,2006,44(12):3807-3816.
    [14]Qiao X G, Chen M, Zhou J, et al. Synthesis of raspberry-like silica/polystyrene/silica multilayer hybrid particles via miniemulsion polymerization [J]. J Polym Sci Pol Chem,2007, 45(6):1028-1037.
    [15]Tissot I, Novat C, Lefebvre F, et al. Hybrid latex particles coated with silica [J]. Macromolecules,2001,34(17):5737-5739.
    [16]Schmid A, Tonnar J, Armes S P. A new highly efficient route to polymer-silica colloidal nanocomposite particles [J]. Adv Mater,2008,20(17):3331-3336.
    [17]Huang H F, Liu H R. Synthesis of the Raspberry-Like PS/PAN Particles with Anisotropic Properties via Seeded Emulsion Polymerization Initiated by gamma-Ray Radiation [J]. J Polym Sci Pol Chem,2010,48(22):5198-5205.
    [18]Xu D Z, Wang M Z, Ge X W, et al. Fabrication of raspberry SiO2/polystyrene particles and superhydrophobic particulate film with high adhesive force [J]. J Mater Chem,2012,22(12): 5784-5791.
    [19]Wang D, Yan R, Liu X C, et al. Fabrication of hierarchical microparticles by depositing the in situ synthesized surface nanoparticles on microspheres during the seed emulsion polymerization [J]. J Colloid Interf Sci,2012,367:249-256.
    [20]Cao Z H, Schrade A, Landfester K, et al. Synthesis of Raspberry-Like Organic-Inorganic Hybrid Nanocapsules via Pickering Miniemulsion Polymerization:Colloidal Stability and Morphology [J]. J Polym Sci Pol Chem,2011,49(11):2382-2394.
    [21]Chen M, Wu L M, Zhou S X, et al. Synthesis of raspberry-like PMMA/SiO2 nanocomposite particles via a surfactant-free method [J]. Macromolecules,2004,37(25):9613-9619.
    [22]Zhang S W, Zhou S X, Weng Y M, et al. Synthesis of SIO2/polystyrene nanocomposite particles via miniemulsion polymerization [J]. Langmuir,2005,21(6):2124-2128.
    [23]Chen M, Zhou S X, You B, et al. A novel preparation method of raspberry-like PMMA/SiO2 hybrid microspheres [J]. Macromolecules,2005,38(15):6411-6417.
    [24]Yuan J J, Zhou S X, You B, et al. Organic pigment particles coated with colloidal nano-silica particles via layer-by-layer assembly [J]. Chem Mater,2005,17(14):3587-3594.
    [25]Sun Y Y, Yin Y Y, Chen M, et al. One-step facile synthesis of monodisperse raspberry-like P(S-MPS-AA) colloidal particles [J]. Polym Chem-Uk,2013,4(10):3020-3027.
    [26]Chaturvedi N, Juluri B K, Hao Q Z, et al. Simple fabrication of snowman-like colloids [J]. J Colloid Interf Sci,2012,371:28-33.
    [27]Kim J W, Larsen R J, Weitz D A. Synthesis of nonspherical colloidal particles with anisotropic properties [J]. J Am Chem Soc,2006,128(44):14374-14377.
    [28]Kim J W, Lee D, Shum H C, et al. Colloid surfactants for emulsion stabilization [J]. Adv Mater,2008,20(17):3239-3243.
    [29]Liu Y D, Quan X M, Choi H J. Synthesis and characteristics of snowman-like fluorescent PMMA microbeads [J]. Colloid Polym Sci,2012,290(16):1703-1706.
    [30]Liu B, Zhang C L, Liu J G, et al. Janus non-spherical colloids by asymmetric wet-etching [J]. Chem Commun,2009,26):3871-3873.
    [31]Yin Y Y, Zhou S X, You B, et al. Facile Fabrication and Self-Assembly of Polystyrene-Silica Asymmetric Colloid Spheres [J]. J Polym Sci Pol Chem,2011,49(15):3272-3279.
    [32]Dendukuri D, Doyle P S. The Synthesis and Assembly of Polymeric Microparticles Using Microfluidics [J]. Adv Mater,2009,21(41):4071-4086.
    [33]Tang C, Zhang C L, Liu J G, et al. Large Scale Synthesis of Janus Submicrometer Sized Colloids by Seeded Emulsion Polymerization [J]. Macromolecules,2010,43(11):5114-5120.
    [34]Liu B, Liu J G, Liang F X, et al. Robust Anisotropic Composite Particles with Tunable Janus Balance [J]. Macromolecules,2012,45(12):5176-5184.
    [35]Wang F W, Liu H R, Zhang J D, et al. Synthesis of snowman-like magnetic/nonmagnetic nanocomposite asymmetric particles via seeded emulsion polymerization initiated by gamma-ray radiation [J]. J Polym Sci Pol Chem,2012,50(22):4599-4611.
    [36]Zhang Y, Liu H R, Wang F W. Facile fabrication of snowman-like Janus particles with asymmetric fluorescent properties via seeded emulsion polymerization [J]. Colloid Polym Sci, 2013,291(12):2993-3003.
    [37]Wang F W, Liu H R, Zhang Y, et al. Synthesis of Snowman-like Polymer-Silica Asymmetric Particles by Combination of Hydrolytic Condensation Process with gamma-Ray Radiation Initiated Seeded Emulsion Polymerization [J]. J Polym Sci Pol Chem,2014,52(3):339-348.
    [38]Perro A, Reculusa S, Bourgeat-Lami E, et al. Synthesis of hybrid colloidal particles:From snowman-like to raspberry-like morphologies [J]. Colloid Surface A,2006,284:78-83.
    [39]Zhang L, Zhang F, Wang Y S, et al. Magnetic colloidosomes fabricated by Fe3O4-SiO2 hetero-nanorods [J]. Soft Matter,2011,7(16):7375-7381.
    [40]Binks B P. Particles as surfactants-similarities and differences [J]. Curr Opin Colloid In, 2002,7(1-2):21-41.
    [41]Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by colloidal particles [J]. Adv Colloid Interfac,2003,100:503-546.
    [1]Wang S L, Qian H H, Hu Y, et al. Facile one-pot synthesis of uniform TiO2-Ag hybrid hollow spheres with enhanced photocatalytic activity [J]. Dalton T,2013,42(4):1122-1128.
    [2]Zhang H, Zhou D, Zhang L, et al. Cu2O Hollow Spheres:Synthesis, Characterization and Magnetic Property [J]. J Nanosci Nanotechno,2009,9(2):1321-1325.
    [3]Pan W, Ye J W, Ning G L, et al. A novel synthesis of micrometer silica hollow sphere [J]. Mater Res Bull,2009,44(2):280-283.
    [4]Rafati A A, Borujeni A R A, Najafi M, et al. Ultrasonic/surfactant assisted of CdS nano hollow sphere synthesis and characterization [J]. Mater Charact,2011,62(1):94-98.
    [5]Tang S H, Huang X Q, Chen X L, et al. Hollow Mesoporous Zirconia Nanocapsules for Drug Delivery [J]. Adv Funct Mater,2010,20(15):2442-2447.
    [6]Huang X Q, Zhang H H, Guo C Y, et al. Simplifying the Creation of Hollow Metallic Nanostructures:One-Pot Synthesis of Hollow Palladium/Platinum Single-Crystalline Nanocubes [J]. Angew Chem Int Edit,2009,48(26):4808-4812.
    [7]Kim S W, Kim M, Lee W Y, et al. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions [J]. J Am Chem Soc,2002,124(26):7642-7643.
    [8]Jayaprakash N, Shen J, Moganty S S, et al. Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries [J]. Angew Chem Int Edit,2011,50(26):5904-5908.
    [9]Retsch M, Schmelzeisen M, Butt H J, et al. Visible Mie Scattering in Nonabsorbing Hollow Sphere Powders [J]. Nano Lett,2011,11(3):1389-1394.
    [10]Chen B, Quan G L, Wang Z H, et al. Hollow mesoporous silicas as a drug solution delivery system for insoluble drugs [J]. Powder Technol,2013,240:48-53.
    [11]Chen Y, Chen H R, Shi J L. Construction of Homogenous/Heterogeneous Hollow Mesoporous Silica Nanostructures by Silica-Etching Chemistry:Principles, Synthesis, and Applications [J]. Accounts Chem Res,2014,47(1):125-137.
    [12]Shen J, Song G S, An M, et al. The use of hollow mesoporous silica nanospheres to encapsulate bortezomib and improve efficacy for non-small cell lung cancer therapy [J]. Biomaterials,2014,35(1):316-326.
    [13]Setnicka M, Cicmanec P, Bulanek R, et al. Vanadium Mesoporous Silica Catalyst Prepared by Direct Synthesis as High Performing Catalyst in Oxidative Dehydrogenation of n-Butane [J]. Catal Lett,2014,144(1):50-55.
    [14]Lu B Q, Zhu Y J, Cheng G F, et al. Synthesis and application in drug delivery of hollow-core-double-shell magnetic iron oxide/silica/calcium silicate nanocomposites [J]. Mater Lett,2013,104:53-56.
    [15]Liu P B, Huang Y, Zhang X. Superparamagnetic Fe3O4 nanoparticles on graphene-polyaniline: Synthesis, characterization and their excellent electromagnetic absorption properties [J]. J Alloy Compd,2014,596:25-31.
    [16]Liu F, Tian H, He J H. Adsorptive performance and catalytic activity of superparamagnetic Fe3O4@nSiO2@mSiO2 core-shell microspheres towards DDT [J]. J Colloid Interf Sci,2014, 419:68-72.
    [17]Yang Q, Wu Y, Lan F, et al. Hollow superparamagnetic PLGA/Fe3O4 composite microspheres for lysozyme adsorption [J]. Nanotechnology,2014,25(8):085702
    [18]Yang Q, Ma S H, Lan F, et al. Reversible linear assemblies of superparamagnetic Fe3O4/PLGA composite microspheres induced by ultra-low magnetic field [J]. Compos Sci Technol,2014,92:34-40.
    [19]Savva I, Constantinou D, Marinica O, et al. Fabrication and characterization of superparamagnetic poly(vinyl pyrrolidone)/poly(L-lactide)/Fe3O4 electrospun membranes [J]. J Magn Magn Mater,2014,352:30-35.
    [20]Zhao X L, Zhao H L, Yuan H H, et al. Multifunctional Superparamagnetic Fe3O4@SiO2 Core/Shell Nanoparticles:Design and Application for Cell Imaging [J]. J Biomed Nanotechnol,2014,10(2):262-270.
    [21]Lu Z Y, Qin Y Q, Fang J Y, et al. Monodisperse magnetizable silica composite particles from heteroaggregate of carboxylic polystyrene latex and Fe(3)O(4) nanoparticles [J]. Nanotechnology,2008,19(5):055602.
    [22]Deng Z W, Chen M, Zhou S X, et al. A novel method for the fabrication of monodisperse hollow silica spheres [J]. Langmuir,2006,22(14):6403-6407.
    [23]Chen M, Wu L M, Zhou S X, et al. A method for the fabrication of monodisperse hollow silica spheres [J]. Adv Mater,2006,18(6):801-806.
    [24]Yang S, Liu H R. A novel approach to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via interfacial polymerization [J]. J Mater Chem,2006,16(46): 4480-4487.
    [25]Feyen M, Weidenthaler C, Schuth F, et al. Regioselectively Controlled Synthesis of Colloidal Mushroom Nanostructures and Their Hollow Derivatives [J]. J Am Chem Soc,2010,132(19): 6791-6799.
    [26]Han Y, Zhao L, Ying J Y Entropy-driven helical mesostructure formation with achiral cationic surfactant templates [J]. Adv Mater,2007,19(18):2454-2459.
    [I]Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J]. Science,2008,319(5865):939-943.
    [2]Furukawa H, Ko N, Go Y B, et al. Ultrahigh Porosity in Metal-Organic Frameworks [J]. Science,2010,329(5990):424-428.
    [3]Maji T K, Matsuda R, Kitagawa S. A flexible interpenetrating coordination framework with a bimodal porous functionality [J]. Nat Mater,2007,6(2):142-148.
    [4]Shimomura S, Higuchi M, Matsuda R, et al. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer [J]. Nat Chem,2010,2(8): 633-637.
    [5]Chen B L, Liang C D, Yang J, et al. A microporous metal-organic framework for gas-chromatographic separation of alkanes [J]. Angew Chem Int Edit,2006,45(9): 1390-1393.
    [6]Farrusseng D, Aguado S, Pinel C. Metal-Organic Frameworks:Opportunities for Catalysis [J]. Angew Chem Int Edit,2009,48(41):7502-7513.
    [7]Ma L Q, Falkowski J M, Abney C, et al. A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis [J]. Nat Chem,2010,2(10): 838-846.
    [8]Tanabe K K, Cohen S M. Engineering a Metal-Organic Framework Catalyst by Using Postsynthetic Modification [J]. Angew Chem Int Edit,2009,48(40):7424-7427.
    [9]Shekhah O, Wang H, Paradinas M, et al. Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy [J]. Nat Mater,2009,8(6):481-484.
    [10]Makiura R, Motoyama S, Umemura Y, et al. Surface nano-architecture of a metal-organic framework [J]. Nat Mater,2010,9(7):565-571.
    [11]Scherb C, Schodel A, Bein T. Directing the structure of metal-organic frameworks by oriented surface growth on an organic monolayer [J]. Angew Chem Int Edit,2008,47(31):5777-5779.
    [12]Lu G, Hupp J T. Metal-Organic Frameworks as Sensors:A ZIF-8 Based Fabry-Perot Device as a Selective Sensor for Chemical Vapors and Gases [J]. J Am Chem Soc,2010,132(23): 7832-7833.
    [13]Lee H J, Cho W, Oh M. Advanced fabrication of metal-organic frameworks: template-directed formation of polystyrene@ZIF-8 core-shell and hollow ZIF-8 microspheres [J]. Chem Commun,2012,48(2):221-223.
    [14]Li A L, Ke F, Qiu L G, et al. Controllable synthesis of metal-organic framework hollow nanospheres by a versatile step-by-step assembly strategy [J]. Crystengcomm,2013,15(18): 3554-3559.
    [15]Pang M L, Cairns A J, Liu Y L, et al. Synthesis and Integration of Fe-soc-MOF Cubes into Colloidosomes via a Single-Step Emulsion-Based Approach [J]. J Am Chem Soc,2013, 135(28):10234-10237.
    [16]Ameloot R, Stappers L, Fransaer J, et al. Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis [J]. Chem Mater,2009,21(13):2580-2582.
    [17]Ameloot R, Vermoortele F, Vanhove W, et al. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability [J]. Nat Chem,2011,3(5): 382-387.
    [18]Lu G, Li S Z, Guo Z, et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation [J]. Nat Chem,2012,4(4):310-316.
    [19]Liu H L, Liu Y L, Li Y W, et al. Metal-Organic Framework Supported Gold Nanoparticles as a Highly Active Heterogeneous Catalyst for Aerobic Oxidation of Alcohols [J]. J Phys Chem C,2010,114(31):13362-13369.
    [20]El-Shall M S, Abdelsayed V, Khder A E R S, et al. Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101 [J]. J Mater Chem,2009, 19(41):7625-7631.
    [21]Wang C, deKrafft K E, Lin W B. Pt Nanoparticles@Photoactive Metal-Organic Frameworks: Efficient Hydrogen Evolution via Synergistic Photoexcitation and Electron Injection [J]. J Am Chem Soc,2012,134(17):7211-7214.
    [22]Jiang H L, Akita T, Ishida T, et al. Synergistic Catalysis of Au@Ag Core-Shell Nanoparticles Stabilized on Metal-Organic Framework [J]. J Am Chem Soc,2011,133(5):1304-1306.
    [23]Kuo C H, Tang Y, Chou L Y, et al. Yolk-Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control [J]. J Am Chem Soc,2012, 134(35):14345-14348.
    [24]Zhao M T, Deng K, He L C, et al. Core-Shell Palladium Nanoparticle@Metal-Organic Frameworks as Multifunctional Catalysts for Cascade Reactions [J]. J Am Chem Soc,2014, 136(5):1738-1741.
    [25]Liu Y Y, Zhang W N, Li S Z, et al. Designable Yolk-Shell Nanoparticle@MOF Petalous Heterostructures [J]. Chem Mater,2014,26(2):1119-1125.
    [26]Jin M S, Liu H Y, Zhang H, et al. Synthesis of Pd nanocrystals enclosed by{100} facets and with sizes< 10 nm for application in CO oxidation [J]. Nano Res,2011,4(1):83-91.
    [27]Kida K, Okita M, Fujita K, et al. Formation of high crystalline ZIF-8 in an aqueous solution [J]. Crystengcomm,2013,15(9):1794-1801.
    [28]Park K S, Ni Z, Cote A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. P Natl Acad Sci USA,2006,103(27):10186-10191.
    [29]Pan Y C, Liu Y Y, Zeng G F, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system [J]. Chem Commun,2011,47(7):2071-2073.
    [30]Huang X C, Lin Y Y, Zhang J P, et al. Ligand-directed strategy for zeolite-type metal-organic frameworks:Zinc(II) imidazolates with unusual zeolitic topologies [J]. Angew Chem Int Edit, 2006,45(10):1557-1559.
    [31]Kahsar K R, Schwartz D K, Medlin J W. Control of Metal Catalyst Selectivity through Specific Noncovalent Molecular Interactions [J]. J Am Chem Soc,2014,136(1):520-526.
    [32]Wu B H, Huang H Q, Yang J, et al. Selective Hydrogenation of alpha,beta-Unsaturated Aldehydes Catalyzed by Amine-Capped Platinum-Cobalt Nanocrystals [J]. Angew Chem Int Edit,2012,51(14):3440-3443.
    [33]Guo Z Y, Xiao C X, Maligal-Ganesh R V, et al. Pt Nanoclusters Confined within Metal-Organic Framework Cavities for Chemoselective Cinnamaldehyde Hydrogenation [J]. ACS Catalysis,2014,4(1340-1348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700