基于生物矿化提高生物耐热性的新策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物矿化是指生物体内矿物形成的过程,它将自然界中的有机软物质和无机硬物质联系起来。在自然界中,大多数生命体都进化出了巧妙的生物矿化调控机制、能够构建出各种功能生物材料。例如,小至趋磁细菌中的纳米磁性微晶,还有介观的硅藻壳、植物硅晶石,以及大到宏观尺度的骨骼和牙齿等。特别需要提到的是,从海绵到温泉细菌,从低等硅藻到高等植物如水稻等都可以通过生物矿物来增强它们对抗恶劣自然环境的能力。
     受生物矿化现象的启发,我们提出通过仿生矿化来改善生物体系在恶劣环境中的抗逆性。近年来,研究发现有机分子特别是蛋白质在生物矿化中起着至关重要的调控作用,科学家们能够利用功能性高分子或仿生多肽来模拟矿化蛋白控制无机矿化的过程,从而能够在近生理的温和条件下将无机功能矿物引入生物体中并赋予它们新的特性。酵母作为一种单细胞真核生物是实现该设想的良好模型。病毒疫苗在疾病预防和治疗中具有重要的地位,因此对它们进行生物功能化具有十分重大的科学和社会意义。本论文通过生物矿化手段分别在酵母和病毒疫苗表面引入无机矿物,并进一步关注材料功能化后的酵母或疫苗在热稳定性方面的提升。全文共分为六章:
     第一章绪论是对生物矿化的背景及本论文研究线路进行概述。首先介绍了生物矿物的种类并对二氧化硅、磷酸钙、碳酸钙以及无定形矿物相进行了重点叙述;然后综述了蛋白、高分子和仿生多肽等有机分子在生物矿化中的调控作用,突出了生物体系对磷酸钙和二氧化硅矿化的调控;接着归纳了仿生矿化研究中的一些基本原理及相关应用;随后提出基于仿生矿化的生物功能化设想并进而明确了在疫苗矿化改造方面展开研究,希望获得热稳定良好的液态疫苗,同时也介绍现有提升疫苗热稳定的一些方法;最后提出本研究的思路和目标等。
     第二章我们利用酵母细胞作为模型体系探索仿生矿化这种策略在生物功能化方面的应用。我们通过层层自组装并结合生物矿化手段对细胞进行了二氧化硅壳化修饰,研究了矿物壳对生物体的影响,特别关注细胞耐热性的提升。实验结果显示了人工引入的硅矿物层可以改进酵母细胞的耐热性,其原理是二氧化硅矿物层可以通过大量的氢键来禁锢细胞周围的水分子进而降低了热运动对细胞膜和细胞器的破坏。
     第三章起我们将注意力集中在热稳定性疫苗的开发。该章以乙型脑炎病毒疫苗株(JEV SA14-14-2)为模型,利用原位矿化成功地在疫苗表面引入了一层纳米磷酸钙外壳。该外壳不影响疫苗基本生物学功能,但能够显著提高疫苗的热稳定性。该研究第一次提出了生物矿化策略可以用于制造出新型液态热稳定疫苗,为常温疫苗的研发提供了全新的思路。这种便宜、方便的制备热稳定疫苗的策略有利于免疫接种项目在发展中国家和贫困地区的推广
     第四章中我们受生物体利用蛋白实现自矿化这一现象启发,通过反向遗传学手段获得了一株具有自矿化能力的基因工程疫苗。该疫苗可以在近生理环境下自发地矿化形成纳米磷酸钙外壳,矿化后的疫苗在保持良好的免疫原性的基础上也表现出显著增强的热稳定性。由于这种自矿化能力具有可遗传性,所以该方法突破了疫苗本身矿化能力的限制,为热稳定疫苗提供了一种普适性的制备方法,特别有利于热稳定疫苗的规模化生产。
     第五章中我们的目标是通过改变矿化材料来提升矿化策略在制备热稳定疫苗方面的应用。我们注意到,自然界中温泉细菌和热带植物往往通过富集无定形二氧化硅来增强其耐热性。受此启迪,我们通过原位硅矿化在病毒疫苗表面引入无定形硅纳米簇,大幅度提升疫苗的热稳定性。例如,硅矿化后的肠道病毒71型和脊髓灰质炎病毒疫苗的热稳定性提高了7-10倍(磷酸钙矿化提高疫苗热稳定性仅3倍左右)。硅矿化改造疫苗在室温环境的存放可长达一个多月。进一步研究发现,这些无定形硅纳米簇通过表面羟基与周围的水分子形成大量的氢键,进而在疫苗表面形成水合硅层,降低了疫苗与周围水环境的化学键交换,提高了疫苗的热稳定性。基于该理解,我们提出了热稳定的硅锚新概念,也在化学原理上合理的解释了自然界中的生物体往往选择无定形硅材料作为抗热材料。
     第六章我们对本论文的研究做了简要的归纳和总结,明确展示了生物矿化策略在改善生物耐热性、尤其是在制备热稳定疫苗方面的巨大前景。我们还进一步讨论了今后如何更好地发展和应用这种仿生策略实现基于材料科学的生物功能化:
Biomineralization refers to the processes by which living organisms deposit minerals, and it links the soft organic material and the hard inorganic materials on the earth. Along with the evolution, almost all organisms have evolved complicate and delicate biomineralization mechanisms to control the biomineral deposition, For example the magnetotactic bacteria deposit iron oxide in enclosed organic stealths, diatoms and sponges control the formation of the macroscopic silica structures, mollusks form calcite crystals in their shells, vertebrates generate apaptite in bones and enamels. Generally, organic macromolecules such as protein and glycoprotein play an important role in regulating these biomineralization processes. The polymers with similar residues and biomimetic polypeptides are the favorable substitution in the biomimetic studies, as they are easier to be obtained and controlled. Recently, they have been broadly adopted in the material synthesis and organism biomineralization.
     Inspired by these biomineralization phenomena, functional inorganic materials can be introduced to living organisms in a biomimetic way to improve their performance in harsh environments. Organic biomolecules, such as protein and glycoprotein, play a key role in the control and regulation of biomineralization. Due to the complex of proteins, biomimetic polypeptides are widely used in preparing functional materials and studying organism mineralization. By introducing an inorganic exterior on organisms, we can confer them some new characteristics, such as themostability and water retention capability. Yeast, as a typical unicellular eukaryote, is a good living model in the research. Virus, which widely be used in material construction, cargo delivery and vaccine development due to its composition and structure simplicity, is also a good model. Futhermore, virus can feasibly be operated to display nucleating peptides by genetic engineering because viral genome is simple.
     In this dissertation, we confer the organisms such as yeast and virus vaccine an inorganic exterior by biomimetic mineralization under mild condition, which significantly improved the organisms'thermostabiltiy and water retention capability. This study mainly focuses on the development of liquid thermostable vaccines by using a biomineralization strategy. This dissertation can be divided into five chapters: Chapter1. The introduction mainly composed of an overview of biomineralization, biogenic minerals such as silica, calcium phosphate (CaP), calcium carbonate, iron minerals and amorphous phrase; the roles of protein, polymer and peptide in the control of calcium phosphate and silica biomineralization; biomimetic principle and applications; yeast cell encapsulation and mineralization, cell surface modification with polymers and inorganic materials; the chemical and biological modification of viral capsid, and functional nanomaterials by using virus as the template; the importance of vaccines and their thermostability, approaches to thermostable vaccines; the strategy and aims of this study.
     Chapter2. We conferred the yeast cell an inorganic calcium phosphate or silica shell by layer-by-layer method, and further studied the implications of this modification. The silica nanocoat could improve the thermostability and water retention capability upon drying condition.
     Chapter3. A eggshell-like calcium phopahte shell was introduced on Japanese encephalitis virus by in situ biomineralization. This eggshell-like exterior significantly improved the thermostability of virus vaccine without impairing its biological characteristics. This study provides a novel approach to thermostable vaccine development in developing countries.
     Chapter4. Using the human enterovirus type71(EV71) vaccine strain as a model, we suggest a combined, rational design approach to improve the thermostability and immunogenicity of live vaccines by self-biomineralization. The biomimetic peptides are rationally integrated onto the capsid of EV71by reverse genetics so that calcium phosphate mineralization can be biologically induced onto vaccine surfaces under physiological conditions, generating a mineral exterior. This engineered self-biomineralized virus was characterized in detail for its unique structural, virological and chemical properties. Analogous to many exteriors, the mineral coating confers some new properties on enclosed vaccines. Such a combination of genetic technology and biomineralization provides an economic solution for current vaccination programs, especially in developing countries that lack expensive refrigeration infrastructures.
     Chapter5. We showed a feasible strategy to produce thermostable liquid vaccines by introducing a protective hydrated amorphous silica exteriors to them with tunable in situ silicification. The hydrated amorphous silica exterior does not impair the original biological behaviors of virus vaccines, but confers a significantly improved thermostability on them at a wide range of temperatures. After silicification, the storage period of Poliovirus and EV71virus at room temperature can be extended by about7-fold and10-fold respectively, realizing the storage of these vaccines at room temperature for more than one month. Silica exteriors confined nearby water molecules through hydrogen bonds formed between water and hydroxyl groups, and therefore decreased the exchange of ionic and hydrogen bonding between solution and interior vaccine. The technology may pose great impact on current vaccination program by providing an economic strategy for producing liquid thermostable vaccines. Based on these results, we suggest a new concept that the silica achors can improve organisms'thermostability. The study also provides a reasonable explanation why the nature organisms often choose amorphous silica as the biominerals.
     Chapter6. We briefly summaried the studies in this dissertation. Our studies clearly demostrate that the biomimetic mineralization strategy can be successfully applied in improving organisms' themostability, and hold great promise in the development of liquid thermostable vaccines. We further disscussed how to better applied this functional materials based biomimetic strategy to improve the biologicals' applications in future.
引文
[1]Weiner S. and Dove P. M. An Overview of Biomineralization Processes and the Problem of the Vital Effect. Rev Mineral Geochem 2003,54(1):1-29.
    [2]Veis A. Materials science. A window on biomineralization. Science 2005,307(5714):1419-20.
    [3]Lowenstam H. H. A. and Weiner S. On biomineralization.Oxford University Press 1989
    [4]Mann S. Biomineralization:principles and concepts in bioinorganic materials chemistry. Oxford University Press 2001
    [5]Walker J. J., Spear J. R. and Pace N. R. Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 2005,434(7036):1011-4.
    [6]Suzuki M., Saruwatari K., Kogure T., Yamamoto Y., Nishimura T., Kato T. and Nagasawa H. An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 2009, 325(5946):1388-1390.
    [7]Neethirajan S., Gordon R. and Wang L. J. Potential of silica bodies (phytoliths) for nanotechnology. Trends Biotechnol 2009,27(8):461-467.
    [8]Mann S. Biomineralization:principles and concepts in bio-inorganic materials.2001
    [9]Gower L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 2008,108(11):4551.
    [10]Perry C. C. Silicification:The Processes by Which Organisms Capture and Mineralize Silica. Rev Mineral Geochem 2003,54(1):291-327.
    [11]Tamerler C., Khatayevich D., Gungormus M., Kacar T., Oren E. E., Hnilova M. and Sarikaya M. Molecular biomimetics:GEPI-based biological routes to technology. Biopolymers 2010, 94(1):78-94.
    [12]Exley C. Silicon in life:A bioinorganic solution to bioorganic essentiality. J Inorg Biochem 1998,69(3):139-144.
    [13]崔福斋,冯庆玲,唐睿康,张天蓝,欧阳健明,王爱华,王夔.《生物矿化》北京:清华大学出版社2007
    [14]Slowing I. I., Trewyn B. G., Giri S. and Lin V. Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 2007,17(8):1225-1236.
    [15]Betancor L. and Luckarift H. R. Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 2008,26(10):566-572.
    [16]Luckarift H. R., Spain J. C., Naik R. R. and Stone M. O. Enzyme immobilization in a biomimetic silica support. Nat Biotechnol 2004,22(2):211-3.
    [17]Shiomi T., Tsunoda T., Kawai A., Mizukami F. and Sakaguchi K. Biomimetic Synthesis of Lysozyme- Silica Hybrid Hollow Particles Using Sonochemical Treatment:Influence of pH and Lysozyme Concentration on Morphology. Chem Mater 2007,19(18):4486-4493.
    [18]Armbrust E. V., et al. The genome of the diatom Thalassiosira pseudonana:ecology, evolution, and metabolism. Science 2004,306(5693):79-86.
    [19]Sumper M. and Kroger N. Silica formation in diatoms:the function of long-chain polyamines and silaffins. J Mater Chem 2004,14(14):2059-2065.
    [20]Wang L. J., Nie Q., Li M., Zhang F. S., Zhuang J. Q., Yang W. S., Li T. J. and Wang Y. H. Biosilicified structures for cooling plant leaves:A mechanism of highly efficient midinfrared thermal emission. Appl Phys Lett 2005,87(19):
    [21]Gao X., Zou C., Wang L. and Zhang F. Silicon Improves Water Use Efficiency in Maize Plants. JPlant Nutr2005,27(8):1457-1470.
    [22]Epstein E. Silicon:its manifold roles in plants. Ann Appl Biol 2009,155(2):155-160.
    [23]Currie H. A. and Perry C. C. Silica in plants:biological, biochemical and chemical studies. Ann Bot 2007,100(7):1383-9.
    [24]LAWTON J. R. Observations on the structure of epidermal cells, particularly the cork and silica cells, from the flowering stem internode of Lolium temulentum L.(Gramineae). Biol J Linn Soc 1980,80(2):161-177.
    [25]Grass, Barker N., Clark L., Davis J., Duvall M., Guala G., Hsiao C., Kellogg E. and Linder P. Phylogeny and Subfamilial Classification of the Grasses (Poaceae). Ann Ms Bot Gard 2001, 88(3):373-457.
    [26]Sarkar A. and Mahapatra S. Synthesis of All Crystalline Phases of Anhydrous Calcium Carbonate. Crys Growth Des 2010,10(5):2129-2135.
    [27]Braga D. From Amorphous to Crystalline by Design:Bio-Inspired Fabrication of Large Micropatterned Single Crystals. Angew Chem Int Ed 2003,42(45):5544-5546.
    [28]Faatz M., Grohn F. and Wegner G. Amorphous calcium carbonate:Synthesis and potential intermediate in biomineralization. Adv Mater 2004,16(12):996-+.
    [29]Addadi L., Joester D., Nudelman F. and Weiner S. Mollusk shell formation:a source of new concepts for understanding biomineralization processes. Chemistry 2006,12(4):980-7.
    [30]Towe K. M. Trilobite Eyes:Calcified Lenses in vivo. Science 1973,179(4077):1007-9.
    [31]Webb M. A. Cell-mediated crystallization of calcium oxalate in plants. Plant Cell 1999, 11(4):751-61.
    [32]Khan S. R. Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 1997,157(1):376-83.
    [33]Weiner S. and Wagner H. D. The material bone:Structure mechanical function relations. Annu Rev Mater Sci 1998,28:271-298.
    [34]Nudelman F., Pieterse K., George A., Bomans P. H., Friedrich H., Brylka L. J., Hilbers P. A., de With G. and Sommerdijk N. A. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 2010,9(12):1004-9.
    [35]Klem M. T., Young M. and Douglas T. Biomimetic magnetic nanoparticles. Mater Today 2005,8(9):28-37.
    [36]Termine J. D. and Posner A. S. Infrared analysis of rat bone:age dependency of amorphous and crystalline mineral fractions. Science 1966,153(3743):1523-5.
    [37]Towe K. M. and Hamilton G. H. Ultrastructure and inferred calcification of the mature and developing nacre in bivalve mollusks. Calcif Tissue Res 1968,1(4):306-18.
    [38]Lowenstam H. A. and Weiner S. Transformation of amorphous calcium phosphate to crystalline dahillite in the radular teeth of chitons. Science 1985,227(4682):51-3.
    [39]Weiner S., Sagi I. and Addadi L. Structural biology. Choosing the crystallization path less traveled. Science 2005,309(5737):1027-8.
    [40]Tao J. H., Pan H. H., Wang J. R., Wu J., Wang B., Xu X. R. and Tang R. K. Evolution of amorphous calcium phosphate to hydroxyapatite probed by gold nanoparticles. J Phys Chem C 2008,112(38):14929-14933.
    [41]Tao J., Pan H., Zeng Y., Xu X. and Tang R. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. J Phys Chem B 2007, 111(47):13410-8.
    [42]Olszta M. J., Cheng X. G., Jee S. S., Kumar R., Kim Y. Y., Kaufman M. J., Douglas E. P. and Gower L. B. Bone structure and formation:A new perspective. Mat Sci Eng R 2007, 58(3-5):77-116.
    [43]Dickerson M. B., Sandhage K. H. and Naik R. R. Protein- and peptide-directed syntheses of inorganic materials. Chem Rev 2008,108(11):4935-78.
    [44]George A. and Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev 2008,108(11):4670-93.
    [45]Segman-Magidovich S., Grisaru H., Gitli T., Levi-Kalisman Y. and Rapaport H. Matrices of acidic beta-sheet peptides as templates for calcium phosphate mineralization. Adv Mater 2008,20(11):2156-2161.
    [46]Gungormus M., Fong H., Kim I. W., Evans J. S., Tamerler C. and Sarikaya M. Regulation of in vitro calcium phosphate mineralization by combinatorially selected hydroxyapatite-binding peptides. Biomacromolecules 2008,9(3):966-973.
    [47]Yang Y., Mkhonto D., Cui Q. and Sahai N. Theoretical Study of Bone Sialoprotein in Bone Biomineralization. Cells Tissues Organs 2011,194(2-4):182-187.
    [48]Yang Y., Cui Q. A. and Sahai N. How Does Bone Sialoprotein Promote the Nucleation of Hydroxyapatite? A Molecular Dynamics Study Using Model Peptides of Different Conformations. Langmuir 2010,26(12):9848-9859.
    [49]Tarasevich B. J., Howard C. J., Larson J. L., Snead M. L., Simmer J. P., Paine M. and Shaw W. J. The nucleation and growth of calcium phosphate by amelogenin.J Cryst Growth 2007, 304(2):407-415.
    [50]He G., Dahl T., Veis A. and George A. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein, 1.Nat Mater 2003,2(8):552-558.
    [51]Palmer L. C., Newcomb C. J., Kaltz S. R., Spoerke E. D. and Stupp S. I. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 2008, 108(11):4754-83.
    [52]Wazen R. M., Tye C. E., Goldberg H. A., Hunter G. K., Smith C. E. and Nanci A. In vivo functional analysis of polyglutamic acid domains in recombinant bone sialoprotein. J Histochem Cytochem 2007,55(1):35-42.
    [53]He G. and George A. Dentin matrix protein 1 immobilized on type I collagen fibrils facilitates apatite deposition in vitro. JBiol Chem 2004,279(12):11649-56.
    [54]Holt C., Sorensen E. S. and Clegg R. A. Role of calcium phosphate nanoclusters in the control of calcification. FEBS J 2009,276(8):2308-23.
    [55]Tsuji T., Onuma K., Yamamoto A., Iijima M. and Shiba K. Direct transformation from amorphous to crystalline calcium phosphate facilitated by motif-programmed artificial proteins. Proc Natl Acad Sci U S A 2008,105(44):16866-70.
    [56]Elhadj S., Salter E. A., Wierzbicki A., De Yoreo J. J., Han N. and Dove P. M. Peptide controls on calcite mineralization:Polyaspartate chain length affects growth kinetics and acts as a stereochemical switch on morphology. Crys Growth Des 2006,6(1):197-201.
    [57]Addadi L. and Weiner S. Interactions between Acidic Proteins and Crystals-Stereochemical Requirements in Biomineralization. Proc Natl Acad Sci U S A 1985,82(12):4110-4114.
    [58]Chu X., Jiang W., Zhang Z., Yan Y., Pan H., Xu X. and Tang R. Unique roles of acidic amino acids in phase transformation of calcium phosphates.J Phys Chem B 2011, 115(5):1151-7.
    [59]Tarasevich B. J., Chusuei C. C. and Allara D. L. Nucleation and growth of calcium phosphate from physiological solutions onto self-assembled templates by a solution-formed nucleus mechanism. JPhys Chem B 2003,107(38):10367-10377.
    [60]Nonoyama T., Kinoshita T., Higuchi M., Nagata K., Tanaka M., Sato K. and Kato K. Multistep Growth Mechanism of Calcium Phosphate in the Earliest Stage of Morphology-Controlled Biomineralization. Langmuir 2011,27(11):7077-7083.
    [61]Toworfe G. K., Composto R. J., Shapiro I. M. and Ducheyne P. Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials 2006,27(4):631-642.
    [62]Kroger N., Lorenz S., Brunner E. and Sumper M. Self-Assembly of Highly Phosphorylated Silaffins and Their Function in Biosilica Morphogenesis. Science 2002,298(5593):584-586.
    [63]Kroger N., Deutzmann R. and Sumper M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 1999,286(5442):1129-32.
    [64]Sumper M., Lorenz S. and Brunner E. Biomimetic control of size in the polyamine-directed formation of silica nanospheres. Angew Chem Int Ed 2003,42(42):5192-5.
    [65]Pohnert G. Biomineralization in diatoms mediated through peptide- and polyamine-assisted condensation of silica. Angew Chem Int Ed 2002,41 (17):3167-9.
    [66]Kroger N., Deutzmann R., Bergsdorf C. and Sumper M. Species-specific polyamines from diatoms control silica morphology. Proc Natl Acad Sci U S A 2000,97(26):14133-8.
    [67]Brunner E., Richthammer P., Ehrlich H., Paasch S., Simon P., Ueberlein S. and van Pee K. H. Chitin-based organic networks:an integral part of cell wall biosilica in the diatom Thalassiosira pseudonana. Angew Chem IntEd 2009,48(51):9724-7.
    [68]Ma J. F., Tamai K., Yamaji N., Mitani N., Konishi S., Katsuhara M., Ishiguro M., Murata Y. and Yano M. A silicon transporter in rice. Nature 2006,440(7084):688-91.
    [69]Ma J. F. and Yamaji N. Silicon uptake and accumulation in higher plants. Trends Plant Sci 2006,11(8):392-7.
    [70]Ma J. F., Yamaji N., Mitani N., Tamai K., Konishi S., Fujiwara T., Katsuhara M. and Yano M. An efflux transporter of silicon in rice. Nature 2007,448(7150):209-12.
    [71]Fry S. C., Nesselrode B. H., Miller J. G. and Mewburn B. R. Mixed-linkage (1→3,1→ 4)-β-d-glucan is a major hemicellulose of Equisetum (horsetail) cell walls. New Phytologist 2008,179(1):104-115.
    [72]Harrison C. C. Evidence for intramineral macromolecules containing protein from plant silicas. Phytochemistry 1996,41(1):37-42.
    [73]Kauss H., Seehaus K., Franke R., Gilbert S., Dietrich R. A. and Kroger N. Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. Plant J 2003,33(1):87-95.
    [74]Belton D. J., Patwardhan S. V., Annenkov V. V., Danilovtseva E. N. and Perry C. C. From biosilicification to tailored materials:optimizing hydrophobic domains and resistance to protonation of polyamines. Proc Natl Acad Sci USA 2008,105(16):5963-8.
    [75]Wong Po Foo C., Patwardhan S. V., Belton D. J., Kitchel B., Anastasiades D., Huang J., Naik R. R., Perry C. C. and Kaplan D. L. Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci U S A 2006,103(25):9428-33.
    [76]Wang E., Lee S. H. and Lee S. W. Elastin-like polypeptide based hydroxyapatite bionanocomposites. Biomacromolecules 2011,12(3):672-80.
    [77]Sarikaya M., Tamerler C., Jen A. K., Schulten K. and Baneyx F. Molecular biomimetics: nanotechnology through biology. Nat Mater 2003,2(9):577-85.
    [78]Hartgerink J. D., Beniash E. and Stupp S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001,294(5547):1684-1688.
    [79]Heywood B. R. and Mann S. Template-directed nucleation and growth of inorganic materials. Adv Mater 1994,6(1):9-20.
    [80]Mann S., Heywood B. R., Rajam S. and Birchall J. D. Controlled crystallization of CaCO3 under stearic acid monolayers. Nature 1988,334(6184):692-695.
    [81]Mann S., Heywood B. R., Rajam S. and Wade V. J. Molecular Recognition in Biomineralization. Mechanisms and Phylogeny of Mineralization in Biological Systems 1991:47-55.
    [82]Sarikaya M. Biomimetics:Materials fabrication through biology. Proc Natl Acad Sci U S A 1999,96(25):14183-14185.
    [83]Chen C. L. and Rosi N. L. Peptide-based methods for the preparation of nanostructured inorganic materials. Angew Chem Int Ed Engl 2010,49(11):1924-42.
    [84]Sarikaya M., Tamerler C., Schwartz D. T. and Baneyx F. O. Materials assembly and formation using engineered polypeptides. Annu Rev Mater Res 2004,34:373-408.
    [85]Gilbert M., Shaw W. J., Long J. R., Nelson K., Drobny G. P., Giachelli C. M. and Stayton P. S. Chimeric peptides of statherin and osteopontin that bind hydroxyapatite and mediate cell adhesion. JBiol Chem 2000,275(21):16213-16218.
    [86]Wang E. D., Lee S. H. and Lee S. W. Elastin-Like Polypeptide Based Hydroxyapatite Bionanocomposites. Biomacromolecules 2011,12(3):672-680.
    [87]Prieto S., Shkilnyy A., Rumplasch C., Ribeiro A., Arias F. J., Rodriguez-Cabello J. C. and Taubert A. Biomimetic calcium phosphate mineralization with multifunctional elastin-like recombinamers. Biomacromolecules 2011,12(5):1480-6.
    [88]Semino C. E. Self-assembling peptides:From bio-inspired materials to bone regeneration. J Dental Res 2008,87(7):606-616.
    [89]Tamerler C. and Sarikaya M. Molecular biomimetics:utilizing nature's molecular ways in practical engineering. Acta Biomater 2007,3(3):289-99.
    [90]Tamerler C. and Sarikaya M. Molecular biomimetics:nanotechnology and bionanotechnology using genetically engineered peptides. Philos Transact A Math Phys Eng Sci 2009,367(1894):1705-26.
    [91]Marc D. Roy, Scott K. Stanley, Eric J. Amis and Becker M. L. Identification of a Highly Specific Hydroxyapatite-binding Peptide using Phage Display. Adv Mater 2008, 20(10):1830-1836.
    [92]Zhang S. G. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 2003,21(10):1171-1178.
    [93]Decher G. Fuzzy nanoassemblies:toward layered polymeric multicomposites. Science 1997. 277(5330):1232-1237.
    [94]Tang Z. Y., Wang Y., Podsiadlo P. and Kotov N. A. Biomedical applications of layer-by-layer assembly:From biomimetics to tissue engineering. Adv Mater 2006, 18(24):3203-3224.
    [95]Diaspro A., Silvano D., Krol S., Cavalleri O. and Gliozzi A. Single living cell encapsulation in nano-organized polyelectrolyte shells. Langmuir 2002,18(13):5047-5050.
    [96]Lakshminarayanan R., Kini R. M. and Valiyaveettil S. Investigation of the role of ansocalcin in the biomineralization in goose eggshell matrix. Proc Natl Acad Sci U S A 2002, 99(8):5155-9.
    [97]Yang S. H., Lee K. B., Kong B., Kim J. H., Kim H. S. and Choi I. S. Biomimetic encapsulation of individual cells with silica. Angew Chem Int Ed 2009,48(48):9160-3.
    [98]Wang B., Liu P., Jiang W., Pan H., Xu X. and Tang R. Yeast cells with an artificial mineral shell:protection and modification of living cells by biomimetic mineralization. Angew Chem Int Ed 2008,47(19):3560-4.
    [99]Muller W. E., Engel S., Wang X., Wolf S. E., Tremel W., Thakur N. L., Krasko A., Divekar M. and Schroder H. C. Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-alpha gene. Biomaterials 2008, 29(7):771-9.
    [100]Hillberg A. L. and Tabrizian M. Biorecognition through layer-by-layer polyelectrolyte assembly:In-situ hybridization on living cells. Biomacromolecules 2006,7(10):2742-2750.
    [101]Khademhosseini A., Suh K. Y., Yang J. M., Eng G., Yeh J., Levenberg S. and Langer R. Layer-by-layer deposition of hyaluronic acid and poly-L-lysine for patterned cell co-cultures. Biomaterials 2004,25(17):3583-3592.
    [102]Yang S. H., Kang S. M., Lee K. B., Chung T. D., Lee H. and Choi I. S. Mussel-inspired encapsulation and functionalization of individual yeast cells. J Am Chem Soc 133(9):2795-7.
    [103]Fischlechner M. and Donath E. Viruses as building blocks for materials and devices. Angew Chem Int Ed 2007,46(18):3184-3193.
    [104]Flynn C. E., Lee S.-W., Peelle B. R. and Belcher A. M. Viruses as vehicles for growth, organization and assembly of materials. Acta Materialia 2003,51 (19):5867-5880.
    [105]de la Escosura A., Nolte R. J. and Cornelissen J. J. Viruses and protein cages as nanocontainers and nanoreactors. J Mater Chem 2009,19(16):2274-2278.
    [106]Steinmetz N. F. Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomedicine 2010,6(5):634-641.
    [107]Raja K. S., Wang Q., Gonzalez M. J., Manchester M., Johnson J. E. and Finn M. Hybrid virus-polymer materials.1. Synthesis and properties of PEG-decorated cowpea mosaic virus. Biomacromolecules 2003,4(3):472-476.
    [108]Thompson D. H. Adenovirus in a Synthetic Membrane Wrapper:An Example of Hybrid Vigor? ACS nano 2008,2(5):821-826.
    [109]Wang X., Deng Y., Li S., Wang G., Qin E., Xu X., Tang R. and Qin C. Biomineralization-Based Virus Shell-Engineering:Towards Neutralization Escape and Tropism Expansion. Adv Healthcare Mater 2012, 1(4):443-449.
    [110]Kim P. H., Kim T. I., Yockman J. W., Kim S. W. and Yun C. O. The effect of surface modification of adenovirus with an arginine-grafted bioreducible polymer on transduction efficiency and immunogenicity in cancer gene therapy. Biomaterials 2010,31(7):1865-1874.
    [111]Dmitriev I., Krasnykh V., Miller C. R., Wang M., Kashentseva E., Mikheeva G., Belousova N. and Curiel D. T. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998,72(12):9706-13.
    [112]Evans D. J., McKeating J., Meredith J. M., Burke K. L., Katrak K., John A., Ferguson M., Minor P. D., Weiss R. A. and Almond J. W. An engineered poliovirus chimaera elicits broadly reactive HIV-1 neutralizing antibodies. Nature 1989,339(6223):385-8,340.
    [113]Lee S.-W., Mao C, Flynn C. E. and Belcher A. M. Ordering of quantum dots using genetically engineered viruses. Science 2002,296(5569):892-895.
    [114]Mao C., Flynn C. E., Hayhurst A., Sweeney R., Qi J., Georgiou G., Iverson B. and Belcher A. M. Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci U S A 2003, 100(12):6946-51.
    [115]Mao C., Solis D. J., Reiss B. D., Kottmann S. T., Sweeney R. Y., Hayhurst A., Georgiou G., Iverson B. and Belcher A. M. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 2004,303(5655):213-7.
    [116]Whaley S. R., English D. S., Hu E. L., Barbara P. F. and Belcher A. M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 2000,405(6787):665-668.
    [117]Lee Y. J., Yi H., Kim W. J., Kang K., Yun D. S., Strano M. S., Ceder G. and Belcher A. M. Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes. Science 2009,324(5930):1051-1055.
    [118]Nam K. T., Kim D. W., Yoo P. J., Chiang C. Y., Meethong N., Hammond P. T., Chiang Y. M. and Belcher A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006,312(5775):885-8.
    [119]Douglas T. and Young M. Virus particles as templates for materials synthesis. Adv Mater 1999,11(8):679-+.
    [120]Ghosh D., Lee Y., Thomas S., Kohli A. G., Yun D. S., Belcher A. M. and Kelly K. A. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat Nanotechnol 2012,7(10):677-82.
    [121]Young M., Willits D., Uchida M. and Douglas T. Plant viruses as biotemplates for materials and their use in nanotechnology. Annu Rev Phytopathol 2008,46:361-384.
    [122]Pokorski J. K. and Steinmetz N. F. The Art of Engineering Viral Nanoparticles. Mol Pharm 2011,8(1):29-43.
    [123]Lee S. Y., Lim J. S. and Harris M. T. Synthesis and application of virus-based hybrid nanomaterials. Biotechnol Bioeng 2012,109(1):16-30.
    [124]Radloff C., Vaia R. A., Brunton J., Bouwer G. T. and Ward V. K. Metal nanoshell assembly on a virus bioscaffold. Nano Lett 2005,5(6):1187-91.
    [125]Uchida M., Klem M. T., Allen M., Suci P., Flenniken M., Gillitzer E., Varpness Z., Liepold L. O., Young M. and Douglas T. Biological containers:Protein cages as multifunctional nanoplatforms. Adv Mater 2007,19(8):1025-1042.
    [126]Tama F. and Brooks C. L.,3rd. The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus. J Mol Biol 2002,318(3):733-47.
    [127]Douglas T. and Young M. Host-guest encapsulation of materials by assembled virus protein cages. Nature 1998,393(6681):152-155.
    [128]Douglas T. and Young M. Viruses:Making friends with old foes. Science 2006, 312(5775):873-875.
    [129]Klem M. T., Willits D., Solis D. J., Belcher A. M., Young M. and Douglas T. Bio-inspired synthesis of protein-encapsulated CoPt nanoparticles. Adv Funct Mater 2005, 15(9):1489-1494.
    [130]Allen M., Willits D., Mosolf J., Young M. and Douglas T. Protein cage constrained synthesis of ferrimagnetic iron oxide nanoparticles. Adv Mater 2002,14(21):1562-1565.
    [131]Douglas T., Strable E., Willits D., Aitouchen A., Libera M. and Young M. Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv Mater 2002, 14(6):415-418.
    [132]Shenton W., Douglas T., Young M., Stubbs G. and Mann S. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 1999, 11(3):253-256.
    [133]Chen X., Fernando G. J., Crichton M. L., Flaim C., Yukiko S. R., Fairmaid E. J., Corbett H. J., Primiero C. A., Ansaldo A. B., Frazer I. H., Brown L. E. and Kendall M. A. Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J Controlled Release 2011,152(3):349-55.
    [134]Clemens J., Holmgren J., Kaufmann S. H. and Mantovani A. Ten years of the Global Alliance for Vaccines and Immunization:challenges and progress. Nat Immunol 2010, 11(12):1069-72.
    [135]Morens D. M., Folkers G. K. and Fauci A. S. The challenge of emerging and re-emerging infectious diseases. Nature 2004,430(6996):242-9.
    [136]Rappuoli R., Mandl C. W., Black S. and De Gregorio E. Vaccines for the twenty-first century society. Nat Rev Immunol 2011,11(12):865-72.
    [137]Rappuoli R., Miller H. I. and Falkow S. Medicine. The intangible value of vaccination. Science 2002,297(5583):937-9.
    [138]Bilous J., Eggers R., Gasse F., Jarrett S., Lydon P., Magan A., Okwo-Bele J. M., Salama P., Vandelaer J., Villeneuve P. and Wolfson L. A new global immunisation vision and strategy. Lancet 2006,367(9521):1464-6.
    [139]Ulmer J. B., Valley U. and Rappuoli R. Vaccine manufacturing:challenges and solutions. Nat Biotechnol 2006,24(11):1377-83.
    [140]Schlehuber L. D., et at. Towards ambient temperature-stable vaccines:the identification of thermally stabilizing liquid formulations for measles virus using an innovative high-throughput infectivity assay. Vaccine 2011,29(31):5031-9.
    [141]Chen X., Fernando G. J., Crichton M. L., Flaim C., Yukiko S. R., Fairmaid E. J., Corbett H. J., Primiero C. A., Ansaldo A. B., Frazer I. H., Brown L. E. and Kendall M. A. Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J Controlled Release 2011,152(3):349-55.
    [142]Das P. Revolutionary vaccine technology breaks the cold chain. Lancet Infect Dis 2004, 4(12):719.
    [143]Chen D., Kapre S., Goel A., Suresh K., Beri S., Hickling J., Jensen J., Lal M., Preaud J. M., Laforce M. and Kristensen D. Thermostable formulations of a hepatitis B vaccine and a meningitis A polysaccharide conjugate vaccine produced by a spray drying method. Vaccine 2010,28(31):5093-9.
    [144]Kristensen D., Chen D. and Cummings R. Vaccine stabilization:research, commercialization, and potential impact. Vaccine 2011,29(41):7122-4.
    [145]Milstien J. B., Lemon S. M. and Wright P. F. Development of a More Thermostable Poliovirus Vaccine. J Infect Dis 1997,175(Supplement 1):S247-S253.
    [146]Sen A., Balamurugan V., Rajak K. K., Chakravarti S., Bhanuprakash V. and Singh R. K. Role of heavy water in biological sciences with an emphasis on thermostabilization of vaccines. Expert Rev Vaccines 2009,8(11):1587-602.
    [147]Chen C.-H., Wu R., Roth L. G., Guillot S. and Crainic R. Elucidating Mechanisms of Thermostabilization of Poliovirus by D2O and MgC12. Arch Biochem Biophys 1997, 342(1):108-116.
    [148]Alcock R., Cottingham M. G., Rollier C. S., Furze J., De Costa S. D., Hanlon M., Spencer A. J., Honeycutt J. D., Wyllie D. H., Gilbert S. C., Bregu M. and Hill A. V. Long-term thermostabilization of live poxviral and adenoviral vaccine vectors at supraphysiological temperatures in carbohydrate glass. Sci Transl Med 2010,2(19):19ra12.
    [149]Riyesh T., Balamurugan V., Sen A., Bhanuprakash V., Venkatesan G., Yadav V. and Singh R. K. Evaluation of efficacy of stabilizers on the thennostability of live attenuated thermo-adapted Peste des petits ruminants vaccines. Virol Sin 2011,26(5):324-37.
    [150]Kaushik J. K. and Bhat R. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem 2003,278(29):26458-65.
    [151]Adebayo A. A., Sim-Brandenburg J. W., Emmel H., Olaleye D. O. and Niedrig M. Stability of 17D yellow fever virus vaccine using different stabilizers. Biologicals 1998,26(4):309-16.
    [152]Ausar S. F., Espina M., Brock J., Thyagarayapuran N., Repetto R., Khandke L. and Middaugh C. R. High-throughput screening of stabilizers for respiratory syncytial virus: identification of stabilizers and their effects on the conformational thennostability of viral particles. Hum Vaccin 2007,3(3):94-103.
    [153]Zhang J., Pritchard E., Hu X., Valentin T., Panilaitis B., Omenetto F. G. and Kaplan D. L. Stabilization of vaccines and antibiotics in silk and eliminating the cold chain. Proc Natl Acad Sci U S A2012:1-6.
    [154]Roser B. Stable liquid vaccines and drugs for the 21st century. Future Microbiol 2006, 1(1):21-31.
    [155]Mateu M. G. Virus engineering:functionalization and stabilization. Protein Eng Des Sel 2011,24(1-2):53-63.
    [156]Mateo R., Diaz A., Baranowski E. and Mateu M. G. Complete alanine scanning of intersubunit interfaces in a foot-and-mouth disease virus capsid reveals critical contributions of many side chains to particle stability and viral function. J Biol Chem 2003, 278(42):41019-27.
    [157]Mateo R., Luna E., Rincon V. and Mateu M. G. Engineering viable foot-and-mouth disease viruses with increased thermostability as a step in the development of improved vaccines.J Virol 2008,82(24):12232-40.
    [158]Mateu M. G. The capsid protein of human immunodeficiency virus:intersubunit interactions during virus assembly. FEBS J 2009,276(21):6098-109.
    [159]Kim S. G., Kim K. W., Park E. W. and Choi D. Silicon-induced cell wall fortification of rice leaves:A possible cellular mechanism of enhanced host resistance to blast. Phytopathology 2002,92(10):1095-1103.
    [160]Yao H. M., Dao M., Imholt T., Huang J. M., Wheeler K., Bonilla A., Suresh S. and Ortiz C. Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod. Proc Natl Acad Sci U S A 2010,107(3):987-992.
    [161]Romano P., Fabritius H. and Raabe D. The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. Acta Biomater 2007,3(3):301-309.
    [162]Hamm C. E., Merkel R., Springer O., Jurkojc P., Maier C., Prechtel K. and Smetacek V. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 2003,421(6925):841-3.
    [163]Karlsson 0. and Lilja C. Eggshell structure, mode of development and growth rate in birds. Zoology 2008,111(6):494-502.
    [164]Wang B., Liu P. and Tang R. K. Cellular shellization:Surface engineering gives cells an exterior. BioEssays 2010.
    [165]Wang B., Liu P., Jiang W. G., Pan H. H., Xu X. R. and Tang R. K. Yeast cells with an artificial mineral shell:Protection and modification of living cells by biomimetic mineralization. Angew Chem IntEd 2008,47(19):3560-3564.
    [166]Premkumar J. R., Lev O., Rosen R. and Belkin S. Encapsulation of Luminous Recombinant E. coli in Sol-Gel Silicate Films. Adv Mater 2001,13(23):1773-1775.
    [167]Baca H. K., Ashley C., Carnes E., Lopez D., Flemming J., Dunphy D., Singh S., Chen Z., Liu N., Fan H., Lopez G. P., Brozik S. M., Werner-Washburne M. and Brinker C. J. Cell-directed assembly of lipid-silica nanostructures providing extended cell viability. Science 2006,313(5785):337-41.
    [168]2001 C. C. Third Assessment Report of the Intergovernmental Panel on Climate Change. IPCC(WGI & Ⅱ) (Cambridge Univ. Press, Cambridge) 2001.
    [169]Hughes I. I. Biological consequences of global wanning:is the signal already apparent? Trends Ecol Evol 2000,15(2):56-61.
    [170]Kumar S. V. and Wigge P. A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 2010,140(1):136-47.
    [171]Deal R. B. and Henikoff S. Gene regulation:A chromatin thermostat. Nature 2010, 463(7283):887-8.
    [172]Foo C. W., Huang J. and Kaplan D. L. Lessons from seashells:silica mineralization via protein templating. Trends Biotechnol 2004,22(11):577-85.
    [173]Poulsen N., Sumper M. and Kroger N. Biosilica formation in diatoms:characterization of native silaffin-2 and its role in silica morphogenesis. Proc Natl Acad Sci U S A 2003, 100(21):12075-80.
    [174]Richthammer P., Bormel M., Brunner E. and van Pee K. H. Biomineralization in diatoms: the role of silacidins. Chembiochem 2011,12(9):1362-6.
    [175]Annenkov V. V., Patwardhan S. V., Belton D., Danilovtseva E. N. and Perry C. C. A new stepwise synthesis of a family of propylamines derived from diatom silaffins and their activity in silicification. Chem Commun 2006, (14):1521-1523.
    [176]Mahadevan T. S. and Garofalini S. H. Dissociative chemisorption of water onto silica surfaces and formation of hydronium ions. JPhys Chem C2008,112(5):1507-1515.
    [177]Yang J. J., Meng S., Xu L. F. and Wang E. G. Water adsorption on hydroxylated silica surfaces studied using the density functional theory. Phys Rev B 2005,71(3):-
    [178]Kanezashi M., Yada K., Yoshioka T. and Tsuru T. Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability. J Am Chem Soc 2009,131(2):414-5.
    [179]Eroglu A., Russo M. J., Bieganski R., Fowler A., Cheley S., Bayley H. and Toner M. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol 2000,18(2):163-7.
    [180]Guo N., Puhlev Ⅰ., Brown D. R., Mansbridge J. and Levine F. Trehalose expression confers desiccation tolerance on human cells. Nat Biotechnol 2000,18(2):168-71.
    [181]Fauteux F., Chain F., Belzile F., Menzies J. G. and Belanger R. R. The protective role of silicon in the Arabidopsis-powdery mildew pathosystem. Proc Natl Acad Sci U S A 2006, 103(46):17554-17559.
    [182]De Virgilio C., Hottiger T., Dominguez J., Boller T. and Wiemken A. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. Ⅰ. Genetic evidence that trehalose is a thermoprotectant. Eur JBiochem 1994,219(1-2):179-86.
    [183]Hottiger T., De Virgilio C., Hall M. N., Boiler T. and Wiemken A. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. Ⅱ. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem 1994, 219(1-2):187-93.
    [184]Kunda P., Rohn J. L. and Baum B. Cell shape:taking the heat. Curr Biol 2008, 18(11):R470-2.
    [185]Setia S., Mainzer H., Washington M. L., Coil G., Snyder R. and Weniger B. G. Frequency and causes of vaccine wastage. Vaccine 2002,20(7-8):1148-56.
    [186]Stewart G. F. The Structure of the Hen's egg shell. Poult Sci 1935,14:24-32.
    [187]LeGeros R. Z. Calcium phosphate-based osteoinductive materials. Chem Rev 2008, 108(11):4742-53.
    [188]Olton D., Li J., Wilson M. E., Rogers T., Close J., Huang L., Kumta P. N. and Sfeir C. Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery:influence of the synthesis parameters on transfection efficiency. Biomaterials 2007,28(6):1267-79.
    [189]Chiu D., Zhou W., Kitayaporn S., Schwartz D. T., Murali-Krishna K., Kavanagh T. J. and Baneyx F. Biomineralization and Size Control of Stable Calcium Phosphate Core-Protein Shell Nanoparticles:Potential for Vaccine Applications. Bioconjug Chem 2012, 23(3):610-617.
    [190]He Q., Mitchell A. R., Johnson S. L., Wagner-Bartak C., Morcol T. and Bell S. J. Calcium phosphate nanoparticle adjuvant. Clin Diagn Lab Immunol 2000,7(6):899-903.
    [191]Tandan J. B., Ohrr H., Sohn Y. M., Yoksan S., Ji M., Nam C. M. and Halstead S. B. Single dose of SA 14-14-2 vaccine provides long-term protection against Japanese encephalitis:a case-control study in Nepalese children 5 years after immunization. drjbtandan@yahoo.com. Vaccine 2007,25(27):5041-5.
    [192]Ohrr H., Tandan J. B., Sohn Y. M., Shin S. H., Pradhan D. P. and Halstead S. B. Effect of single dose of SA 14-14-2 vaccine 1 year after immunisation in Nepalese children with Japanese encephalitis:a case-control study. Lancet 2005,366(9494):1375-8.
    [193]Kumar R., Tripathi P. and Rizvi A. Effectiveness of one dose of SA 14-14-2 vaccine against Japanese encephalitis. NEngl JMed 2009,360(14):1465-6.
    [194]Bista M. B., Banerjee M. K., Shin S. H., Tandan J. B., Kim M. H., Sohn Y. M., Ohrr H. C., Tang J. L. and Halstead S. B. Efficacy of single-dose SA 14-14-2 vaccine against Japanese encephalitis:a case control study. Lancet 2001,358(9284):791-5.
    [195]Ghosh D. and Basu A. Japanese encephalitis-a pathological and clinical perspective. PLoS Negl Trop Dis 2009,3(9):e437.
    [196]A. Galazka, J. Milstien and Zaffran M. Thermostability of vaccines:global programme for vaccines and immunization (GPV) Geneva:W H O 1998.
    [197]Yauch L. E., Zellweger R. M., Kotturi M. F., Qutubuddin A., Sidney J., Peters B., Prestwood T. R., Sette A. and Shresta S. A Protective Role for Dengue Virus-Specific CD8(+) T Cells. J Immunol 2009,182(8):4865-4873.
    [198]Crowe J. H., Hoekstra F. A. and Crowe L. M. Anhydrobiosis. Annu Rev Physiol 1992, 54:579-99.
    [199]Crowe L. M. and Crowe J. H. Anhydrobiosis:a strategy for survival. Adv Space Res 1992, 12(4):239-47.
    [200]Pagnotta S. E., McLain S. E., Soper A. K., Bruni F. and Ricci M. A. Water and Trehalose: How Much Do They Interact with Each Other? JPhys Chem B 2010,114(14):4904-4908.
    [201]Milstien J. B., Lemon S. M. and Wright P. F. Development of a more thermostable poliovirus vaccine. J Infect Dis 1997,175 Suppl 1:S247-53.
    [202]Lang R., Winter G., Vogt L., Zurcher A., Dorigo B. and Schimmele B. Rational design of a stable, freeze-dried virus-like particle-based vaccine formulation. Drug Dev Ind Pharm 2009, 35(1):83-97.
    [203]Jezek J., Chen D., Watson L., Crawford J., Perkins S., Tyagi A. and Jones-Braun L. A heat-stable hepatitis B vaccine formulation. Hum Vaccin 2009,5(8):529-35.
    [204]Wang S. H., Kirwan S. M., Abraham S. N., Staats H. F. and Hickey A. J. Stable dry powder formulation for nasal delivery of anthrax vaccine. J Pharm Sci 2012,101 (1):31-47.
    [205]Ohtake S., Martin R. A., Yee L., Chen D., Kristensen D. D., Lechuga-Ballesteros D. and Truong-Le V. Heat-stable measles vaccine produced by spray drying. Vaccine 2010, 28(5):1275-84.
    [206]Wang X., Deng Y., Li S., Wang G., Qin E., Xu X., Tang R. and Qin C. Biomineralization-Based Virus Shell-Engineering:Towards Neutralization Escape and Tropism Expansion. Adv Healthcare Mater 2012, 14):443-449.
    [207]Wang G., Li X., Mo L., Song Z., Chen W., Deng Y., Zhao H., Qin E., Qin C. and Tang R. Eggshell-Inspired Biomineralization Generates Vaccines that Do Not Require Refrigeration. Angew Chem Int Ed 2012,51:10576-10579.
    [208]Arias J. L., Neira-Carrillo A., Arias J. I., Escobar C., Bodero M., David M. and Fernandez M. S. Sulfated polymers in biological mineralization:a plausible source for bio-inspired engineering. J Mater Chem 2004,14(14):2154-2160.
    [209]Holt C., Wahlgren N. M. and Drakenberg T. Ability of a beta-casein phosphopeptide to modulate the precipitation of calcium phosphate by forming amorphous dicalcium phosphate nanoclusters. Biochem J 1996,314 (Pt 3):1035-9.
    [210]Kirkham J., Firth A., Vernals D., Boden N., Robinson C., Shore R. C., Brookes S. J. and Aggeli A. Self-assembling peptide scaffolds promote enamel remineralization. J Dental Res 2007,86(5):426-430.
    [211]Arita M., Nagata N., Iwata N., Ami Y., Suzaki Y., Mizuta K., Iwasaki T., Sata T., Wakita T. and Shimizu H. An Attenuated Strain of Enterovirus 71 Belonging to Genotype A Showed a Broad Spectrum of Antigenicity with Attenuated Neurovirulence in Cynomolgus Monkeys. J Virol 2007,81(17):9386-9395.
    [212]Tao J., Zhou D., Zhang Z., Xu X. and Tang R. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean. Proc Natl Acad Sci U S A 2009, 106(52):22096-101.
    [213]Addadi L. and Weiner S. Interactions between Acidic Proteins and Crystals Stereochemical Requirements in Biomineralization. Proc Natl Acad Sci USA 1985, 82(12):4110-4114.
    [214]Wang G., Li X., Mo L., Song Z., Chen W., Deng Y., Zhao H., Qin E., Qin C. and Tang R. Eggshell-Inspired Biomineralization Generates Vaccines that Do Not Require Refrigeration. Angew Chem Int Ed 2012,51(42):10576-10579.
    [215]Wang G., Cao R.-Y., Chen R., Mo L., Han J.-F., Wang X., Xu X., Jiang T., Deng Y.-Q., Lyu K., Zhu S.-Y., Qin E.-D., Tang R. and Qin C.-F. Rational design of thermostable vaccines by engineered peptide-induced virus self-biomineralization under physiological conditions. Proc Natl Acad Sci USA 2013.
    [216]Blank C. E., Cady S. L. and Pace N. R. Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park. Appl Environ Microbiol 2002,68(10):5123-35.
    [217]Sundar V. C., Yablon A. D., Grazul J. L., Ilan M. and Aizenberg J. Fibre-optical features of a glass sponge. Nature 2003,424(6951):899-900.
    [218]Epstein E. The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 1994, 91(1):11-7.
    [219]Sangster A. G., Hodson M. J. and Tubb H. J. Chapter 5 Silicon deposition in higher plants.Studies in Plant Science:Elsevier.2001
    [220]Avnir D., Braun S., Lev O. and Ottolenghi M. Enzymes and Other Proteins Entrapped in Sol-Gel Materials. Chem Mater 1994,6(10):1605-1614.
    [221]Ma J., Liang Z., Qiao X., Deng Q., Tao D., Zhang L. and Zhang Y. Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity. Anal Chem 2008,80(8):2949-56.
    [222]Finnie K. S., Bartlett J. R. and Woolfrey J. L. Encapsulation of sulfate-reducing bacteria in a silica host. J Mater Chem 2000,10(5):1099-1101.
    [223]Nassif N., Bouvet O., Noelle Rager M., Roux C., Coradin T. and Livage J. Living bacteria in silica gels. Nat Mater 2002, 1(1):42-4.
    [224]Wang G., Wang L., Liu P., Yan Y., Xu X. and Tang R. Extracellular silica nanocoat confers thermotolerance on individual cells:a case study of material-based functionalization of living cells. Chembiochem 2010, 11(17):2368-73.
    [225]Trewyn B. G., Slowing, Ⅱ, Giri S., Chen H. T. and Lin V. S. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc Chem Res 2007,40(9):846-53.
    [226]Knecht M. R. and Wright D. W. Functional analysis of the biomimetic silica precipitating activity of the R5 peptide from Cylindrotheca fusiformis. Chem Commun 2003, (24):3038-3039.
    [227]Wenzl S., Hett R., Richthammer P. and Sumper M. Silacidins:highly acidic phosphopeptides from diatom shells assist in silica precipitation in vitro. Angew Chem Int Ed 2008,47(9):1729-32.
    [228]Scheffel A., Poulsen N., Shian S. and Kroger N. Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proc Natl Acad Sci USA 2011,108(8):3175-3180.
    [229]Cha J. N., Shimizu K., Zhou Y., Christiansen S. C., Chmelka B. F., Stucky G. D. and Morse D. E. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci U S A 1999,96(2):361-5.
    [230]Sumper M., Brunner E. and Lehmann G. Biomineralization in diatoms:characterization of novel polyamines associated with silica. FEBS Lett 2005,579(17):3765-9.
    [231]Bemecker A., Wieneke R., Riedel R., Seibt M., Geyer A. and Steinem C. Tailored Synthetic Polyamines for Controlled Biomimetic Silica Formation. J Am Chem Soc 2010, 132(3):1023-1031.
    [232]Knecht M. R. and Wright D. W. Amine-Terminated Dendrimers as Biomimetic Templates for Silica Nanosphere Formation. Langmuir 2004,20(11):4728-4732.
    [233]Vrieling E. G., Beelen T. P., van Santen R. A. and Gieskes W. W. Mesophases of (bio)polymer-silica particles inspire a model for silica biomineralization in diatoms. Angew Chem Int Ed 2002,41(9):1543-6.
    [234]Giraldo L. F., Lopez B. L., Perez L., Urrego S., Sierra L. and Mesa M. Mesoporous Silica Applications. Macromol Symp 2007,258(1):129-141.
    [235]Yuwono V. M. and Hartgerink J. D. Peptide amphiphile nanofibers template and catalyze silica nanotube formation. Langmuir 2007,23(9):5033-8.
    [236]Lin T. Y. and Timasheff S. N. On the role of surface tension in the stabilization of globular proteins. Protein Sci 1996,5(2):372-81.
    [237]Kaushik J. K. and Bhat R. Why Is Trehalose an Exceptional Protein Stabilizer?:AN ANALYSIS OF THE THERMAL STABILITY OF PROTEINS IN THE PRESENCE OF THE COMPATIBLE OSMOLYTE TREHALOSE.J Biol Chem 2003, 278(29):26458-26465.
    [238]Hassanali A. A. and Singer S. J. Model for the water-amorphous silica interface:the undissociated surface. JPhys Chem B 2007,111(38):11181-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700