牙釉质和骨的分级结构和纳米力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以成熟的人类牙釉质和野生型斑马鱼脊椎骨为模型,对两类典型的经不同矿化过程形成的磷酸钙基硬组织生物材料的分级结构、纳米力学性能和组织脱矿过程进行了研究,从而对磷酸钙基生物矿化材料的分级结构特点,分级结构存在的规律性,以及纳米力学性能等功能的分级对应性进行了深入论述。
     人类牙釉质的性能与其主要成分羟基磷灰石晶体的分级组装结构密切相关。基于从纳米尺度到微米尺度对釉质的微结构的研究结果,我们首次提出了人类牙釉质7级分级结构的新模型。羟基磷灰石纳米纤维是釉质的分级结构基础,进而经过多级组装形成了微纤维以及纤维束等高级组装结构。纤维的取向和致密度变化构成了釉柱和釉质鞘。釉柱在釉质层的不同区域有不同的排列方式。此外,我们首次报道了釉柱与釉质鞘的纳米硬度和弹性模量存在显著差异,从而证明了釉质的纳米力学性能存在与其微结构一一对应的分级特性。
     沿斑马鱼脊椎骨骨壁径向对胶原纤维的矿化程度、分级组装结构和纳米力学性能的对比为研究骨分级结构的形成和重塑提供了有效途径。靠近外骨膜的新生骨组织中主要包含的是未进行高级组装的矿化胶原纤维。骨壁中央区域的骨组织发育成熟,矿化胶原纤维排列有序,并组装形成胶原纤维束以及更高级的板层结构。而在内骨膜附近,胶原纤维束虽然发育更成熟,但因为溶解和重塑作用,组织不存在板层结构。由组装程度不同的矿化胶原纤维形成的骨分级结构导致脊椎骨骨壁的纳米硬度和弹性模量从外到内逐渐增加。
     通过对釉质酸蚀软化模型的微结构和力学性能的分析,我们系统报道了软化表面的构造,结构与力学性能对应性以及软化表面的各分层内釉质分级结构的变化。基于对酸腐蚀软化的研究结果,我们设计了氟化物与唾液中的钙磷离子在釉质表面原位矿化的方法对软化层进行修复,并证明了这种方法在一定程度上能够从成分、结构和力学性能等方面修复受损釉质。
The hierarchical structure, nanomechanical properties and their response during demineralization of mature human dental enamel and wild type zebrafish (Danio rerio) skeletal bone, two representative systems of the apatite-based hard tissues formed under different mineralization mechanisms, were studied in this work. Then from the point of hierarchical assembly, the microstructural characteristics of the apatite-based mineralized biomaterials, as well as their fine-tuning to the nanomechanical properties were discussed in detail.
     Human dental enamel is mostly built up of hydroxyapatite crystals in well controlled assembly manners. Based on the investigations to its microstructure from nano-scale to micron-scale, we for the first time proposed a novel model of 7 levels hierarchical structure of enamel and described its organization with a scheme representing a complete spectrum that covers a wide scale from nanometer to millimeter. Hydroxyapatite nano-fibrils are the fundamental hierarchical structure level, which then assemble into fibrils and fibers level by level. With the different orientations and densities of the crystal nano-fibrils, the prism/interprism/sheath continuums are imposed that are differently arranged across the whole enamel layer. More than that, we for the first time reported the significant alternations of the nanohardness and elastic modulus between prisms and sheaths, which can strongly support the close relationship between the microstructure and nanomechanical properties of enamel in terms of hierarchy.
     The zebrafish skeleton is another model with hierarchical structure. Explorations to the mineralization of the collagen fibrils, the hierarchical assembly structure and the nanomechanical properties across the whole thickness of the bone wall provide an efficient way to understand the formation and remodeling of the hierarchical structure of bone. The new formed bone near the periosteum mainly contains the mineralized
引文
[1] Stupp S I and Braun P V. Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science 1997, 277: 1242-1248
    [2] Lowenstam H A and Weiner S. On biomineralizationed. New York: Oxford University Press, 1989
    [3] Mann S. Biomineralization principles and concepts in bioinorganic materials chemistryed. New York: Oxford University Press, 2001
    [4] Aizenberg J, Tkachenko A, Weiner S, et al. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 2001, 412: 819-822
    [5] Dunin-Borkowski R E, McCartney M R, Frankel R B, et al. Magnetic microstructure of magnetotactic bacteria by electron holography. Science 1998, 282: 1868-1870
    [6] Kamat S, Su X, Ballarini R, et al. Structural basis for the fracture toughness of the shell of the conch strombus gigas. Nature 2000, 405: 1036-1040
    [7] Mann S. Crystallization at inorganic-organic interfaces - biominerals and biomimetic synthesis. Science 1993, 261: 1286
    [8] Mann S and Ozin G A. Synthesis of inorganic materials with complex form. Nature 1996, 382: 313
    [9] Whaley S R, English D S, Hu E L, et al. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 2000, 405: 665-668
    [10] Zhang W, Liao S S, and Cui F Z. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem. Mater. 2003, 15: 3221-3226
    [11] Liu Q H, Wang L M, Frutos A G, et al. DNA computing on surfaces. Nature 2000, 403: 175-179
    [12] Braun E, Eichen Y, Sivan U, et al. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 1998, 391: 775-778
    [13] Mirkin C A. Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg. Chem. 2000, 39: 2258-2272
    [14] Richter J, Seidel R, Kirsch R, et al. Nanoscale palladium metallization of DNA. Adv. Mater. 2000, 12: 507-510
    [15] Yan H, Zhang X P, Shen Z Y, et al. A robust DNA mechanical device controlled by hybridization topology. Nature 2002, 415: 62-65
    [16] Monson C F and Woolley A T. DNA-templated construction of copper nanowires. Nano. Lett. 2003, 3: 359-363
    [17] Seeman N C. DNA in a material world. Nature 2003, 421: 427-431
    [18] Niemeyer C M, Sano T, and Smith C L. Oligonucleotide-directed self-assembly of proteins-semisynthetic DNA streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. Nucleic. Acides. Rev. 1994, 22: 5530-5539
    [19] Trevor D and Mark Y. Host-guest encapsulation of materials by assembled virus protein cages. Nature 1998, 1998: 152-154
    [20] Mao C B, Solis D J, Reiss B D, et al. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 2004, 303: 213-217
    [21] Addadi L and Weiner S. Biomineralization - crystals, asymmetry and life. Nature 2001, 411: 753-755
    [22] Alivisatos A P. Biomineralization. Naturally aligned nanocrystals. Science 2000, 289: 736-737
    [23] Calvert P and Mann S. Crystallography - the negative side of crystal growth. Nature 1997, 386: 127-128
    [24] Mann S. Skeletal biomineralization - patterns, processes and evolutionary trends, vol 1-2 - carter, Jg. Nature 1991, 351: 24
    [25] Mann S. Biomineralization - bacteria and the Midas Touch. Nature 1992, 357: 358-360
    [26] Mann S. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 1993, 365: 499-505
    [27] Addadi L and Weiner S. Biomineralization - a pavement of pearl. Nature 1997, 389: 912-915
    [28] Banfield J F, Welch S A, Zhang H Z, et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 2000, 289: 751-754
    [29] Kazmierczak J and Altermann W. Neoarchean biomineralization by benthic cyanobacteria. Science 2002, 298: 2351-2351
    [30] Sollner C, Burghammer M, Busch-Nentwich E, et al. Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science 2003, 302: 282-286
    [31] Davis M E. How life makes hard stuff. Science 2004, 305: 480
    [32] Black J and Hastings G. Handbook of biomaterial properties, 1st ed. London: Chapman & Hall, UK, 1998
    [33] Ten Cate A R. Oral histology, development, structure, and function, 5th ed. St. Louis, Missouri, USA: Mosby-Year Book Inc., 1998
    [34] Paine M L, White S N, Luo W, et al. Regulated gene expression dictates enamel structure and tooth function. Matrix. Biol. 2001, 20: 273-292
    [35] Fincham A G, Moradian-Oldak J, and Simmer J P. The structural biology of the developing dental enamel matrix. J. Struct. Biol. 1999, 126: 270-299
    [36] Heuer A H. Innovative materials processing strategies - a biomimetic approach. Science 1992, 255: 1098-1105
    [37] Shenton W, Pum D, Sleytr U B, et al. Synthesis of cadmium sulphide superlattices using self-assembled bacterial s-layers. Nature 1997, 389: 585-587
    [38] Baeuerlein E. Biomineralization:From biology to biotechnology and medical applicationed. Weinheim: Wiley-Vch, 2000
    [39] Mann S. Molecular recognition in biomineralization. Nature 1988, 332: 119-124
    [40] Lowenstam H A. Minerals formed by organisms. Science 1981, 211: 1126-1131
    [41] Dove P M, Davis K J, and DeYoreo J J. Inhibition of CaCO3 crystallization by small molecules: The magnesium example. In: Liu X Y, and DeYoreo J J eds. Solid-fluid interfaces to nanostructural engineering, Vol. II. New York: Kluewer/Plenum Academic Press, 2004
    [42] Weiner S and Dove P M. An overview of biomineralization processes and the problem of the vital effect. Rev. Mineral. Geochem. 2003, 54: 1-29
    [43] Wada K and Fujinuki T. Biomineralization in bivalve mollusks with emphasis on the chemical composition of the extrapallial fluid. In: Watabe N, and Wilbu K M eds. The mechanisms of mineralization in the invertebrates and plants. Columbia: Univ. SC Press, 1976:175-190
    [44] Crenshaw M A. The soluble matrix from mercenaria mercenaria shell. In: K S F ed. International symposium on problems in biomineralization. New York: Verlag, 1972
    [45] Collins M J, Westbroek P, Muyzer G, et al. Experimental evidence for condensation reactions between sugars and proteins in carbonate skeletons. Geochim. Cosmochim. 1992, 56: 1539-1544
    [46] Sikes C S, Yeung M L, and Wheeler A P. Inhibition of calcium carbonate and phosphate crystallization by peptides enriched in aspartic acid and phosphoserine. In Sikes C S, and Wheeler A P eds. Surface reactive peptides and polymers: Discovery and commercialization, Ch. 5. Washington: ACS Books, 1990
    [47] Wheeler A P, Low K C, and Sikes C S. CaCO3 crystal-binding properties of peptides and their influence on crystal growth. In Sikes C S, and Wheeler A P eds. Surface reactive peptides and polymers: Discovery and commercialization, Ch. 6. Washington: ACS Books, 1990
    [48] Calvert P. Biomimetic ceramics and composites. MRS Bulletin XVII, 1992
    [49] Fink D J, Arnold I C, and Heuer A H. Eggshell mineralization: A case study of a bioprocessing strategy. MRS Bulletin XVII, 1992
    [50] 王夔. 生物无机化学. 北京:清华大学出版社,1988
    [51] Hohenberg P C and Halperin B I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 1977, 49: 435-479
    [52] Chaikin P M and Lubensky T C. Principles of condensed matter physicsed. Cambridge: Cambridge University Press, 1995
    [53] Kashchiev D. Nucleation: Basic theory with applications. Oxford: Butterworths, Heinemann, 1999
    [54] Mullin J W. Crystallization, 3rd edition. Oxford: Butterworths, 1992
    [55] Neilsen A E. Kinetics of precipitationed. Oxford: Pergamon, 1964
    [56] Abraham F F. Homogeneous nucleation theory. New York: Academic Press, 1974
    [57] Chernov A A. Modern crystallography III: Crystal growth. Berlin: Springer, 1984
    [58] Mutaftschiev B. Nucleation. In: Hurle D T J ed. Handbook on crystal growth. Amsterdam: North-Holland, 1993
    [59] Heywood B R and Mann S. Template-directed nucleation and growth of inorganic materials. Adv. Mater. 1994, 6: 9-20
    [60] Wong K K, Brisdon B J, Heywood B R, et al. Polymer-mediated crystallisation of inorganic solids: Calcite nucleation on the surfaces of inorganic polymers. J. Mater. Chem. 1994, 4: 1387-1392
    [61] Berman A, Ahn D J, Lio A, et al. Total alignment of calcite at acidic polydiacetylene films - cooperativity at the organic-inorganic interface. Science 1995, 269: 515-518
    [62] Archibald D D, Qadri S B, and Gaber B P. Modified calcite deposition due to ultrathin organic films on silicon substrates. Langmuir 1996, 12: 538-546
    [63] Aizenberg J, Black A J, and Whitesides G H. Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver. J. Am. Chem. Soc. 1999, 121: 4500-4509
    [64] Aizenberg J, Black A J, and Whitesides G M. Control of nucleation by patterned self-assembled monolayers. Nature 1999, 398: 495-498
    [65] Travaille A M, Donners J J J M, Gerritsen J W, et al. Aligned growth of calcite crystals on a self-assembled monolayer. Adv. Mater. 2002, 14: 492-495
    [66] Aizenberg J, Muller D A, Grazul J L, et al. Direct fabrication of large micropatterned single crystals. Science 2003, 299: 1205-1208
    [67] Addadi L, Moradian J, Shay E, et al. A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: Relevance to biomineralization. Proc. Nat. Acad. Sci. 1997, 84: 2732-2736
    [68] Wu W J and Nancollas G H. Interfacial free energies and crystallization in aqueous media. J. Colloid. Interf. Sci. 1996, 182: 365-373
    [69] Liu Y, Sethuraman G, Wu W J, et al. The crystallization of fluorapatite in the presence of hydroxyapatite seeds and of hydroxyapatite in the presence of fluorapatite seeds. J. Colloid. Interf. Sci. 1997, 186: 102-109
    [70] Wu W J and Nancollas G H. The nucleation of hydroxyapatite and fluorapatite on titanium oxide surfaces. J. Dent. Res. 1997, 76: 266-266
    [71] Wu W J, Zhuang H Z, and Nancollas G H. Heterogeneous nucleation of calcium phosphates on solid surfaces in aqueous solution. J. Biomed. Mater. Res. 1997, 35: 93-99
    [72] Goldberg M, Septier D, Lecolle S, et al. Dental mineralization. Int. J. Dev. Biol. 1995, 39: 93-110
    [73] Limeback H. Molecular mechanisms in dental hard tissue mineralization. Curr. Opin. Dent. 1991, 1:826
    [74] Mann S, Webb J, and Willams R J P. Biomineralization, chemical and biochemical perspectives. New York: Weinheim, 1989
    [75] 崔福斋,王秀梅,胡堃. 基因材料. 北京:化学工业出版社,2004
    [76] 崔福斋,冯庆玲. 生物材料学(第二版). 北京:清华大学出版社,2004
    [77] He G, Dahl T, Veis A, et al. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat. Mater. 2003, 2: 552-558
    [78] Rower D. Promising strategies to treat OI with somatic gene therapy. Breakthrough 1997, 22
    [79] http://www.grc.uri.edu.
    [80] Cassella J P and Ali S Y. Abormal collagen and mineral formation in osteogenesis imperfecta. Bone and Mineral 1992, 17: 123-128
    [81] Traub W, Arad T, Vetter U, et al. Ultrastructural studies of bones from patients with osteogenesis imperfecta. Matrix Biol. 1994, 14: 337-345
    [82] Rauch F, Travers R, Parfitt A M, et al. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone 2000, 26: 581-589
    [83] Camacho N P, Raggio C L, Doty S B, et al. A controlled study of the effects of alendronate in a growing mouse model of osteogenesis imperfecta. Calcified Tissue Int. 2001, 69: 94-101
    [84] Chevrel G and Meunier P J. Osteogenesis imperfecta: Lifelong management is imperative and feasible. Joint Bone Spine 2001, 68: 125-129
    [85] Haffter P, Odenthal J, Mullins M C, et al. Mutations affecting pigmentation and shape of the adult zebrafish. Dev. Genes Evol. 1996, 206: 260-276
    [86] Jande S S. The life cycle of the osteocyte. Clin. Orthop. 1973, 94: 281-305
    [87] Owen M. Histogenesis of bone cells. Calcif. Tissue Res. 1978, 25: 205-207
    [88] Thomas S, Leeson C, and Leeson R. Histology. Philadelphia: W.B. Saunders, 1981
    [89] Ries W L, Gong J K, and Sholley M M. A comparative study of osteoblasts: In situ versus isolated specimens. Am. J. Anat. 1985, 172: 57-73
    [90] Whitson S W. Bone. Oral histology. R T Cate. St. Louis: Mosby-Year book, Inc, 1998. 104-127
    [91] Hancox N M. biology of bone. New York: Cambridge University Press, 1972
    [92] 马克昌,冯坤,朱太咏,郭建刚. 骨生理学. 河南:河南医科大学出版社,2000 年
    [93] Wang X M, Cui F Z, Ge J, et al. Variation of nanomechanical properties of bone by gene mutation in the zebrafish. Biomaterials 2002, 23: 4557-4563
    [94] Zhang Y, Cui F Z, Wang X M, et al. Mechanical properties of skeletal bone in gene-mutated stopseldtl128d and wild-type zebrafish (danio rerio) measured by atomic force microscopy-based nanoindentation. Bone 2002, 30: 541-546
    [95] Wang X M, Cui F Z, Ge J, et al. Alterations in mineral properties of zebrafish skeletal bone induced by liliputdtc232 gene mutation. J. Cryst. Growth 2003, 258: 394-401
    [96] Wang X M, Cui F Z, Ge J, et al. Hierarchical structural comparisons of bones from wild-type and liliputdtc232 gene-mutated zebrafish. J. Struct. Biol. 2004, 145: 236-245
    [97] 张漾. 野生型与基因突变型斑马鱼骨的生物矿化研究:[博士学位论文]. 北京:清华大学材料系,2001
    [98] 王秀梅. 野生型和基因突变斑马鱼骨分级结构和纳米力学性能研究:[博士学位论文]. 北京:清华大学材料系,2004
    [99] Zhang W, Huang Z L, Liao S S, et al. Nucleation sites of calcium phosphate crystals during collagen mineralization. J. Am. Ceram. Soc. 2003, 86: 1052-1054
    [100] 张伟. 胶原/磷酸钙生物矿化机理研究:[博士学位论文]. 北京:清华大学材料系,2004
    [101] Du C, Cui F Z, Zhu X D, et al. Three-dimensional nano-HAP/collagen matrix loading with osteogenic cells in organ culture. J. Biomed. Mater. Res. 1999, 44: 407-415
    [102] Du C, Cui F Z, Zhang W, et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J. Biomed. Mater. Res. 2000, 50: 518-527
    [103] Liao S S and Cui F Z. In vitro and in vivo degradation of mineralized collagen-based composite scaffold: Nanohydroxyapatite/collagen/poly(L-lactide). Tissue Eng. 2004, 10: 73-80
    [104] Liao S S, Guan K, Cui F Z, et al. Lumbar spinal fusion with a mineralized collagen matrix and rhBMP-2 in a rabbit model. Spine 2003, 28: 1954-1960
    [105] Wang H P, Feng X J, Gou B D, et al. Effects of LDL, cholesterol, and their oxidized forms on the precipitation kinetics of calcium phosphates. Clin. Chem. 2003, 49: 2027-2036
    [106] Zhang J C, Huang J A, Xu S J, et al. Effects of Cu2+ and pH on osteoclastic bone resorption in vitro. Prog. Nat. Sci. 2003, 13: 266
    [107] Zhang J C, Xu S J, Wang K, et al. Effects of the rare earth ions on bone resorbing function of rabbit mature osteoclasts in vitro. Chinese Sci. Bull. 2003, 48: 2170-2175
    [108] Duan L and Ouyang J M. Effect of various kinds of carboxylates on phases compositions of calcium oxalate in aqueous solutions. Acta Phys.-Chim. Sin. 2003, 19: 982-985
    [109] Ouyang J M, Duan L, and He J J. Effects of different kinds of potassium carboxylates on the growth of calcium oxalate crystals in lecithin-water liposomes. Acta. Chim. Sin. 2003, 61: 1597-1602
    [110] Ouyang J M, Duan L, and Tieke B. Effects of carboxylic acids on the crystal growth of calcium oxalate nanoparticles in lecithin-water liposome systems. Langmuir 2003, 19: 8980-8985
    [111] Ouyang J M, Yao X Q, Su Z X, et al. Simulation of calcium oxalate stone in vitro. Sci. China Ser. B 2003, 46: 234-242
    [112] Ouyang J M, Duan L, He J H, et al. Crystallization of calcium oxalate in liposome solutions of different carboxylates. Chem. Lett. 2003, 32: 268-269
    [113] Ouyang J M and Li X P. Comparative investigation of crystallization of calcium oxalate in different gel systems. Acta Phys.-Chim. Sin. 2004, 20: 169-172
    [114] Engel J and Prockop D J. The zipper-like folding of collagen triple helices and the effects of mutations that disrupt the zipper. Annual Review of Biophysics and Biophysical Chemistry 1991, 20: 137-152
    [115] Lakes R. Materials with structural hierarchy. Nature 1993, 361: 511-515
    [116] Weiner S and Wagner H D. The material bone: Structure mechanical function relations. Annu. Rev. Mater. Sci. 1998, 28: 271-298
    [117] Currey J. The mechanical adaptations of bonesed. Princeton: Princeton University Press, 1984
    [118] Piez K A. Molecular and aggregate structures of the collagens. In: Extracellular Matrix Biology. H Reddi. Amsterdam: Elsevier, 1982
    [119] Weiner S, Arad T, and Traub W. Crystal organization in rat bone lamellae. FEBS Lett. 1991, 185: 49-54
    [120] Weiner S, Traub W, and Wagner H D. Lamellar bone: Structure-function relations. J. Struct. Biol. 1999, 126: 241-255
    [121] AscenzI A and Bonucci E. Tensile properties of single osteons. Anatomical Record 1967, 158: 375
    [122] Vincente R and Evans F G. Relations among mechanical properties, collagen fibers, and calcification in adult human cortical bone. J. Biomech. 1971, 4: 193
    [123] Katz J L. Hard tissue as a composite material bounds on elastic behaviors. J. Biomech. 1971, 4: 455
    [124] Lakes R and Saha S. Cement line motion in bone. Science 1979, 204: 501-503
    [125] Piekarsk K. Fracture of bone. J. Appl. Phys. 1970, 41: 215
    [126] Bromage T G and Dean M C. Re-evaluation of the age at death of immature fossil hominids. Nature 1985, 317:525-527
    [127] Beynon A D and Dean M C. Distinct dental development patterns in early fossil hominids. Nature 1988, 335: 509-514
    [128] Boyde A. Microstructure of enamel. In: John W, and Sons L eds. Dental enamel, proceedings of Ciba Foundation symposium 205, 1997: 18-31
    [129] Mann S. The biomimetics of enamel: Paradigm for organized biomaterials synthesis. In: John W, and Sons L eds. Dental enamel, proceedings of Ciba Foundation symposium 205, 1997: 261-274
    [130] Spears I R. A three dimensional finite element model of prismatic enamel: A reappraisal of the data of the young's modulus of enamel. J. Dent. Res. 1997, 76: 1690-1697
    [131] Farina M, Schemmel A, Weissmuller G, et al. Atomic force microscopy study of tooth surfaces. J. Struct. Biol. 1999, 125: 39-49
    [132] Boyde A. Carbonate concentration, crystal centers, core dissolution, caries, cross striations, circadian rhythms, and compositional contrast in the sem. J. Dent. Res. 1979, 58: 981B-983B
    [133] Robinson C, Kirkham J, Brookes S J, et al. The chemistry of enamel development. Int. J. Dev. Biol. 1995, 39: 145-152
    [134] Habelitz S, Marshall S J, Marshall G W, et al. Mechanical properties of human dental enamel on the nanometre scale. Arch. Oral Biol. 2001, 46: 173-183
    [135] Ge J, Cui F Z, Wang X M, et al. Property variations in the prism and the organic sheath within enamel by nanoindentation. Biomaterials 2005, 26: 3333-3339
    [136] Popowics T E, Rensberger J M, and Herring S W. Enamel microstructure and microstrain in the fracture of human and pig molar cusps. Arch. Oral Biol. 2004, 49: 595-605
    [137] Nishikawa S. Correlation of the arrangement pattern of enamel rods and secretory ameloblasts in pig and monkey teeth: a possible role of the terminal webs in ameloblast movement during secretion. Anat. Rec. 1992, 232: 466-478
    [138] Kawaii N. Comparative anatomy of the bands of schreger. Okij. Folia. Anat. Japonica 1955, 27: 115-131
    [139] Boyde. Electron microscopic observations relating to the nature and development of prism decusation in mammalian dental enamel. Bull. Group Int. Rech. Sc. Stomat. 1969, 12: 151-207
    [140] Koenigswald Wv. Evolutionary trends in the differentiation of mammalian enamel ultrastructure. In: Tooth enamel microstructure. Koenigswald Wv, Sander M eds, 1997, Rotterdam: Balkema, 203-235
    [141] Risnes S. Growth tracks in dental enamel. J. Hum. Evol. 1998, 35: 331-350
    [142] Osborn J W. The nature of the hunter-schreger bands in enamel. Arch. Oral Biol. 1965, 10: 929-933
    [143] Osborn J W. Evaluation of previous assessments of prism directions in human enamel. J. Dent. Res. 1968, 47: 217-222
    [144] Osborn J W. Directions and interrelationships of enamel prisms from the sides of human teeth. J. Dent. Res. 1968, 47: 223-232
    [145] Osborn J W. Directions and interrelationship of prisms in cuspal and cervical enamel of human teeth. J. Dent. Res. 1968, 47: 395-402
    [146] Osborn J W. The mechanism of ameloblast movement: A hypothesis. Calcif. Tissue Res. 1970, 5: 344-359
    [147] Osborn J W. Variations in the structure and development of enamel. In Melcher A H, and Zarb G A eds. Dental enamel. Copenhagen: Munksgaard, 1973, 3-83
    [148] Osborn J W. A 3-dimensional model to describe the relation between prism directions, parazones and diazones, and the hunter-schreger bands in human tooth enamel. Arch. Oral Biol. 1990, 35: 869-878
    [149] Pfretzschner H U. Enamel microstructure and hypsodonty in large mammals. In: Smith P, and Tchernov E eds. Structure, function and evolution of teeth. London & Tel Aviv: Freund, 1992, 147-162
    [150] Warshawsky H, Josephsen K, Thylstrup A, et al. The development of enamel structure in rat incisors as compared to the teeth of monkey and man. Anat. Rec. 1981, 200: 371-399
    [151] Jones F H. Teeth and bones: Applications of surface science to dental materials and related biomaterials. Surf. Sci. Rep. 2001, 42: 79-205
    [152] Piez K A. The nature of the protein matrix of human enamel. J. Dent. Res. 1960, 39: 712
    [153] Eastoe J E. The amino acid composition of proteins from the oral tissues. II. The matrix proteins in dentine and enamel from developing deciduous human teeth. Arch. Oral Biol. 1963, 8:633-652
    [154] Eastoe J E. The chemical composition of bone and tooth. Adv. Fluorine Res. Dent. Caries Prevent. 1965, 3: 5-16
    [155] Snead M L, Lau E C, Zeichner-David M, et al. DNA sequence for cloned cDNA for murine amelogenin reveal the amino acid sequence for enamel-specific protein. Biochem. Biophys. Res. Commun 1985, 129: 812-818
    [156] Fukae M, Ijiri H, Tanabe T, et al. Partial amino acid sequences of two proteins in developing porcine enamel. J. Dent. Res. 1979, 58(B): 1000-1001
    [157] Zalut C, Henzel W J, and Harris H W J. Micro quantitative edman manual sequencing. J. Biochem. Biophys. Meth. 1980, 3: 11-30
    [158] Fincham A G, Belcourt A B, Termine J D, et al. Dental enamel matrix: Sequences of two amelogenin polypeptides. Biosci. Rep. 1981, 771-778
    [159] Fincham A G, Belcourt A B, Termine J D, et al. Amelogenins: Sequence homologies in enamel-matrix proteins from three mammalian species. Biochem. J. 1983, 211: 149-154
    [160] Catalano-Sherman J, Palmon A, Burstein Y, et al. Amino acid sequence of a major human amelogenin protein employing edman degradation and cdna sequencing. J. Dent. Res. 1994, 72: 1566-1572
    [161] Toyosawa S, O'hUigin C, Figueroa F, et al. Identification and characterization of amelogenin genes in monotremes, reptiles, and amphibians. Proc. Natl. Acad. Sci. USA 1998, 95: 13056-13061
    [162] Simmer J P and Snead M L. Molecular biology of the amelogenin gene. In: Robinson C, Kirkham J, and Shore R C eds. Dental enamel, formation to destruction. Boca Raton: CRC Press, 1995, 59-84
    [163] Lagerstr?m M, Dahl N, Iselius L, et al. Mapping of the gene for X-linked amelogenesis imperfecta by linkage analysis. Am. J. Hum. Genet. 1990, 46: 120-125
    [164] Aldred M J, Crawford P J, Roberts E, et al. Identification of a nonsense mutation in the amelogenin gene (AMELX) in a family with X-linked amelogenesis imperfecta (AIH1). Hum. Genet. 1992, 90: 413-416
    [165] Lench N J and Winter G B. Characterisation of molecular defects in X-linked amelogenesis imperfecta (AIH1). Hum. Mutat. 1995, 5: 251-259
    [166] Collier P M, Sauk J J, Rosenbloom S J, et al. An amelogenin gene defect associated with human X-linked amelogenesis imperfecta. Arch. Oral Biol. 1997, 42: 235-242
    [167] Lench N J and Brook A H. DNA diagnosis of X-linked amelogenesis imperfecta (AIH1). J. Oral Pathol. Med. 1997, 26: 135-137
    [168] Sasaki S and Shimokawa H. The amelogenin gene. Int. J. Dev. Biol. 1995, 39: 127-133
    [169] Cerny R and Hammarstr?m L. NCBI Protein Database, Accession No. AJ012200, 1999
    [170] Salido E C, Yen P H, Koprivnikar K, et al. The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes. Am. J. Hum. Genet. 1992, 50: 303-316
    [171] Fukae M and Tanabe T. 45Ca-labeled proteins found in porcine developing dental enamel at an early stage of development. Adv. Dent. Res. 1987, 1: 261-266
    [172] Fukae M and Tanabe T. Nonamelogenin components of porcine enamel in the protein fraction free from the enamel crystals. Calcif. Tissue Int. 1987, 40: 286-293
    [173] Krebsbach P H, Lee S K, Matsuki Y, et al. Full-length sequence, localization, and chromosomal mapping of ameloblastin - a novel tooth-specific gene. J. Biol. Chem. 1996, 271: 4431-4435
    [174] MacDougall M, DuPont B R, Simmons D, et al. Ameloblastin gene (AMBN) maps within the critical region for autosomal dominant amelogenesis imperfecta at chromosome 4q21. Genomics 1997, 41: 115-118
    [175] Moradian-Oldak J, Simmer P J, Sarte P E, et al. Specific cleavage of a recombinant murine amelogenin by a protease fraction isolated from bovine tooth enamel. Arch. Oral Biol. 1994, 39: 647-656
    [176] Robinson C and Kirkham K. Enamel matrix components, alterations during development and possible interactions with the mineral phase. In: Fearnhead R W, and Suga S eds. Tooth enamel IV. New York: Acad. Press, 261-265
    [177] Fincham A G and Simmer J P. Amelogenin proteins of developing dental enamel. In: John W, and Sons L eds. Dental enamel, proceedings of Ciba foundation symposium 205: Chichester: John Wiley & Sons Wiley, 1997, 118-130
    [178] Cuy J L, Mann A B, Livi K J, et al. Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral Biol. 2002, 47: 281-291
    [179] Farina M, Schemmel A, Weissmüller G, et al. Atomic force microscopy study of tooth surfaces. J. Struc. Biol. 1999, 125: 39-49
    [180] You H X and Lowe C R. Progress in the application of scanning probe microscopy to biology. Curr. Opin. Biotech. 1996, 7: 78-84
    [181] Jandt K D. Atomic force microscopy of biomaterials surfaces and interfaces. Surf. Sci. 2001, 491: 303-332
    [182] Paine C T, Paine M L, and Snead M L. Identification of tuftelin- and amelogenin-interacting proteins using the yeast two-hybrid system. Connect. Tissue Res. 1998, 38: 257-267
    [183] Paine M L, Krebsbach P H, Chen L S, et al. Protein-to-protein interactions: Criteria defining the assembly of the enamel organic matrix. J. Dent. Res. 1998, 77: 496-502
    [184] Paine M L and Snead M L. Protein interactions during assembly of the enamel organic extracellular matrix. J. Bone Miner. Res. 1997, 12: 221-227
    [185] Wen H B, Moradian-Oldak J, and Fincham A G. Dose-dependent modulation of octacalcium phosphate crystal habit by amelogenins. J. Dent. Res. 2000, 79: 1902-1906
    [186] Wen H B, Moradian-Oldak J, and Fincham A G. Modulation of apatite crystal growth on bioglass by recombinant amelogenin. Biomaterials 1999, 20: 1717-1725
    [187] Kirkham J, Zhang J, Brookes S J, et al. Evidence for charge domains on developing enamel crystal surfaces. J. Dent. Res. 2000, 79: 1943-1947
    [188] Doi Y, Eanes E D, Shimokawa H, et al. Inhibition of seeded growth of enamel apatite crystals by amelogenin and enamelin proteins in vitro. J. Dent. Res. 1984, 63: 98-105
    [189] Ravindranath R M, Moradian-Oldak J, and Fincham A G. Tyrosyl motif in amelogenins binds n-acetyl-d-glucosamine. J. Biol. Chem. 1999, 274: 2464-2471
    [190] Shellis R P. Variations in growth of the enamel crown in human teeth and a possible relationship between growth and enamel structure. Arch. Oral Biol. 1984, 29: 697-705
    [191] Risnes S. Structural characteristics of staircase-type retzius lines in human dental enamel analyzed by scanning electron microscopy. Anat. Rec. 1990, 226: 135-146
    [192] Weiner S and Traub W. Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett. 1986, 206: 262-266
    [193] Weiner S and Traub W. Crystal size and organization in bone. Connect. Tissue Res. 1989, 21: 259-265
    [194] Landis W J, Song M J, Leith A, et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J. Struct. Biol. 1993, 110: 39-54
    [195] Landis W J, Hodgens K J, Arena J, et al. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc. Res. Techniq. 1996, 33: 192-202
    [196] Su X, Sun K, Cui F Z, et al. Organization of apatite crystals in human woven bone. Bone 2003, 32: 150-162
    [197] Wen H B, Fincham A G, and Moradian-Oldak J. Progressive accretion of amelogenin molecules during nanospheres assembly revealed by atomic force microscopy. Matrix Biol. 2001, 20: 387-395
    [198] Du C, Falini G, Fermani S, et al. Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science 2005, 307: 1450-1454
    [199] Remizov S M, Prujansky L Y, and Matveevsky R M. Wear resistance and microhardness of human teeth. Proc. Instr. Mech. Eng. Part H J. Eng. Med. 1991, 205: 201-202
    [200] Willems G, Celis J P, Lambrechts P, et al. Hardness and Young's modulus determined by nanoindentation technique of filler particles of dental restorative materials compared with human enamel. J. Biomed. Mater. Res. 1993, 27: 747-755
    [201] Oliver W C and Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7: 1546-1583
    [202] Pharr G M and Oliver W C. Measurement of thin film mechanical properties using nanoindentation. MRS Bull. 1992, 17: 28-33
    [203] Finke M, Hughes J A, Parker D M, et al. Mechanical properties of in situ demineralised human enamel measured by afm nanoindentation. Surf. Sci. 2001, 491: 456-467
    [204] Doerner M F and Nix W D. A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1986, 1: 601-609
    [205] Turner C H, Rho J, and Takano Y. The elastic properties of trabecular and cortical bone tissues are similar: Results from two microscopic measurement techniques. J. Biomech. 1999, 32: 437-441
    [206] Beegan D, Chowdhury S, and Laugier M T. A nanoindentation study of copper films on oxidised silicon substrates. Surf. Coat. Tech. 2003, 176: 124-130
    [207] 葛俊,崔福斋,吉宁等. 纳米硬度仪测量人类牙釉质的纳米力学性能分布. 牙体牙髓牙周病学杂志. 2005(已接收)
    [208] Landis W J and Silver F H. The structure and function of normally mineralizing avian tendons. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2002, 133: 1135-1157
    [209] Katz E P and Li S T. The intermolecular space of reconstituted collagen fibrils. J. Mol. Biol. 1973, 73: 351-369
    [210] Katz E P and Li S T. Structure and function of bone collagen fibrils. J. Mol. Biol. 1973, 80: 1-15
    [211] Landis W J, Hodgens K J, Song M J, et al. Mineralization of collagen occurs on fibril surfaces: Evidence from conventional and high voltage electron microscopy and three-dimensional imaging. J. Struct. Biol. 1996, 117: 24-35
    [212] Hassenkam T, Fantner G E, Cutroni J A, et al. High-resolution afm imaging of intact and fractured trabecular bone. Bone 2004, 35: 4-10
    [213] Westerfield M. The zebrafish book: A guide for the laboratory use of zebrafished. Oregon: University of Oregon press, 1995
    [214] Rho J Y, Zioupos P, Currey J D, et al. Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 1999, 25: 295-300
    [215] Oxlund H, Barckman M, Ortoft G, et al. Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 1995, 17: 365S-371S
    [216] Burstein A H, Zika J M, Heiple K G, et al. Contribution of collagen and mineral to the elastic-plastic properties of bone. J. Bone Joint Surg. Am. 1975, 57: 956-961
    [217] Knott L and Bailey A J. Collagen cross-links in mineralizing tissues: A review of their chemistry, function, and clinical relevance. Bone 1998, 22: 181-187
    [218] Lees S, Bonar L C, and Mook H A. A study of dense mineralized tissue by neutron diffraction. Int. J. Biol. Macromol. 1984, 22: 181-187
    [219] Lees S. Mineralization of type I collagen. Biophys. J. 2003, 85: 204-207
    [220] Imfeld T. Dental erosion. Definition, classification and links. Eur. J. Oral Sci. 1996, 104: 151-155
    [221] Ten C J M and Imfeld T. Dental erosion, summary. Eur. J. Oral Sci. 1996, 104: 241-244
    [222] Nunn J H. Prevalence of dental erosion and the implications for oral health. Eur. J. Oral Sci. 1996, 104: 156-161
    [223] Pindborg J J. Pathology of the Dental Hard Tissue. 1970, Copenhagen: Munksgaard
    [224] Christoffersen J, Christoffersen M R, and Johansen T. Kinetics of growth and dissolution of fluorapatite. J. Cryst. Growth 1996, 163: 295-303
    [225] Christoffersen J, Christoffersen M R, and Johansen T. Some new aspects of surface nucleation applied to the growth and dissolution of fluorapatite and hydroxyapatite. J. Cryst. Growth 1996, 163: 304-310
    [226] Eisenburger M, Shellis R P, and Addy M. Scanning electron microscopy of softened enamel. Caries Res. 2004, 38: 67-74
    [227] Lippert F, Parker D M, and Jandt K D. Toothbrush abrasion of surface softened enamel studied with tapping mode afm and afm nanoindentation. Caries Res. 2004, 38: 464-472
    [228] Lippert F, Parker D M, and Jandt K D. In situ remineralisation of surface softened human enamel studied with AFM nanoindentation. Surf. Sci. 2004, 553: 105-114
    [229] Lippert F, Parker D M, and Jandt K D. In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation. J. Colloid Interf. Sci. 2004, 280: 442-448
    [230] Meurman J H and Frank R M. Progression and surface ultrastructure of in vitro caused erosive lesions in human and bovine enamel. Caries Res. 1991, 25: 81-87
    [231] Barbour M E, Parker D M, and Jandt K D. Enamel dissolution as a function of solution degree of saturation with respect to hydroxyapatite: A nanoindentation study. J. Colloid Interf. Sci. 2003, 265: 9-14
    [232] Yamagishi K, Onuma K, Suzuki T, et al. A synthetic enamel for rapid tooth repair. Nature 2005, 433: 819

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700