造纸废渣、废地膜再生处理制备聚合物基废弃物复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塑料产业和造纸行业是国民经济的两大支柱,而在塑料和纸业的生产以及消费过程中产生的废地膜、造纸废渣亦是两类重大的污染源。目前,对于这两种污染物的综合利用仍存在能耗过高,二次污染严重等问题。论文针对这些综合利用方式存在的缺陷与不足,研究了适合这两种废弃物的更有效、更环保、产品附加值更高的综合利用新方式,解决了用废弃物制备复合材料的难点,制备了强度产生协同效应的二次纤维和废渣粒子混杂增强废地膜复合材料并探索了更有效的强化复合材料力学性能的新工艺。
     论文以两大废弃物,废地膜和瓦楞纸业的造纸废渣为主要原料,在对二者进行破碎—清洗和杀菌—湿法筛分等有效的前处理后,采用熔融共混法制备了二次纤维/废地膜、废渣粒子/废地膜以及二次纤维和废渣粒子混杂增强废地膜复合材料等一系列聚合物基废弃物复合材料。试验采用傅立叶红外光谱(FTIR)、衰减全反射光谱(ATR)、差示扫描量热法(DSC)和扫描电镜(SEM)等测试手段对复合材料的微观特性进行了分析表征。试验制备的三种聚合物基废弃物复合材料的力学性能均显著优于废地膜基体材料,可广泛用于防火隔音材料、装璜材料、水泥模板、市政设施、缓冲材料等领域。
     论文首次对回收植物纤维在聚合物基废弃物复合材料中的应用进行了研究。在二次纤维/废地膜复合材料和废渣粒子/废地膜复合材料的制备中,论文系统研究了制备工艺、二次纤维含量以及废渣粒子粒径和含量对复合材料各种力学性能的影响。研究发现,在二次纤维增强体系中,当成型温度为160℃、成型压力为15MPa、混炼时间为15min、二次纤维的质量分数为20wt%时,二次纤维/废地膜复合材料的综合力学性能最优。此时,复合材料的抗弯强度和抗拉强度分别比聚乙烯基体提高17.27%和16.22%;在废渣粒子增强体系中,当粒子的质量含量不超过30wt%时,粒径分别为63.21μm、106.75μm和214.94μm的废渣粒子对废地膜复合材料均具有一定的增强作用,且增强作用随着粒子粒径和含量的增大而减弱。
     在研究二次纤维/废地膜复合材料时笔者发现,二次纤维对界面处存在间隙,界面黏结效果较差的复合材料仍具有一定的增强作用。针对这种增强事实,论文对短纤维增强聚合物基复合材料的经典增强机理进行了补充。
     在得出二次纤维/废地膜复合材料和废渣粒子/废地膜复合材料的最优制备工艺参数的基础上,论文将不同粒径的废渣粒子和二次纤维分别进行配合制备了混杂增强废地膜复合材料。研究了组分配比对混杂增强复合材料力学性能的影响,并将混杂增强复合材料的力学强度同等质量含量下单一废渣粒子和单一二次纤维增强废地膜复合材料进行对比,对比发现,二次纤维和废渣粒子的配合使用使混杂增强复合材料在强度方向上产生了协同效应。
     试验选用硅烷偶联剂KH550和KH560分别对二次纤维、废渣粒子以及二次纤维和废渣粒子混杂增强体系进行了改性处理。研究结果表明,KH550和KH560对复合材料的改性效果几乎相当,且均可在一定程度上提高复合材料的力学强度;经过改性处理后,三种复合材料体系的热湿尺寸稳定性均得到改善;粒径为106.75μm的混杂增强体系经过KH550改性处理后,所得复合材料的抗弯强度提高约4.05%~10.62%、抗拉强度提高约5.30%~16.69%、抗冲击强度提高约10.41%~21.45%。
     论文针对硅烷偶联剂改性工艺较为繁琐、改性效果不显著等缺陷,探索了更为简便、有效地强化聚合物基废弃物复合材料力学性能的新工艺。试验在马来酸酐接枝聚乙烯增容的条件下,利用微波辐照技术对二次纤维和废渣粒子混杂增强废地膜复合材料进行了强化处理。研究发现,该强化处理工艺不但更加简捷,而且对复合材料力学强度的强化效果是KH550改性效果的1.58~4.04倍。
     论文较系统地研究了复合材料制备方法、微波功率和时间以及不同微波辐照方式对复合材料力学性能的影响,并采用ATR、DSC、SEM等微观测试手段分析了微波辐照的强化机理。研究表明,一步法试样的综合力学性能优于两步法;在200w、400w、600w和850w四种微波功率下,当辐照时间不超过240s时,微波辐照强化处理可以显著提高混杂增强复合材料的抗冲击韧性;研究同时发现,微波间断辐照对复合材料的强化效果优于微波连续辐照。笔者认为,微波间断辐照和连续辐照在复合材料内部引起的不同热效应以及复合材料结构的不同变化是导致该结果的主要原因。
Plastics and papermaking industry is the two major mainstay of national economy, while waste plastics and papermaking residue formed in process of manufacture and consumption are also two magnitude contamination spots. Overtop energy consumption and serious secondary pollution is the distinct defects existing in the current comprehensive utilization methods of the two wastes. Aiming at those defects, new utilization way is researched in the paper, which solves the bottleneck of the new method and prepare hybrid composite possessing Synergistic effect. New reinforcement way is also explored in the essay.
     A series of waste composites were produced through melt blending using waste plastics and papermaking residue, which were pretreated by crashing-cleaning and sterilization-wet screening process, individual. Microscope test means such as FTIR, ATR, DSC and SEM are applied in the essay. Further, mechanical performance of the waste composite is generally higher than those of matrix materials, and the former can be used in material field of decoration, cement template and public utilities, etc.
     The applied research of reclaim plant fiber in polymer matrix waste composite is carried out in the essay firstly. Effect of preparation craftwork, properties of secondary-fiber and waste particle on mechanical performance of the waste composite are investigated. Results indicate that in secondary-fiber reinforced system, the optimal blend temperature, molding pressure, blend time and secondary-fiber mass content are 160°C, 15MPa, 15min and 20wt%, where the flexural and tensile strength of secondary-fiber/waste membrane increase by 17.27% and 16.22% compared to those of waste membrane material; In the particle reinforced composite system, waste particle make well reinforcement role when particle size is 63.21μm、106.75μm and 214.94μm, respectively, and reinforment role will behave more prominent with decreasing of particle size and content when the particle mass content is less than 30%.
     Author discovers that secondary-fiber has well reinforcement in waste composite, which possesses poor adhesion and gap at the interface. Aiming at the fact, typical strengthening mechanism of polymer matrix composite is complemented.
     The hybrid composite containing waste particles and secondary-fiber are prepared based on the optimal process parameter of secondary-fiber/waste membrane and waste particle/waste membrane composite. Effect of component match on mechanical strength is studied in the paper. Results show that mechanical properties of hybrid composite are enhanced comparing to the corresponding mechanical strength of secondary-fiber/waste membrane and waste particle/waste membrane composite under the same mass content. And the results show that positive Synergistic effect appears in hybrid composite.
     In the work, silane coupler KH550 and KH560 chemical surface modification have been performed on the secondary-fiber, waste particle and hybrid reinforced system. Results show that the two silane couplers have the similar modification effect, which can enhance mechanical performance of the three kinds waste composites in certain extend. The dimensional stability of composite in moist heat condition is improved after retreating. Results for mechanical performance indicate that flexural strength, tensile strength and impact strength of hybrid composite are increased by from 4.05% to 10.62%, 5.30% to 16.69%, and 10.41% to 21.45%, respectively after being modificated, when particle size is 106.75um.
     Because of the poor reinforcement and complex process of silane coupler, new mofication method to improve mechanical properties is quested in the essay. Mechanical performance of hybrid composite is intensified by microwave irradiation with MAPE existing. Research indicates that microwave irradiation technic has more potential comparing to silane coupler pretreatment increasing by 1.58 times to 4.04 times.
     Effect of different composite preparation method, microwave power, irradiation time and different irradiation way on mechanical performance of hybrid composite is researched in this paper. The intensified mechanism has been analyzed by means of FTIR, ATR, DSC and SEM. Results indicate that the general mechanical properties of composite prepared by one step process is higher than those of composite by two step process; impact strength are enhanced after irradiated by microwave under 200w、400w、600w and 850w microwave power when irradiation time is not exceeding 240 seconds; The general mechanical properties of composite intensified by microwave discontinue irradiation is higher than those intensified by continues irradiation. Author proposes that the different thermal effect and structural variation in inner composite resulted by the two irradiation ways is the root cause for explaining the different intensified effect.
引文
[1]Sehnable W. Polymer Degration Principles and Prachcal Application [M], New York. Macmillan PublishingCo. Inc. 1981, 13-61
    [2]Bockhorn H. Kinetic study of thermal degradation of polypropylene and polyethylene [J]. Journal of analytical and applied pyrolysis, 1999, (48): 93-109
    [3]Levent Ballice. A kinetic approach to the temperature-programmed pyrolysis of low and high density polyethylene in a fixed bed reactor: determination of kinetic parameters for the evolution of n-paraffins and 1-olefins[J]. Fuel, 2001, (80): 1923-1935
    [4]黄发荣,陈涛,沈学宁,高分子材料的循环利用.北京:化学工业出版社,2000
    [5]梁立丹.造纸工业两剩余物的理化特性及资源化利用研究[硕士学位论文].广州,华南理工大学,2003
    [6]陈秀玉编译.用低质量的浆料生产高质量的箱纸板.国际造纸,2004,23(3):17-21
    [7]邵素英,胡开堂.二次纤维的回用对纤维和成纸性能的影响.西南造纸,2001,(4) :16-17
    [8]Jackson M, Croon I L, Nardi F. Bleached fiber from OCC. Tappi J., 1994, 77 (9): 153-159
    [9]Chand N, Tiwary R K, Rohatgi P K. Bibliography resource structure properties of natural cellulosic fibers-an annotated bibliography[J]. Journal of Material science, 1988, 23 (2): 381-387
    [10]Murherjee P S, Satyanarayana K G. Structure and properties of some vegetable fibers-Part Ⅰ: Sisal fibers [J]. Journal of Materials Science, 1984, 19 (9): 3925-3934
    [11]杨之礼,高光,刘海敏.剑麻纤维形态结构的特征[J].纤维素科学与技术,1993,1(1):38-43
    [12]Bledzki A K, Gassan J. Composites reinforced with cellulose based fiber[J]. Progress in Polymer Science, 1999, 24 (2): 221-274
    [13]沃丁柱,复合材料大全.北京:化学工业出版社,2001,P128
    [14]卢珣,章明秋,容敏智,等.剑麻纤维增强聚合物基复合材料.复合材料学 报,2002,19(5):1-6
    [15]Gordon J E, Jeronimidis. Philosophical Transactions[J]. Royal Society of London. Series A: Mathematical and Physical Sciences, 1980, 294 (3): 545-550
    [16]Nabi D, Jog J P. National fiber polymer composites: A review [J]. Advances in polymer technology, 1999, 18 (40): 351-363
    [17]周媛,谢雁,潘炯玺,等.植物纤维增强热塑性复合材料的研究进展.化工文摘,2005,(4):51-54
    [18]郭斌.天然植物纤维增强水泥复合材料综述.江苏建材,2005,3(100):49-52
    [19]Robert S P. A review of Australian research into natural fiber cement composites. Cement and Concrete Composites, 2005, (27): 518-526
    [20]Agopyan V, Savastan H, John V M, et al. Developments on vegetable fiber-cement based materials in Sao Paulo, Brazil: an overview. Cement and Concrete Composites, 2005, (27): 527-536
    [21]John V M, Cincotto M A, Sjostrom C, et al. Durability of slag mortar reinforced with coconut fiber. Cement and Concrete Composites, 2005, 27:565-574
    [22]高洁,汤烈贵,纤维素科学.北京:科学出版社,1996
    [23]Kennedy J F, "Wood and cellulosics: Introduction Utilization, Biotechnology, Structure and Properties", New York, John Wiley and Sons, 1987
    [24]朱勇强.纸页增强的机理与增强剂.上海造纸,2004,35(4):40-45
    [25]Ulrich Weise. Horniflcation mechanisms and terminology. Paper Ⅰ Ja PUU, 1998, 80 (2): 110-115
    [26]Carlsson G, Lindstom T. Horniflcation of cellulosic fibers during wet pressing, Svensk Papperstidning, 1984, (15): R119
    [27]Lindstom Tom, Carlsson Gustav. The effect of carboxyl groups and their ionic form drying on the Horniflcation of cellulose fibers. Svensk Papperstidning, 1982, R146
    [28]Richard L Ellis, Kelly Sedladachek. Recycled vs. fiber characteristics: a comparison. Tappi Journal, 1993, 76 (2): 143-147
    [29]Kwej N. Law. Jacques L. Valade, Jinying Quan. Effects of recycling on papermaking properties of mechanical and high yicld pulps. Tappi Journal, 1996, 79 (3): 167-173
    [30]Bandi Cao, Urike Tsehimer. ShriRamaswamy. A study of changes in wet-fiber flexibility and surface condition of recycled fibers. Paper Japan—Paper And Timber, 1999, 81 (2): 117-122
    [31]Mousa M, Nazhad, Laszlo Paszner. Fundamentals of strength loss in recycled paper. TappiJournal, 1994, 77 (9): 171-178
    [32]H.S.卡茨,J.V.米路西凯.塑料用填料和增强体及增强剂手册.北京:化学工业出版社,1985
    [33]田中建,邱化玉.二次纤维的造纸特性.黑龙江造纸,2004,(3):14—15
    [34]Mc Keer. Fiber-water interactions in papermaking. Pap Trade J, 1971, 155 (21): 34-39
    [35]Horn R A. The Basic Effects of Recycling on Pulp properties. Pap Trade J, 1975, 159 (7/8): 78-81
    [36]Chatter E A, Kortscho T M, Roy D N, et al. Tear and fracture behavior of recycled paper. Tappi J, 1993, 76 (7): 109-115
    [37]王海毅,郝妮(译).直接加填与纤维加填对碳酸钙在循环中留着的影响.国际造纸,2005,24(2):37-40
    [38]刘兵.废塑料的回收与再生.上海氯碱化工,2005,(2):33-36
    [39]Carroll W F, Goodman D. Plastics Recycling: Products and Processes[M], Munich: Hanser Publisher, 1992. 136
    [40]Yoshio Uemichi. Conversion of polyethylene into gasoline-range fuels by two stage catalytic degradation using silica-alμmina and H-ZSM-5 zeolite [J]. Ind Eng Chem Rec, 1999, (38): 385-390
    [41]Bitlgosz Z. Recycling of domestic plastic and rubber in Poland[J]. International Polymer Science and Technology, 1998, 25 (6): 93-96
    [42]魏京华.聚烯烃塑料废弃物的回收再生利用.塑料工业,2005,(33):40-45
    [43]Yang-shi cho. Thermal degradation kinetics of PE by Kinssinger equation[J]. Material chemistry and physics, 1998, (52): 94-97
    [44]Sung-dong Gu. A kinetic analysis of thermal degradation of polymers using a dynamic method[J]. Polymer degradation and stability, 2000, (6): 535-540
    [45]Gugμmus F. Thermolysis of polyethylene by droperoxides in the melt Ⅰ experimental kinetics of hydropcroxides decomposition[J]. Polymer degradation and stability, 2000, (69): 23-34
    [46]Araujo AS. Thermogravirneric kinetics of polyethylene degradation over silico alμm ino phosphate[J]. Thermochimica Acta, 2002, (392-393): 55-61
    [47]王宁,吴铁山.造纸废渣和污泥的综合利用生产新型墙体材料.污染防治技术,2005,18(1):42-43
    [48]赵长遂,孙昕,陈晓平等.造纸废弃物与煤循环流化床混烧特性研究.东南大学学报(自然科学版),2005,35(1):95—99
    [49]Estelle Desroches-Ducame, Marry Eric. Co-combustion of coal and municipal solid waste in a circulating fluidized bed[J]. Fuel, 1998, 77 (12): 1311-1315
    [50]Werther J, Ogada T. Sewage sludge combustion[J]. Progress in Energy and Combustion Science, 1999, 25 (1): 55-61
    [51]Mininni G, Zuccarello R, Di Bartolo, et al. A design model of sewage sludge incineration plan ts with energy recovery[J]. Wat Sic Tech, 1997, 36(11): 211-218
    [52]Hein K R G, Bemtgen J M. EU clean coal technology combustion of coal and biomass[J]. Fuel Processing Technology, 1998, 54 (3): 159-169
    [53]造纸废渣制造造纸填料.轻工机械,2004,(2):125
    [54]造纸化学品,2002,(4):51
    [55]利用造纸废浆污泥制备复合填充剂以及应用.中国环境保护,2005,(7):47
    [56]李友明,陈中豪.有关制浆造纸工业污泥利用的研究.广东造纸,1999,(3):22-25
    [57]R.W.卡恩,P.哈森,复合材料的结构与性能.北京:科学出版社,1999
    [58]沃丁柱,复合材料大全.北京:化学工业出版社,2000
    [59]孙可伟,李如艳,废弃物复合成材技术.北京:化学工业出版社,2006
    [60]Joshi S V, Drzal L T, Mohanty A K, et al. Are natural fiber composites environmentally superior to glass fiber reinforced composites. Composites: Part A, 2004, (35): 371
    [61]Coutts R S P. Eucalyptus wood fibre reinforced cement, J. Mater. Sci. Lett., 1987, (6): 955-957
    [62]杨桂成,曾汉民,李家驹.剑麻纤维增强酚醛树脂复合材料的研究[J].玻璃钢/复合材料,1997,(3):12-14
    [63]李家驹,张茂安,杨桂成,等.剑麻纤维增强玻璃钢靠背椅性能研究.玻璃钢/复合材料,1999,(4):29—32
    [64]Hepworth D G, Hobson R N, Bruce D M, et al. The use of unretted hemp fibre in composite manufacture. Composites: Part A, 2000 (31): 1279-1283
    [65]郑融,冼杏娟.黄麻纤维/环氧复合材料及其性能分析.复合材料学报,1995,12(1):18-25
    [66]Hepworth D, Bruce D. The manufacture and mechanical testing of thermosetting natural fibre composites. J Mater Sci, 2000, 35 (2): 293-298
    [67]Hornsby P, Hinrichsen E. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibers. J Mater Sci, 1997,32(4): 1009-1015
    [68]Sanadi A R, Prasad S V, Rohatgi P K. Sun hemp fibre-reinforced polyester-Part Ⅰ: Analysis of tensile and impact properties. Journal of Materials Science, 1986, 21 (19): 4299-4304
    [69]Singh B, Gupta M, Verma A. Influence of fibre surface treatment on the properties of sisal-polyester composites. Polymer Composites, 1996, 17 (10): 910-918
    [70]Bisanda E T N, Ansell M P. The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites. Composites Science and Technology, 1991, 41 (1): 165-178
    [71]Prasad S V, Parithran C. Alkali treatment of coir fibers for coir-polyester composites. J Mater Sci, 1983, (18): 1443-1454
    [72]Susan E. Selkea, Indrek Wichma. Wood fiber/polyolefin composites. Composites: Part A, 2004 (35): 321-326
    [73]Georgopoulos S Th, Tarantili P A, Avgerinos E, et al. Thermoplastic polymers reinforced with fibrous agricultural residues. Polymer Degradation and Stability, 2005, (90): 303-312
    [74]El-Sayed Abdoa A, Ali M A M, Ismail M R. Natural fibre high-density polyethylene and lead oxide composites for radiation shielding. Radiation Physics and Chemistry, 2003, (66): 185-195
    [75]张安定,马胜,丁辛,等.黄麻纤维增强聚丙烯的力学性能.玻璃钢/复合材料,2004,(2):3-5
    [76]Karmaker A C, Schneider J P. Mechanical performance of short jute fiber reinforced polypropylene. Journal of Materials Science Letters, 1996, 1(2): 201-202
    [77]Rana A K, Mandal A, Mitra B C, et al. Short jute fiber reinforced polypropylene composites: effect of compatibiliar. Journal of Applied Polymer Science, 1998, 69 (3): 329-338
    [78]Rana A K, Mitra B C, Banerjee A N. Short jute fiber reinforced polypropylene composites: dynamic mechanical study. Journal of Applied Polymer Science, 1999, 71 (4): 531-539
    [79]肖加余,曾竞成,王春奇,等.高性能天然纤维复合材料及其制品研究与开发现状[J].玻璃钢/复合材料,2000,(2):38-43
    [80]肖加余,曾竞成,张长安,等.苎麻落麻纤维增强聚合物复合材料研究[J].工程塑料应用,2001,29(2):12-15
    [81]冼杏娟,冼定国,郑维平,等.竹纤维增强复合材料力学性能及微观结构分析[J].复合材料学报,1988,5(3):7-16
    [82]张卫勤,马利锋,林克发.竹/塑复合材料的开发研究[J].塑料加工,2001,37(6):23-26
    [83]李欣欣,普萨那,张伟,等.天然椰壳纤维及其增强复合材料[J].上海化工,1999,24(14):28-30
    [84]邱冠雄,冯秀文,李嘉禄,等.废纺聚酯纤维、棉纤维/聚丙烯纤维复合材料的开发研究[J].产业用纺织品.2002,(2):19-23
    [85]李忠明,杨鸣波,冯建明,等.秸秆/聚丙烯复合材料[J].塑料工业,2000,28(4) :9-11
    [86]李家驹,张茂安,杨桂成.混杂纤维浆状模塑(JMC)复合材料及其成型工艺[J].玻璃钢/复合材料,2001,(3):24-26
    [87]Van de Weyenberg I, Chi Truong T, Vangrimde I B, et al. Improving the properties of UD flax fiber reinforced composites by applying an alkaline fiber treatment. Composites: Part:A, 2005, (xx): 1-9
    [88]Xun Lu, Ming Qiu Zhang, Min Zhi Rong, et al. Environmental degradability of self-reinforced composites made from sisal. Composites Science and Technology, 2004, (64): 1301-1310
    [89]Martina Wollerdorfer, Herbert Bader. Influence of natural fibres on the mechanical properties of biodegradable polymers. Industrial Crops and Products, 1998, (8): 105-112
    [90]Karmaker A C, Youngquist J A. Injection molding polypropylene reinforced with short jute fibers. Journal of Applied Polymer Science, 1996, 62(8): 1142-1151
    [91]Andrzej J G, Bledzki K. Influence of fiber surface treatment on the crop behavior of jute fiber reinforced polypropylene. Journal of Thermoplastic Composite Materials, 1999, 12(8): 388-398
    [92]Molder T, Trass O. Grinding of waste paper and rice hulls with the Szego Mill for use as plastics fillers. Int.J.Miner.Process. 1996, (44-45): 583-595
    [93]Molder T, Trass O. Grinding of waste paper and rice hulls with the Szego Mill for use as plastics fillers. Int.J.Miner.Process. 1996, (44-45): 583-595
    [94]Richard J. High density polyethylene/paper fiber composites: measuring the impact of additives on their physical and mechanical properties. [MS Thesis]: Michigan State University, 1999
    [95]钟明强,孙莉,郭绍义.无机颗粒填充复合材料摩擦磨损性能研究进展.工程塑料应用,2003,31(8):69-71
    [96]季根忠,刘维民,齐陈泽,等.刚性粒子增韧聚合物机理研究.高分子通报,50-54
    [97]陈建康,黄筑平,刘熠.刚性微粒填充高聚物的宏观本构方程.高分子学报,1998,(6):714-719
    [98]Kurauchi T, Ohta T. Energy absorption in blends of polyearbonate with ABS and SAN. J Mat Sci, 1984, (19): 1699-1709
    [99]Angola J C, Fujita Y, Sakai T, et al.Compatibilizer-aided toughening in polymer blends ennsisting of brittle polymer particles dispersed in a ductile polymer matrix.J Polym Sci, Polym Phys Ed, 1988, (26):807-810
    [100]Koo K K, Inoue T, Miyaaka K. Polym Eng Sei, 1985, 25:741-746
    [101]Sue H J, Huang J, Yee A F. Interfacial adhesion and toughening mechanisms in an alloy of polycarbonate/polyethylene. Polymer 1992, 33 (22): 4868-4871
    [102]Zhu X G, Wu X Z, Qu Y C, et al. PPS-Regional Meeting of Asia/Australia Abtracts(Shanghai), 1991, 101-105
    [103]张云灿,陈瑞珠,郑海宁,等.PP/EPDM/CaCO3三元共混体系的脆韧转变研究.高分子材料学与工程,1998,14(5):128-131
    [104]乔放,朱晓光,关淑敏,等.硅灰石增韧聚合物的界面粘接判据.高分子材料科学与工程,1996,12(6):62—67
    [105]Bartcrat Z, Argon A S, Cohen R E. Macromolecules, 1992, (25): 5036-5053
    [106]Lee J, Yee A F. Inorganic particle toughening Ⅱ: toughening mechanisms of glass bead filled epoxies. Polymer, 2001, 42 (2): 589-597
    [107]Thio Y S, Argon A S, Cohen R E, et al. Toughening of isotactic polypropylene with CaCO3 particles [J].Polymer, 2002, 26 (43): 3661-3674
    [108]欧玉春.刚性粒子填充聚合物的增强增韧与界面相结构[J].高分子材料科学与工程,1998,10(2):12-15,19
    [109]Fu Q, Wang G H. Polyethylene toughed by rigid inorganic particles. Polym. Eng. Sci., 1992, 32 (2): 94-97
    [110]傅强,沈九四,王贵恒.碳酸钙刚性粒子增韧HDPE的影响因素.高分子材料科学与工程,1992,8(1):107-112
    [111]李东明,漆宗能.碳酸钙增强聚丙烯复合材料的断裂韧性[J].高分子材料科学与工程,1991,7(2):18—25
    [112]欧玉春.尼龙基复合材料_的增韧与增强.工程塑料应用,1993,(2):16-19
    [113]黄锐,徐伟平,郑学晶,等.纳米级废渣粒子对聚乙烯的增强与增韧.塑料工业,1997,(3):106-107
    [114]Fu Q, Wang G H. Polyethylene toughed by CaCO_3 particles: Brittle-ductile transition of CaCO_3-toughened HDPE [J]. Appl. Polym. Sci., 1993, (49): 673-676
    [115]Shang S W, et al, J. Mater Sci., 1992, (27): 4949
    [116]Rong M Z, et al. J. Mater Sci. Lett, 2000, (19): 115
    [117]方海林,袁淑君.玻璃微珠改性尼龙-6的研究.现代塑料加工应用,1997,9(4):19-20
    [118]沈志刚,王明珠,等.空心微珠填充聚丙烯复合材料的研究.中国塑料,2001,15(8):32-35
    [119]郑玉婴.粉煤灰玻璃微珠在聚丙烯塑料中的应用.福州大学学报(自科版),1998,26(2):87-90
    [120]梁基照.PP/EPDM/玻璃微珠三元复合材料的仪表冲击分析.橡胶工业,1999,46(12):712-716
    [121]梁基照.玻璃微珠含量及粒径对填充聚丙烯复合材料动态力学性能的影响.材料工程,1999,(4):39-42
    [122]Zahran R R. Effect of sand addition on the tensile properties of compression moulded sand、polyethylene composite system. Materials Letters, 1998, (34): 161-167
    [123]余顺海,唐羽章.混杂复合材料.长沙:国防科技大学出版社,1987
    [124]Gruber M B, Chou T. Elastic properties of intermingled hybrid composites. Polm Compos, 1983, (4): 265-269
    [125]Xing J, Hsiao G, Chou T W. A dynamic explanation of the hybrid effects. Compos Mater, 1981, (15): 443-461
    [126]Schmitt-Thomas Kh G, Malke R. Failure behavior and performance analysis of hybrid-fiber reinforced PAEK composites at high temperature. Composites Science and Technology, 1998, (58): 1509-1518
    [127]Malcolm Fenton, Fillers Mica. In: Handbook of plastic materials and technology, Ed. Irvin I Rubin, John Wiley and Sons, Inc., New York, 1990
    [128]Yu A, Ait-Kadi A, Brisson J. Nylon/Kevlar Composites. Ⅰ:Mechanical properties. Polym Eng Sci, 1991, 31 (16): 1222-1227
    [129]Bigg D M. Mechanical properties of particulate filled polymers. Polymer Composite, 1987, (8): 112-122
    [130]Pande S J, Sharma D K. Strength and stiffness of short glass fiber/glass particulate hybrid composites. Fiber Sci Technol, 198.4, (20): 235-243
    [131]Yilmazer U. Tensile, flexural and impact properties of a thermoplastic matrix reinforced by glass fiber and glass bead hybrids. Compos Sci Technol, 1992, (44): 119-125
    [132]Hargarter N, Friedrich K and Catsman P. Mechanical properties of glass fiber/talc/polybutylene-terphthalate composites as processed by the radlite technique. Compos Sci Technol, 1993, (46): 229-224
    [133]Fu S Y, Lauke B. Characterization of tensile behavior of hybrid short glass fiber/calcite particle/ABS composites. Composites, Part A, 1998, (29A): 575-583
    [134]林大杰,付绍云,李艳.短玻纤和SiO_2颗粒增强PA66/UHMWPE复合材料的力学性能.复合材料学报,2005,22(2):57-62
    [135]赵斌,杨振国,王建华等.纤维与颗粒混杂增强聚氨酯硬泡塑料的制备及显微形貌.高分子材料科学与工程,2005,21(1):188-194
    [136]曹小明,田冲.陶瓷/树脂/纤维超混杂复合材料的界面控制术.材料研究学报,2004,18(4):392-398
    [137]王军祥,顾明元.氟化钙和炭纤维混杂增强尼龙复合材料的摩擦学性能和磨损机理.第21卷第3期高分子材料科学与工程,2005,21(3):184-191
    [138]徐僖院士文集.北京:化学工业出版社,2001
    [139]Allen S G, et al. Comprehensive Polymer Science, Second Supplement Belfast. UK: the University Press (Belfast) Ltd, 1996
    [140]周其凤,胡汉杰,高分子化学.北京:化学工业出版社,2001
    [141]金钦汉,戴树珊,黄卡玛,微波化学.北京:科学出版社,1999
    [142]张兆镗,钟若青编译,微波加热技术基础.北京:电子工业出版社,1988
    [143]Mijovic J, Wijaya J. Review of Cure of Polymers and Composites by Microwave Energy. Polym. Composites, 1990, 11 (3): 184-191
    [144]N S Strand. Fast Microwave Curing of Thermoset Parts. Modern Plastics, 1980, 57 (10): 64-67
    [145]Bur A J. Dielectric properties of polymers at microwave frequencies: a review. Polymer, 1985, 26 (7): 963-977
    [146]Chen M, Siochi E J, Ward T C, et al. The dielectric behavior of glassy amorphous polymers at 2.45 GHz, Polym Eng Sci, 1993, (33): 1110-1121
    [147]Henri Jullien, Henri Valot. Behaviour of film-forming polymers in a microwave electric field. Polymer, 1983, 24 (7): 810-814
    [148]Dabek R. Polymer Engineering and Science. 1996, 36 (8): 1065
    [149]Hanna F F, Abd-El-Nour K N, Abd-El-Messieh S L. Dielectric properties of some synthetic rubber mixture Part Ⅰ: Neoprene-carbon black mixtures. Polym Deg Stab, 1992, (35): 49-52, 22
    [150]Shuang jie Zhou, Martin C. Hawley. A study of microwave reaction rate enhancement effect in adhesive bonding of polymers and composites. Composite Structures, 2003, (61): 303-309
    [151]Ku H S, Siu F, Siores E, et al. Application of fixed and variable frequency microwave (VFM) facilities in polymeric materials processing and joining. Journal of Materials Processing Technoloty, 2001, (113): 184-188
    [152]Mohammed Abu-Khousa, Wael Saleh, Nasser Qaddoμmi. Defect imaging and characterization in composite structures using near-field microwave nondestructive testing techniques. Composite Structures, 2003, (62): 255-259
    [153]Yih-Fang Chen. Effective heating zones in a material-loaded cylindrical microwave resonator. Composites Manufacturing, 1995, (6): 3-13
    [154]Nightingale C, Day R J. Flexural and interlaminar shear strength properties of carbon fiber/epoxy composites cured thermally and with microwave radiation. Composites: Part A, 2002, (33): 1021-1030
    [155]Aravindan S, Krishnamurthy R. Joining of ceramic composites by microwave heating. Materials Letters, 1999, (38): 245-249
    [156]Praveen Singh, Babbar V K, Archana Razdan, et al. Microwave absorption studies of Ca-NiTi hexaferrite composites in X-band. Materials Science and Engineering B, 2000, (78): 70-74
    [157]Edward Lester, Sam Kingman, Kok Hoong Wong, et al. Microwave heating as a means for carbon fibre recovery from polymer composites: a technical feasibility study. Materials Research Bulletin, 2004, (39): 1549-1556
    [158]Thostenson E T, Chou T W. Microwave processing: fundamentals and applications. Composites: Part A, 1999, (30): 1055-1071
    [159]Panneerselvam M, Ankur Agrawal, Rao K J. Microwave sintering of MoSi_2/SiC composites. Materials Science and Engineering, A356, 2003:267-273
    [160]Appleton T J, Colder R I, Kingman S W. Microwave technology for energy-efficient processing of waste. Applied Energy, 2005, (81): 85-113
    [161]Walker Camacho, Sigbritt Karlsson. Quality-determination of recycled plastic packaging waste by identification of contaminants by GC-MS after microwave assisted extraction (MAE) Polymer Degradation and Stability, 2001, (71): 123-134
    [162]Ku H S, Siu F, Siores E. Variable frequency microwave (VFM) processing facilities and application in processing thermoplastic matrix composites. Journal of Materials Processing Technology, 2003, (139): 291-295
    [163]Xu Xi, Zhang Aimin. 37th IUPAC International Symposiμm on Macromolecules. Australia, 1998, July, 12
    [164]Zhang A M. The 36th IUPAC International Symposiμm on Macromolecules. Korea, 1996, August 4
    [165]Xu Xi, Zhang A M. The 14th Annual Meeting of Polymer Processing Society (PPS-14). Yokohama, Japan. 1998, June 8
    [166]张爱民,李惠林,何其佳,等.微波辐照增韧高密度聚乙烯共混材料的研究.高分子材料科学与工程,2002,18(3):98—101
    [167]白树林.复合材料的微波处理.材料研究学报,1996,10(1);109—112
    [168]林云,朱世富,林展如.辐照丙烯酸接枝HDPE/TiO_2复合物的微波介电能研究.功能材料,2004,35(2):214—217
    [169]张兴华,何显运,梁健军,等.碳黑/无机材料填充聚合物复合材料的微波吸收特性.材料导报,2002,16(7):76-77
    [170]邱关明,张明,周兰香.稀土掺杂PVC的紫外及微波交联研究[J].中国稀土学报,2001,19(5):463-464
    [171]古忠云,马玉珍,李茂果.粘接,1996,20(6):25-28
    [172]苏杰.塑料科技.1998,(4):5-7
    [173]Poopathy Kathirgamanathan. Microwave welding of thermoplastics using inherently conducting polymers. Polymer. 1993, 34 (14): 3105-3106
    [174]Kamiyoshi K, Hotta M, Shiobara T. Jpn Pat. 79161645
    [175]Han H R. Christensen L, Lepere P H. Eur. Pat. Appl. 461868
    [176]Nakagawa K, Konaka T, Ymakawa S. Production of ultrahigh modulus polyoxymethylene by drawing under dielectric heating. Polymer, 1985, 26 (1): 84-88
    [177]Nakagawa K, Konaka T. Microwave heat-drawing of polyoxymethylene: influence of tensile load and precursor size. Polymer, 1986, 27(10): 1553-1558
    [178]Nakagawa K. Microwave heat-drawing of poly (oxymethylene): effect of molecular weight on drawing behaviour and mechanical properties Polymer. 1986, 27 (7): 1037-1043
    [179]薛娜,甘蔗渣/废旧塑料袋复合材料的开发研究.[硕士学位论文]:昆明,昆明理工大学,2006
    [180]覃勇.无机刚性颗粒填充聚合物研究进展及化纤工业应用.广西化纤通讯,2000,(1):31-35
    [181]董炎明,高分子材料实用剖析技术.北京:中国石化出版社,1997:158
    [182]张克惠,塑料材料学.西北工业大学出版社,2000
    [183]刘钦甫,糜家铃,付正.聚乙烯/蒙脱土纳米复合材料的制备及性能研究.硅酸盐学报,2004,32(11):1394-1398
    [184]许瑞,麻纤维复合材料高性能化的研究:[博士学位论文].成都:四川大学,2002
    [185]李本贵.植物纤维与热塑性塑料复合界面相容性研究.企业技术开发,2006,25 (1):24—26
    [186]Robin J J, Breton Y. Reinforcement of recycled polyethylene with wood fibers heat treated [J]. Journal of reinforced plastics and composites, 2001, 20(14): 1253-1262
    [187]谭天恩,麦车熙,丁息华.化工原理,北京:化学工业出版社,1990,第二版
    [188]Terence Allen. Particle Size Measurement. Third Edition. Chapman and Hall Ltd. London. 1981
    [189]石璞,吴宏武,瞿金平等.聚丙烯/纳米SiO_2复合材料凝聚态结构的研究.中国塑科,2002,16(1):3-7
    [190]Münker M, Holtmann R. The recycling of polypropylene reinforced with natural fibers [J].Kunststoffe, 1999, 89 (2): 80-84
    [191]揣成智,李树,崔永岩,等.软木纤维增强PP复合:材料的研究[J].塑料科技,2001,(1):11-15
    [192]Rana A K, Mandal A, Mitra B C, et al. Polypropylene(PP)composites reinforced with Jute Fibers[J]. Appl Polym Sci, 1998, (69): 329-334
    [193]Maurizio Avella, Luca Casale, Ramiro Dellerba, et al. Polypropylene composites reinforced with gorse fibers[J]. J Appl Polym Sci, 1998, (68): 1077-1082
    [194]杨博,薛忠民,阿茹娜等.聚合物基复合材料残余应力的研究进展.玻璃钢/复合材料,2004,(2):49-52
    [195]赵若飞,周晓东,戴干策.纤维增强聚合物复合材料界面残余热应力研究进展.纤维复合材料,2000,17(2):20-24
    [196]Shih-Wei Hsiao, Noboru Kikuchi. Nμmerical analysis and optimal design of composite thermoforming process[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 34 (1): 1-34
    [197]Cowley K D, Beaμmont W R. The Measurement and prediction of residual stresses in carbon-fiber/polymer composites[J]. Composite Science and Technology, 1997, 57 (11): 1445-1455
    [198]杨景锋,王齐华,杨丽君等.纤维增强聚合物基复合材料的界面性能.高分子材料科学与工程,2005,21(3):6-10
    [199]王汝敏,郑水蓉,郑亚萍,聚合物基复合材料及工艺.北京:科学出版社,2004
    [200]雷扬中,焚化炉底碴应用於道路工程之研究:[硕士学位论文].台北:国立 中央大学,1998
    [201]Krishnan Jayaraman, Debes Bhattacharyya. Mechanical performance of woodfibre-waste plastic composite materials. Resources, Conservation and Recycling, 2004, (41): 307-319
    [202]Tarantili P A, Andreopoules A G. Mechanical Properties of Epoxies Reinforced with Chloride-treated Aramid Fibers[J]. Joμmal of Applied PolymerScience, 1997, (65): 267-275
    [203]Ma Y M, Castino F. Fracture Toughness of Kevlar-Epoxy Composites with Controlled Interfacial Bondingl. Journal of Material Science, 1984, 19 (1): 638-655
    [204]Yue Z R, Jiang W, Wang L, et al. Surface Charactfization of Electrochemically Oxidized Carbon Fibets. Cadxm, 1999, 37 (11): 1785-1796
    [205]Andreopoules A G. A New Coupling Agent for Aramid Fibers[J]. Journal of Applied Polymer Science, 1989, (38): 1053-1064
    [206]Martina Wollerdorfer, Herbert Bader. Influence of natural fibres on the mechanical properties of biodegradable polymers. Industrial Crops and Products, 1998, (8): 105-112
    [207]Simpson R. Composite materials from recycled multi-layer polypropylene bottles and wood fibers. [MS Thesis]: Michigan State University; 1991
    [208]Kalyankar V. Mechanical characteristics of composites made from recycled HDPE obtained from milk bottles. MS Thesis, Michigan State University; 1989
    [209]Thepwiwatjit N. Composite of wood fiber and recycled HDPE bottles from household use. [MS Thesis]: Michigan State University, 2000
    [210]白绘宇.植物纤维/聚丙烯复合材料结构与性能的研究:[硕士学位论文].北京:北京工业大学,2002
    [211]藏克峰,项素云,路萍,等.MAH-g-PP及偶联剂处理木粉填充PP的研究.中国塑料,2001,15(2):71-73
    [212]盛旭敏,张卫勤,蒋黎等.木粉/LDPE复合材料的性能.塑料工业,2004,32(9):48-51
    [213]Bellmann C, Caspari A, Albrecht V, et al. Electrokinetic properties of natural fibres. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, (267): 19-23
    [214] Andersson M, Tillman A M. Acetylation of jute: Efects on strength, rot resistance, andhydrophobicity. J Appl Polym Sci, 1989, (37) : 3437-3447
    [215] Ichazo M N, Albano C, Gonzalez J, et al. Polypropylene/wood flour composites: Treatments and properties. Compos Structures, 2001, (54) : 207-214
    [216] Mahlberg Paajanen L, Nurmi A, et al. Efect of chemical modification of wood on the mechanical and adhesion properties of wood fiber/polypropylene fiber and polypropylene / veneer composites. Holz als Roh-und Werkstof, 2001, (59) : 319-326
    [217] Sahoo P K, Samantaray H S, Samal R K. Graft copolymerization with new class of acidic peroxo salts as initiators. I. Grafting of aerylamide onto cotton-cellulose using potassiμm monopersulfate, catalyzed by Co (II) . J Appl Polym Sci, 1986, 32 (7) : 5693-5703
    [218] Krislman M, Narayan R. Compatibilization ofbiomass fibers with hydrophobic materials. Mat Res Soc, 1992, (266) : 93-104
    [219] Zafeiropoulos N E, Williams D R, Balllie C A, et al. Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Composites PartA, 2002, (33) : 1083-1093
    [220] Zafeiropoulos N E, Baillie C A, Hodgkinson J M. Engineering and characterisafion of the interface in flax fibre / polypropylene composite materials. Part II. The effect of surface treatments on the interface. Composites Part A, 2002, (33) : 1185-1190
    [221] Khalil H P S A, Ismail H, Rozman H D, et al. The effect of acetylation on interracial shear strength Between plant fibres and various matrices. Eur Polym J, 2001, (37) : 1037-1045
    
    [222] 胡玉洁.天然高分子材料改性与应用.北京:化学工业出版社, 2003
    [223] Shulda S R, Rao G V G, Athalye A R. Improving graft level during photo induced graftcopolymerization of styrene onto cotton cellulose. J Appl Polym Sci, 1993, (49) : 1423-1430
    [224] Liao B, HuangY H, Cong G M. Influence of modified wood fibers on the mechanical properties of wood fiber-reinforced polycthylene. J Appl Polym Sci, 1997, (66): 1561-1568
    [225]Saha A, Mitra B C. Studies on cyanoethylation of jute fiber. J Appl Polym Sci, 1996, (62): 733-742
    [226]唐建国,胡克鳌.天然植物的改性与树脂基复合材料.高分子通报,1998,(2) :56-62
    [227]徐定宇.聚合物的加工与形态学.北京:中国石化出版社.1992
    [228]Zadorecki P, Ronnhult T. An ESCA study of chemical reactions on surfaces of cellulose fibers. Polymer Science, part A: Polymer Chemistry, 1986, 24 (4): 737-745
    [229]Zadorecki P, Flodin P. Surface modification of cellulose fibers. Journal of Applied Polymer Science, 1986, 31 (6): 1699-1707
    [230]Maldas D, Kokota B V, Daneault C. Influence of coupling agents and treatment on the mechanical properties of cellulose fiber-polystyrene composties. J Appl Polym Sci, 1989, (37): 751-752
    [231]黄争鸣,复合材料细观办学引论.北京:科学出版社,2004
    [232]Eagles D B. Blμmemritt B F, Copper S L. Interfacial properties of Kevlar-49 fiber-einforced thermoplastic. Appl Polym Sci, 1976, (80): 435-448
    [233]Gent A N. Kang S Y. Pull-out and push-out texts for rubber to-metal adhesion. Rubber Chem Tech, 1989, (62): 757-766
    [234]Hutapea P, Yuan F G. Tile efect of thermal agirig on the mode-Ⅰ intedaminar fracture behavior of a high-temperature IM7/LaRC-RP46 composite. Composites Science and Technology, 1999, (59): 1271-1286
    [235]周同悦,于运花,陈伟明,等.乙烯基酯树脂及其炭纤维复合材料的湿热老化行为.高分子材料科学与工程,2006,22(5):166-169
    [236]Roy R, Sarkar B K, Bose N R. Effects of moisture on the mechanical properties of glass fiber reinforced vinylester resin composites. Bulletin of Material Science, 2001, 24 (1): 87-94
    [237]Cook W D, Simon G P, Burchill P J. el al. Journal of Applied Polymer Science, 1997, (64): 769-781
    [238]Moy P, Karasz F E. Epoxy'water interactions. Polymer Engineering and Science, 1980, 20 (4): 315-319
    [239]Zhou J M, Lucas J P. Hygrothermal effects of epoxy resin Ⅰ: The nature of water in epoxy. Polymer, 1999, 40 (20): 5505-5512
    [240]Antoon M K, Koenig J L. Fourier-transform infrared study of the reversible interaction of water and a crosslinked epoxy matrix. Journal of Polymer Science: Po&met Physics, 1981, 19 (10): 1567-1575
    [241]王莉莉,杨小平,于运花,等.湿热环境对抽油杆CF/VE拉挤复合材料的影响.复合材料学报,2004,21(3):131-136
    [242]Shen C H, Springer G S. Moisture absorption and desorption of composite materials. Journal of Composite Materials, 1976, 10 (1): 2-20
    [243]Mijovic J, Lin K F. The effect of hygrothermal fatigue on physical/mechanical properties and morphology of neat epoxy resin and graphite/epoxy composites. Journal of Applied Polymer Science, 1985, 30 (B): 2527-2549
    [244]Bastioli C, Guanella I, Romano G. Effects of water sorption on the physical properties of PET, PBT and their long fibres composites. Polym Compos 1990; 11(1): 1-9
    [245]Lee J H. Maeng D Y. Hung S I, et al. Predictions of cracking mode and hardening behavior of MMC via FEM. Mater Sci Eng, 2003, A339 (1): 175-182
    [246]周储伟.高体积含量颗粒增强复合材料的一个细观力学模型Ⅰ:弹性分析与等效模量.复合材料学报,2005,22(4):125-130
    [247]Reynaud E. Jouen T. Gauthief C, Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer, 2001. 42 (21): 8759-8768
    [248]Chun Lei Wu, Ming Qiu Zhang, Min Zhi Rong, el al. Tensile performance improvement of low nanoparticles filled-polypropylene composites, Composites Science and Technology, 2002, 62 (10-11): 1327-1340
    [250]宋波,黄锐,魏刚,等.PA-6/纳米CaCO_3复合材料的制备和性能.工程塑料应用,2002,(12):2-4
    [251]冯钠.颗粒填充聚酰胺-6共混复合体系强韧化研究:[博士学位论文].成都:四川大学,2004
    [252]谢桂兰,张平,郭翠芳.颗粒增强增韧聚合物基复合材料宏细观应力集中的均匀化分析.湘潭大学自然科学学报,2003,25(4):59-63
    [253]黄苏萍,朱武,周科朝,等.原位矿化羟基磷狄石/高密度聚乙烯纳米复合材料的颗粒增强机制研究.稀有金属,2005,29(5):670—675
    [254]Evans G P, Behiri J C, Currey J D, et al. Microhardness and Young's modulus in cortical bone exhibiting a wide range of mineral volμme fractions, and in a bone analogue. J. Mater. Sci. Mater. Med., 1990, (1): 38-43
    [255]Huang Suping, Zhou Kechao. Controlled crystallization of hydroxyapatite under hexadeeylamine self-assembled monolayer. Trans. Nonferrous Met. Soc. China, 2003, (13): 595-599
    [256]Guild F J, Bonfield W. Predictive Modeling of Hydroxyapatitepolyethylene Composite.Biomaterials, 1993, (14): 985-993
    [257]Wang W, Porter D, Bonfield W. Processing, characterization and evaluation of hydroxyapatite reinforced polyethylene composites. Br. Ceram. Trans, 1994, (93): 91-95
    [258]Kandeil A Y, Zahran R R. Polymers and other advanced material: Emerging technologies and business opportunities, Plenμm, New York, 1995
    [259]陈大柱,梁谷岩,何平笙.颗粒填充复合材料的界面层研究.功能高分子学报,2002,15(2):185-188
    [260]Kang S, Hong S I, Choe C R, et al. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process. Polymer, 2001, 42 (3): 879-887
    [261]Oarton A, Stevenson W T K, W ang S P. The crosslinking of epoxy resins at interfaces. Ⅴ. Am ine cured resins at carbon and graphite surfaces. J Polym Sci, Part A: Polym Chem, 1988, (26): 1377-1391
    [262]Lipatov Yu S, Demchenko S S, Privalko V P, et al. Enthalpy of relaxation at the glass transition of filled polystyrene. Dok1. Akad. Nauk. SSSR, 1983, 273 (1): 128-131
    [263]吴鑫森,陈祥宝,宋焕成.颗粒增强复合材料中的界面层[J].复合材料学报,1985,12(3):41-45
    [264]曾凡,胡永平.矿物加工颗粒学.徐州:中国矿业大学出版社,1995
    [265]张金柱,汪信,陆路德.纳米无机粒子对塑料增强增韧的”裂缝与银纹相互转化”机理[J].工程塑料应用,2003,31(1):20-22
    [266]Zhang L D, Xie C Y, ZhuX F. A study of the internal friction and modulus of epoxy resin dispersed nanometer-sized alμmina particles.J Alloys and Compounds, 1994, (390): 211-212
    [267]Hung C J, Y H, Fu S Y, et al. In: ICNC-21, Anchorage, Alaska, USA, Mar, 2003. 135
    [268]Mascia L. The role of additive in plastics. London: Applied Science Publicshers, 1974
    [269]Qiao J L, Wei G S, Zhang X H, et al. Fully vulcanized powdery rubber having a controllable particle size, preparation and use theroy. U.S. Patent 6423760, July 23, 2002
    [270]熊传溪,闻荻江,皮正杰,等.超微细Al_2O_3增韧增强聚苯乙烯的研究[J].高分子材料科学与工程,1994,(4):69-72
    [271]张以河,付绍云,李国耀.聚合物基纳米复合材料的增强增韧机理.高技术通讯.2004,(5):99-104
    [272]Bartczak Z, Argon A S, Cohen R E, et al. Toughness mechanism in semi-crystalline polymer blends Ⅰ. High-density polyethylene toughened with rubbers. Polymer, 1999, (40): 2331-2346
    [273]Zhong Z, Meguid S A. On the imperfectly bonded spherical inclusion problem. J Appl Mech, 1999, 66 (4): 839-846
    [274]Jasiuk I, Tsuchida E, Mura T. The sliding inclusion under shear. Int J, Solids Struct, 1987, 23 (10): 1373-1385
    [275]Hashin Z. The spherical inclusion with imperfect interface. J Appl Mech, 1991, 58 (2): 444-449
    [276]刘卓钦,皮振邦,田熙科,等.纳米高岭土表面改性的初步研究.化工矿物与加工,2005,(5):18-20
    [277]Wang M, Deb S, Bonfield W. Chemically coupled hydroxyl apatite-polyethylene composites: processing and characterization. Materials Letters, 2000, (44): 119-124
    [278]Hooke C J, S. N. Kukureka, Y.K. Chen, C.J. Hooke. et al. Wear and friction of nylon-glass fibre composites in non-conformal contact under combined rolling and sliding Wear, 1996, (197): 115-122
    [279]Kukureka S N, Hooke C J. Rao M, et al. The effect of fibre reinforcement on the friction and wear of polyamide 66 under dry rolling-sliding contact. Tribology International. 1999, (32): 107-1116
    [280]Tjong S C, Xu S A, Kwok-Li R, et al. Short glass fiber-reinforced polyamide 66 composites toughened with maleated SEBS. Composites Science and Technology, 2002, 62:2017-2027
    [281]邱桂学,吴人洁.PP/mPP/SGF复合材料的动态力学性能[J].复合材料学报,2002,19(3):33-36
    [282]付善菊,韩哲问,吴平平.PET短纤维/硅灰石晶须/硅树脂混杂材料的拉伸性能表征[J].复合材料学报,2002,19(1):5-11
    [383]Fu S Y, Lauke B. Analysis of mechanical properties of injection molded short glass fiber (SGF)/Calcite/ABS composites. J Mater Sci Technol, 1997, 13: 389-396
    [284]Acosta J L, Morales E, Ojeda M C. Die angewandte makromelekulare chemie. 1986, (138): 103-110
    [285]陆厚根.粉体技术导论[M].上海:同济大学出版,1998
    [286]Cordovilla G C, LouisE, Narciso J. Pressure in filtration of packed ceramic particulates by liquid metals [J]. Acta Materialia, 1999, 47 (18): 4461-4479
    [287]Lee H S, Jeon K Y, Kim H Y, et al. Fabrication process and thermal properties of SiCP/Al metal matrix composites for electronic packaging applications. Journal of Materials Science, 2000, (35): 6231-6236
    [288]殷小春,任鸿烈.对改善木塑复合材料表面相容性因素的探讨.塑料,2002,31(4) :25-28
    [289]Selke S E, Wichman I. Wood fiber/polyolefin composites. Composites Part A, 2004, 35: 321-326
    [290]Pickering K L, Abdalla A, Ji C, et al. The elect ofsilane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Composites Part A, 2003, 34: 915-926
    [291]张丽,冯绍华.改善热塑性塑料/植物纤维界面相容性方法的研究.工程塑料应用,2006,34(7):75-78
    [292]吴培熙,张留城.聚合物共混改性.北京:中国轻工业出版社,1996
    [293]解云川,范晓东,孔杰,等.聚乙烯/蒙脱土复合材料的结晶行为.高分子材料科学与工程,2005,21(3):117-120
    [294]解云川,张乾,范晓东.热、拉伸以及高压处理对低密度聚乙烯聚集态结构的影响.高分子材料科学与工程,2004,20(3):179-182
    [295]Oksman K. Improved Interraction between Wood and Synthetic Polymer in Wood/Polymer Composite. Wood Science and Technology, 1996, (30): 197-204
    [296]OksmanK, Lindberg H. Influence of Thermoplastic Elastomers on Adhesion in Polyethylene-Wood Flour Composite. Journal of Applied Polymer Science, 1998, (68): 1845-1855
    [297]袁新恒,张隐西,张祥福.马来酸酐接枝聚丙烯在纸粉填充聚丙烯体系中偶联作用的研究.高分子材料科学与工程,1999,15(6):112-114
    [298]Johan M Felix, Paul Gatenholm. The nature of adhesion in composites of modified cellulose fibers and polypropylene. J Appl Polym Sci., 1999, 42 (3): 609-620
    [299]Xie X L, Zhou X P, Qu R W. Mechanical and behaviors of polypropylene/sisal fiber composites compatibilized by maleic anhydride grafted SEBS. Synthetic Rubber Industry, 2001, 24 (1): 44-53
    [300]Paul G. Interracial adhesion and dispersion in bio-based composites: Molecular interaction between cellulose and other polymers. Lignocelluloses plast compos, 1996, (1): 53-59
    [301]Paul S, Kale D D. Impact modification of polypropylene co-polymer with a polyolefin elastomer[J]. J Appl Polym Sci., 2000, 76 (9): 1480-1484
    [302]何其佳.微波辐照对聚烯烃和氟树脂复合材料结构与性能影响的研究:[博士学位论文].成都:四川大学,2004
    [303]Bryan Harris著,陈祥宝,张宝艳,译.工程复合材料.北京:化学工业出版社,2004
    [304]郭存悦,柳忠阳,徐德民,等.粘土/聚烯烃纳米复合材料进展研究[J].应用化学,2001,5(18):351-356
    [305]乔秀颖,周德亮,孙康.聚丙烯/蒙脱土复合材料热性能和动态力学性能.上海交通大学学报,2004,38(11):1943-1946
    [306]Karian H G. Handbook of polypropylene and polypropylene composites. New York: Marrel Dekker, 1999
    [307]Alexander M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mat Sci Eng R: Reports, 2000, 28 (1-2): 1-63
    [308]Giannelis E P, Krishnamoorti R K, Manias E. Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Advances in Polymer Science, 1999, (138): 107-147
    [309]王东庆,马敬红,梁伯润.聚丙烯/马来酸酐接枝聚丙烯/蒙脱土复合材料的结晶动力学和结晶形态.高分子材料科学与工程,2005,21(3):125-128
    [310]Akihiko Toda, Chiyoko Tomita, Masamichi Hikosaka. Melting of polymer crystals observed by temperature modulated d.s.c, and its kinetic modeling Polymer, 1998, 39 (21): 5093-5104
    [311]Akihiko Toda, Masamichi Hikosaka, Koji Yamada. Superheating of the melting kinetics in polymer crystals: a possible nucleation mechanism. Polymer, Volμme 43, (5): 1667-1679
    [312]崔建伟,宋华,张慧萍,等.短纤维增强PVC的力学性能研究.玻璃钢/复合材料,2006,1:31-33
    [313]周兴平,解孝林.剑麻纤维与晶须混杂增强聚丙烯复合材料.塑料工业,2003,31(12) :5-6、12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700