羟基磷灰石/高密度聚乙烯骨替代复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对羟基磷灰石(Hydroxyapatite,简称HA)/高密度聚乙烯(HighDensityPolyethylene,简称HDPE)骨替代材料的力学性能低和生物相容性差等问题,本文通过优化微观结构和制备工艺,对HA/HDPE复合材料的力学性能、生物相容性及强韧化机理进行了系统研究,获得如下结论:
     1.依据人体骨的结构特征,首次对HA/HDPE骨替代材料进行了多尺度结构设计:从原子尺度上——提高材料界面结合强度;纳米尺度上——实现纳米HA颗粒在HDPE基体中的均匀分散;微米尺度上——形成定向排列的HA/HDPE复合纤维织构;从而通过多尺度的协同作用来达到提高HA/HDPE骨替代材料力学性能的目的。
     2.阐明了HA矿化机理,并确定出诱导HA矿化的最佳有机功能团结构-COOH和矿化液成分。结果表明:以-COOH、-NH_2为功能团的有机分子膜通过静电聚集、立体化学互补和晶格匹配三种界面识别作用调控无机晶体在有机膜上的形核与生长,使HA晶体定向生长。矿化液中的无机离子和氨基酸分子通过与HA晶体的晶格离子发生交换或在HA晶体表面吸附来控制HA晶体的生长与形貌。HA晶体在矿化液中的生长过程遵循表面扩散的螺旋生长机理,并依此确定出诱导HA矿化的最佳有机功能团结构-COOH和矿化液成分。
     3.首次采用原位矿化复合技术,模拟人体骨的矿化过程,通过枝接在HDPE表面的-COOH功能团从分子水平调控HA晶体在HDPE上的形核与生长,制备出纳米HA/HDPE复合粉末,从而有效改善了纳米HA颗粒在HDPE基体中的分散状态,并提高了HA/HDPE界面结合强度,解决了HA在基体中易团聚和界面结合强度低的技术难关。
     4.采用固相挤出技术成功制备出了纳米HA颗粒均匀分散、HA/HDPE复合纤维定向排列的多尺度结构HA/HDPE复合材料:其拉伸强度为245MPa,抗弯强度为165MPa,拉伸模量为18.1GPa,达到了皮质骨力学性能的要求。分析表明,该复合材料中HA与HDPE之间以化学键结合,界面结合强度很高,因此在HDPE结晶过程中在HA周围形成网络结构的伸直链晶,该结构的存在显著提高了材料的强度。另一方面,材料中形成了定向排列的复合纤维,这是复合材料强度提高的重要原因。
     5.阐明了HA/HDPE多尺度复合材料的强韧化机理。研究表明:多尺度结构HA/HDPE复合材料的增强增韧是通过纳米HA颗粒和HA/HDPE复合纤维在不同尺度上协同作用的结果。在纳米尺度,纳米HA颗粒的均匀分散和高的HA/HDPE界面结合强度显著提高了HDPE的结晶度,细化了HDPE晶粒尺寸,并在HA颗粒表面形成取向结晶层,从而使材料在断裂过程中通过HDPE取向结晶层的基体形变和HA脱粘过程对微裂纹起钝化和钉扎作用,并扩大能量耗散的区域,以阻滞微孔隙和银纹的长大和破断,抑制大裂纹的早期形成。在微米尺度,由于HA/HDPE复合纤维的定向排列,使体系的活化体积显著降低,大大增加了材料的断裂热激活能,从而显著提高材料的强度。另一方面,复合纤维在应力作用过程中通过纤维断裂、纤维拔出、裂纹偏转机制使材料在形变与破坏过程中耗散更多的能量,从而显著提高材料的强度和韧性。
     6.体外模拟实验、体外细胞毒性实验和体内植入实验结果表明:HA/HDPE复合材料有利于碳酸羟基磷灰石(HCA)的矿化沉积,对微环境的Ca~(2+)浓度和酸碱度影响微小;无细胞毒性,且植入后的炎性细胞程度和囊壁形成均符合生物材料评价标准,说明多尺度结构HA/HDPE复合材料具有良好的成骨性能和生物相容性。
In order to enhance mechanical properties and improve the biocompatibility, the HA/HDPE composite with multi-scale structure was prepared by the process of structure design, surface modification, in situ biomineralization, and solid-state extrusion. And its microstructure, mechanical properties, biocompatibility and the mechanism of toughening and reinforcement were investigated systematically in this paper.
     1. Based on the microstructure characteristics of human being's bone, the HA/HDPE composite structure was designed from multi-scale structure: on the atom scale, the interfacial strength was high; the HA nanoparticles dispersed in the HDPE matrix homogeneously on the nano-scale; and on the micro-scale, the oriented and arrayed HA/HDPE composite fibers were formed. Its aims were to enhance the mechanical properties by the co-operate action on the multi-scales.
     2. The biomineralization mechanism of HA was studied systematically, results showed that the -COOH and the -NH_2 functional groups had high polarity and charged density, which led to increase supersatuation and lower the interfacial energy, they controlled the nucleation and crystal growth of HA by the "interfacial molecular recognization" of electrostatic accumulation, structural correspondence and stereochemical requirements. The inorganic ions and amine acids controlled the crystal growth and morphology of HA by absorbing on the surface of HA or exchanging with the lattice ions of HA. And the crystal growth of HA followed the surface diffusion controlled screw growth mechanism.
     3. The process of in situ biomineralization was applied to prepare HA/HDPE powders for the first time. FTIR analysis indicated that the HA nanoparticles grew on the HDPE with chemical bond and dispersed in polymer on the level of nanometer dimension, which improved the dispersion of HA in the HDPE matrix and efficiently enhanced the interfacial strength.
     4. The process of solid-state extrusion was applied to prepare the HA/HDPE composite, and its effect on microstructure and mechanical properties of HA/ HDPE composite was investigated by means of Fourier transformed infrared spectroscopy (FTIR), scanning electron microscope (SEM), Instron testing machine and Ceast Impact tester at room temperature. Results show that: (1) The HA/HDPE was a multi-scale microstructure composite. On the nano-scale, the HA particles dispersed in the matrix homogeneously; the HA/HDPE composite fibers was oriented and arrayed on the micro-scale. (2) HA/HDPE composite has the better mechanical properties. The bend strength, tensile strength and Yong's modulus reach 165MPa, 245MPa and 18.1GPa, respectively, which meet the mechanical requirements for cortical bone. Tensile fracture analysis and energy dispersive X-ray analysis (EDX) results indicated that the interfacial bonding strength was high, in the higher interfacial bonding strength condition, the produced interfacial stress from the contraction of matrix can strain-induces the crystallization of matrix to forming the extended-chain crystal structure in the area surrounding the filler, as a result, the mechanical properties of composite were improved greatly. On the other hand, the oriented and allied HA/HDPE fibers were formed, which was the main role to enhance the mechanical properties.
     5. The toughening and reinforcement mechanism of HA/HDPE composite was investigated. Results show that the co-operate actions of multi-scale was the main role to enhance the mechanical properties. On the nano-scale, homogeneous dispersion of HA and high interfacial strength between HA and HDPE leads to the high crystalline, litter crystal size and the formation of oriented extended-chain crystal structure. Its result in the HDPE deformation and HA deadhesion during the fracture process, which can pin the development of microcracks, expend large energies and prohibit the formation of large crack. On the micro-scale, the formation of oriented HA/HDPE fibers can reduce greatly the activity volume and crease the fracture energy, which leads to the strength high. On the other hand, the composite fiber can expend energies largely by fracture, pullout and crackbowing, which enhance the strength and toughening to a great extend.
     6. The simulating experiment in vitro was operated. Results show that the HA/HDPE composite can induce the carbonic-hydroxyapatite mineralize on the composite, and its influence on the concentration and acid/alkali value of simulate body fluid was very little, which indicate that the composite have good osteoinduction and osteoconduction. The biocompatibility of the HA/HDPE composite was evaluated by flow cytometry after L929 incubated with extraction of the HA/HDPE composite, implanted in animal, compared with the materials applied in clinch. The results showed that there are no significant differences between two groups (P>0.05), which demonstrated that the HA/HDPE composite had a good biocompatibility.
引文
[1]Patrick Jr CW,Mikos AG,McIntire.Prospect of tissue engineering.In:Patrick Jr CW,Mikos AG,McIntire LV,eds.Frontiers In Tissue Engineering.New York,USA:Elsevier Science,1998.1-25
    [2]Naughton GK.Emerging developments in tissue engineering and cell technology.Tissue Eng,1995,1(2):211-219.
    [3]Langer R,Vacanti JP.Tissue engineering.Science,1993,260:920-926.
    [4]Dietmar W.Hutmacher.Scaffolds in tissue engineering bone and cartilage.Biomaterials,2000(21):2529-2543
    [5]俞耀庭著.生物医用材料.天津:天津大学出版社,2000
    [6]刘洪刚,程国安.生物材料的研究和展望.科学进展,2004,20(6):330-333
    [7]Coffey Austin,B.Brazier,A.;Tierney,Morgan;Gately,Alan G.;O'Bradaigh C.M.Development of thin-walled fibre-reinforced structures for medical applications Composites.Applied Science and Manufacturing(Incorporating Composites and Composites Manufacturing),2003,34(6):535-542
    [8]Jandt,Klaus D.;Finke,Manuela;Cacciafesta,Paola Aspects of the physical chemistry of polymers,biomaterials and mineralised tissues investigated with atomic force microscopy(AFM).Colloids and Surfaces B:Biointerfaces,2000,19(4).301-314
    [9]李爱民,孙康宁,尹衍升等.生物材料的发展、应用、评价与展望.山东大学学报,2002,32(3):287-293
    [10]汤顺清,周长忍,邹翰.生物材料的发展现状与展望.暨南大学学报,2000,21(5):122-125
    [11]李彦林.国外医学生物医学工程分册.2001,24(2):73-77
    [12]杨志明著.组织工程基础与临床.四川科学技术出版社,1999
    [13]Niinomi,Mitsuo.Recent research and development in titanium alloys for biomedical applications and healthcare goods.Science and Technology of Advanced Materials,2003,4(5):445-454
    [14]Fujibayashi,Shunsuke;Neo,Masashi;Kim,Hyun-Min;et al.Osteoinduction of porous bioactive titanium metal.Biomaterials, 2004, 25(3): 443-450
    [15] Puleo, D. A. ; Kissling, R. A. ; Sheu, M.S. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomaterials, 2002, 23(9):2079-2087
    [16] Bosetti, M. ; Masse, A. ; Tobin, E. ; et al. Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials, 2002, 23(3):887-892
    [17] Franceschini Mitri, Fabio; Yoshimoto, Marcelo; Allegrini JAAnior, SAArgio; et. al. Histological findings in titanium implants coated with calcium phosphate ceramics installed in rabbit' s tibias. Annals of Anatomy, 2005,187(1) :93-98
    [18] Garcia-Alonso, M. C. ; Saldana, L. ; Valles, G. ; Gonzalez Carrasco, J. L. et. al. In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6A14V alloy. Biomaterials, 2003, 24(1): 19- 26
    [19] Hallab, Nadim; J. Jacobs, Joshua; Black, Jonathan. Hypersensitivity to metallic biomaterials: a review of leukocyte migration inhibition assays. Biomaterials, 2000, 21(13): 1301 -1314
    [20] Hanawa, Takao. Evaluation techniques of metallic biomaterials in vitro. Science and Technology of Advanced Materials, 2002, 3(4) :289- 295
    [21] Davis, Thomas A. ; Volesky, Bohumil; Mucci, Alfonso. A review of the biochemistry of heavy metal biosorption by brown algae Water Research. Biomaterials, 2003,37(18):4311-4330
    [22] Eisenbarth, E. ; Velten, D. ; Muller, M. ; Thull, R. ; Breme, J. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials, 2004, 25(26):5705-5713
    [23] Feng, D.; Aldrich, C. Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima Hydrometallurgy. Biomaterials, 2004, 73(1-2): 1 - 10
    [24] Lin, Shan; Drake, Lawrence R. ; Rayson, Gary D. Affinity distributions of lead ion binding to an immobilized biomaterial derived from cultured cells of Datura innoxia. Advances in Environmental Research, 2002, 6 (4): 523-532
    [25] Ferreira, Maria Eduarda; Pereira, Maria de Lourdes; Costa, Fernando Garcia e; et. al. Comparative study of metallic biomaterials toxicity: a histochemical and immunohistochemical demonstration in mouse spleen. Journal of Trace Elements in Medicine and Biology, 2003,17(1): 45-49
    [26] Hanawa, Takao. Evaluation techniques of metallic biomaterials in vitro. Science and Technology of Advanced Materials, 2002, 3(4): 289-295
    [27] Zhou, B. L. Bio-inspired study of structural materials. Materials Science and Engineering: C 2000,11(1): 13-18
    [28] Goller, G. ; Oktar, F.N.; Ozyegin, L.S.; et al. Plasma-sprayed human bone-derived hydroxyapatite coatings: effective and reliable. Materials Letters, 2004, 58(21):2599-2604
    [29] Gutensohn, K. ; Beythien, C. ; Bau, J. ; Fenner, T. ; Grewe, P. ; Koester, R. ; Padmanaban, K. ; Kuehnl, P. In Vitro Analyses of Diamond-like Carbon Coated Stents: Reduction of Metal Ion Release, Platelet Activation, and Thrombogenicity. Thrombosis Research, 2000, 99(6): 577-585
    [30] Ponsonnet, L. ; Comte, V. ; Othmane, A. ; Lagneau, C. ; Charbonnier, M. ; Lissac, M. ; Jaffrezic, N. Effect of surface topography and chemistry on adhesion, orientation and growth of fibroblasts on nickel - titanium substrates. Materials Science and Engineering: C , 2002, 21(1-2): 157-165
    [31] Goller, G. ; Oktar, F. N. ; Ozyegin, L. S. ; Kayali, E. S. ; Demirkesen, E. Plasma-sprayed human bone-derived hydroxyapatite coatings: effective and reliable. Materials Letters, 2004, 58(21):2599-2604
    [32] Kim, Hyun-Man; Kim, Yoonji; Park, Su-Jin; et al. Thin film of low-crystalline calcium phosphate apatite formed at low temperature. Biomaterials, 2000,21(11): 1129-1134
    [33] Chu, Chenglin; Zhu, Jingchuan; Yin, Zhongda; Lin, Pinghua. Optimal design and fabrication of hydroxyapatite - Ti asymmetrical functionally graded biomaterial. Materials Science and Engineering: A, 2003, 348(1-2): 244 - 250
    [34] Yuan, Huipin; Yang, Zongjian; de Bruijn, Joost D. ; de Groot, Klaas; Zhang, Xingdong. Material - dependent bone induction by calcium phosphate ceramics: a 2.5-year study in dog. Biomaterials, 2001, 22(19) :2617-2623
    [35]Joschek, S. ; Nies, B. ; Krotz, R. ; Gopferich, A. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials, 2000, 21(16) : 1645-1658
    [36] Chu, Chenglin; Zhu, Jingchuan; Yin, Zhongda; Lin, Pinghua. Structure optimization and properties of hydroxyapatite-Ti symmetrical functionally graded biomaterial Materials. Science and Engineering: A, 2001, 316(1-2) :205-210
    
    [37] Barinov, S. M. ; Shvorneva, L. I. ; Ferro, D. ; Fadeeva, I. V. ; Tumanov, S.V. Solid solution formation at the sintering of hydroxyapatite - fluorapatite ceramics. Science and Technology of Advanced Materials, 2004, 5 (5-6): 537-541
    [38]Inuzuka, Masahiro; Nakamura, Satoshi; Kishi, Shigeki; Yoshida, Katsumi; Hashimoto, Kazuaki; et. al. Hydroxyapatite-doped zirconia for preparation of biomedical composites. Ceramics Solid State Ionics, 2004,172(1-4) :509-513
    [39] Chu, Chenglin; Zhu, Jingchuan; Yin, Zhongda; Lin, Pinghua. Optimal design and fabrication of hydroxyapatite-Ti asymmetrical functionally graded biomaterial Materials. Science and Engineering: A ,2003, 348(1-2): 244 - 250
    [40] Lucas, A. ; Gaude, J. ; Carel, C. ; Michel, J. -F. ; Cathelineau, G. A. synthetic aragonite-based ceramic as a bone graft substitute and substrate for antibiotics. The International Journal of Inorganic Materials, 2001, 3(1) :87-94
    [41] Serra, E. ; Tucci, A. ; Esposito, L. ; Piconi, C. Volumetric determination of the wear of ceramics for hip joints. Biomaterials, 2002,23(4): 1131-1137
    [42] Wang, Chang-an; Huang, Yong; Zan, Qingfeng; Guo, Hai; Cai, Shengyou. Biomimetic structure design-a possible approach to change the brittleness of ceramics in nature Materials. Science and Engineering: C, 2000, 11(1) :9-12
    [43] Rosengren, A. ; Pavlovic, E. ; Oscarsson, S. ; et al. Plasma protein adsorption pattern on characterized ceramic biomaterials. Biomaterials, 2002,23(4): 1237-1247
    [44] Rochet, N. ; Loubat, A. ; Laugier, J. P. ; Hofman, P. ; et al. Modification of gene expression induced in human osteogenic and osteosarcoma cells by culture on a biphasic calcium phosphate bone substitute. Bone, 2003, 32(6):602-610
    [45] Silva, Viviane V. ; Lameiras, Fernando S. ; Domingues, Rosana Z. Microstructural and mechanical study of zirconia-hydroxyapatite (ZH) composite ceramics for biomedical applications. Composites Science and Technology, 2001, 61(2) :301-310
    [46] Ito, Atsuo; Kawamura, Haruo; Otsuka, Makoto; Ikeuchi, Masako; Ohgushi, Hajime; Ishikawa, Kunio; et. al. Zinc-releasing calcium phosphate for stimulating bone formation. Materials Science and Engineering: C, 2002, 22(1) :21-25
    [47] Amaral, M. ; Lopes, M. A. ; Silva, R. F. ; Santos, J. D. Densification route and mechanical properties of Si_3N_4 - bioglass biocomposites. Biomaterials, 2002, 23(3):857-862
    
    
    
    
    [48] Nicolazo, C. ; Gautier, H. ; Brandao, M. J. ; Daculsi, G. ; Merle, C. Compactibility study of calcium phosphate biomaterials. Biomaterials, 2003, 24 (2):255-262
    [49] Torricelli, P. ; Verne, E. ; Brovarone, C. Vitale; Appendino, P. ; et. al. Biological glass coating on ceramic materials: in vitro evaluation using primary osteoblast cultures from healthy and osteopenic rat bone. Biomaterials, 2001, 22(18):2535-2543
    
    [50] Itoh, Soichiro; Kikuchi, Masanori; Koyama, Yosihisa; Takakuda, Kazuo; Shinomiya, Kenichi; Tanaka, Junzo. Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite. Biomaterials, 2002, 23(19):3919-3926
    
    [51] Jaffe, Michael; Ophir, Zohar; Pai, Vaishali Biorelevant. characterization of biopolymers Thermochimica. Acta, 2003,396(1 - 2): 141 - 152
    [52] Chen, L. J. ; Wang, M. Production and evaluation of biodegradable composites based on PHB - PHV copolymer. Biomaterials, 2002,23(13) :2631-2639
    [53] Marques, A. P. ; Reis, R. L. Hydroxyapatite reinforcement of different starch-based polymers affects osteoblast-like cells adhesion/spreading and proliferation. Materials Science & Engineering C, 2005, 25(2):215-229
    [54] Kaito, Takashi; Myoui, Akira; Takaoka, Kunio; Saito, Naoto; et. al. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA - PEG/hydroxyapatite composite. Biomaterials, 2005, 26(1): 73-79
    [55] Seal, B. L. ; Otero, T. C. ; Panitch, A. Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering: R: Reports, 2001, 34(4-5): 147-230
    [56] Sumpter, Bobby G. ; Noid, Donald W. ; Barnes, Michael D. Recent developments in the formation, characterization, and simulation of micron and nano-scale droplets of amorphous polymer blends and semi-crystalline polymers. Polymer, 2003, 44(16):4389-4403
    [57] Griffith, L. G. Polymeric biomaterials. Acta Materialia, 2000,48(1): 263-277
    [58] Drotleff, S. ; Lungwitz, U. ; Breunig, M. ; Dennis, A. ; Blunk, T. ; Tessmar, J. ; Gopferich, A. Biomimetic polymers in pharmaceutical and biomedical sciences. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 58(2):385-407
    [59] Ramakrishna, S. ; Mayer, J. ; Wintermantel, E. ; Leong, Kam W. Biomedical applications of polymer-composite materials: a review Composites. Science and Technology, 2001, 61 (9): 1189-1224
    [60] El-Amin, S. F. ; Lu, H. H. ; Khan, Y. ; Burems, J. ; Mitchell, J. ; Tuan, R. S. ; Laurencin, C.T. Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering. Biomaterials, 2003, 24(7): 1213-1221
    [61] Godbole, S. ; Gote, S. ; Latkar, M. ; Chakrabarti, T. Preparation and characterization of biodegradable poly-3-hydroxybutyrate - starch blend films. Bioresource Technology, 2003, 86(1) :33-37
    [62] Li, Jun; Chen, Bin; Wang, Xin; Goh, Suat Hong. Preparation and characterization of inclusion complexes formed by biodegradable poly(-caprolactone) - poly(tetrahydrofuran) - poly( -caprolactone) triblock copolymer and cyclodextrins. Polymer, 2004,45(6):1777-1785
    [63] Ignjatovic, Nenad; Savic, Vojin; Najman, Stevo; Plavsic, Milenko; Uskokovic, Dragan. A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy. Biomaterials, 2001, 22(6) :571-575
    [64] Steffens, G.C.M. ; Nothdurft, L. ; Buse, G. ; Thissen, H. ; Hocker, H. ; Klee, D. High density binding of proteins and peptides to poly(d, 1-lactide) grafted with polyacrylic acid. Biomaterials, 2002,23(16): 3523-3531
    [65] Guild F J, Bonfield W. Predictive modeling of hydroxyapatite -polyethylene composite. Biomaterials, 1993,14:985-993
    [66] Gupta, Anirban Sen; Lopina, Stephanie T. Synthesis and characterization of 1-tyrosine based novel polyphosphates for potential biomaterial applications. Polymer, 2004, 45(14):4653-4662
    [67] Speranza, G. ; Gottardi, C ; Pederzolli, C ; Lunelli, L. ; Canteri, R. ; et. al. Role of chemical interactions in bacterial adhesion to polymer surfaces. Biomaterials, 2004, 25(11) :2029-2037
    [68] Gomes, M. E. ; Reis, R. L. ; Cunha, A.M. ; Blitterswijk, C.A. ; de Brui jn, J. D. Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: effect of several additives and processing conditions. Biomaterials, 2001, 22(13): 1911 - 1917
    [69] Wyre, R. M. ; Downes, S. An in vitro investigation of the PEMA/THFMA polymer system as a biomaterial for cartilage repair. Biomaterials, 2000, 21 (4): 335-343
    [70] Nimeri, Ghada; Ohman, Lena; Elwing, Hans; Wettero, Jonas; Bengtsson, Torbjorn. The influence of plasma proteins and platelets on oxygen radical production and F-actin distribution in neutrophils adhering to polymer surfaces. Biomaterials, 2002, 23(8): 1785-1795
    [71] Ambrosio, Archel M. A. ; Allcock, Harry R. ; Katti, Dhirendra S. ; Laurencin, Cato T. Degradable polyphosphazene /poly(α-hydroxyester) blends: degradation studies. Biomaterials, 2002,23(7): 1667-1672
    [72]章永化,龚克成.Sol-Gel法制备有机/无机纳米复合材料的进展.高分子材料科学与工程,1997(7):14.
    [73]Warriepkgk,Anikumargm.Densification of mullite-SiC nanocomposite sol-gel precursors by pressureless sintering.Materials Chemistry and Physics,2001,67:263-266.
    [74]王旭,黄锐,濮阳南.聚合物基纳米复合材料的研究进展.塑料,2000,29(4):25.
    [75]Pramanikm,Srivastavas Samantaraybk,et al.Rubber-clay nano -composite by solution blending.Journal of Applied Polymer Science,2003,87(14):2216-2220.
    [76]ZHU H Y,LU G Q.Molecular engineered porous nanocomposites of metal oxide and clay using surfactants.Materials Research Society Symposium-Proceedings,2002,703:9-18.
    [77]焦宁宁,王建明.聚合物纳米复合材料研究进展Ⅱ.石化技术与应用,2001,19(4):121-125.
    [78]祖庸,刘超锋,李晓娥等.均匀沉淀法合成纳米氧化锌.现代化工,1997,17(9):33-35.
    [79]李凤生.超细粉体技术.北京:国防工业出版社,2000.
    [80]MCNALLYT,MURPHYWR,LEWCY,et al.Polyamide-12 layered silicate nanocomposites by melt blending 9-21.Polymer,2003,44(9):2761-2772.
    [81]ARTZIN,NIRY,NARKISM,et al.Melt blending of ethylene-vinyl alcohol copolymer/claynanocomposites:Effect of the clay type and processing conditions[J].JournalofPolymerScience,2002,40(16):1741-1753.
    [82]SMITHAP,SPONTAKRJ,ADEH,et al.High-energy cryogenic blending and compatibilizing of immiscible polymers.Advanced Materials,1999,11(15):1277-1281.
    [83]吕建坤,柯毓才,漆宗能等.插层聚合制备黏土/环氧树脂纳米复合材料过程中黏土剥离行为的研究.高分子学报,2000(1):85-89.
    [84]陈光明,马永梅,漆宗能.甲苯-2,4-二异氰酸酯修饰蒙脱土及聚苯乙烯/蒙脱土纳米复合材料的制备与表征.高分子学报,2000,5:599-603.
    [85]朱军,李毕忠.聚合物/无机纳米复合材料研究进展.化工新型材料,2000,28(10):3-8.
    [86]焦宁宁,王建明.聚合物纳米复合材料研究进展Ⅰ.石化技术与应用,2001,19(2):57-61
    [87]曾晓飞,陈建峰,王国全.纳米级CaCO_3粒子与弹性体CPE微粒同时增韧PVC 的研究.高分子学报,2002,6:739-741
    [88]ZHU H Y,LU G Q.Molecular engineered porous nanocomposites of metal oxide and clay using surfactants.Materials Research Society Symposium-Proceedings,2002,703:9-18.
    [89]董元彩,孟卫.环氧树脂/二氧化钛纳米复合材料的制备及性能.塑料工业,1999,27(6):37-40
    [90]Zhang L D,Xie C Y,Zhu X F.J.Alloys and Compounds,1994,212:390-394
    [91]刘建林,肖久梅,史孝群等.纳米CaCO_3填充环氧树脂分散技术及力学性能研究.工程塑料应用,2003,31(3):27-31
    [92]杨中文,刘西文.纳米技术在高分子材料改性中的应用.现代塑料加工应用,1999,11(6):38-40
    [93]Mascia L.The role of additive in plastics.London:Applied Science Publicshers,1974.215-230
    [94]王相田,胡黎明.超细颗粒分散过程分析.化学通报,1995(3):13-17
    [95]史孝群,肖久梅,龚春秀等.环氧树脂增韧研究进展.绝缘材料,2002,(1):31-34
    [96]尚修勇,朱子康,印杰.新型可溶性PI/SiO_2纳米复合材料的研究.工程塑料应用,2000,(8):33
    [97]贾巧英,马晓燕.纳米材料及其在聚合物中的应用.塑料科技,2001,(2):6-10
    [98]杨伏生,周安宁,葛岭梅.聚合物增强增韧机理研究进展.中国塑料,2001,15(8):6-10
    [99]张以河,付绍云,李国耀等.聚合物基纳米复合材料的增强增韧机理.高技术通讯,2004(5):99-105
    [100]Kausch H H.Crazing in polymers.Berlin:Sprigner2Verlag,1990.138-150
    [101]王珂,吴景深,曾汉民.刚性粒子增韧聚合物体系的研究发展.材料科学与工程,2001,19(3):15-24
    [102]卢秀萍,文志红.无机填料对聚合物的增韧增强作用.天津轻工业学院学报,1997(1):17-21
    [103]郭卫红,唐颂超,徐种德.聚合物增韧增强机理研究进展.化工生产与技术1999(1):13-17
    [104]尚修勇,朱子康,漆宗能.偶联剂对PI/SiO_2纳米复合材料形态结构及性能的影响.复合材料学报,2000,17(4):5
    [105]张金柱,汪信,陆路德等.纳米无机粒子对塑料增强增韧的“裂缝与银纹相互转化”机理.工程塑料应用,2003,31(1):20
    [106]熊传溪,闻荻江,皮正杰.超微细Al_2O_3增韧增强聚苯乙烯的研究.高分子材料科学与工程,1994(4):69
    [107]陈平.季铵盐对酸酐/环氧树脂体系固化反应和性能影响的研究.热固性树脂,1996,(2):42
    [108]郑亚萍,王波.TiO_2/环氧树脂纳米复合材料的研究.复合材料学报,2002,19(4):11
    [109]Wang W,Porter D,Bonfield W.Processing,Characterisation and evaluation of hydroxyapatite reinforced polyethylene composites.Br.Ceram.Trans,1994,93:91-95
    [110]M.wang,W,Bonfield.Chemically coupled hydroxyapatite-polyehtylene composites:structure and properties.Biomaterials,2001,22:1311-1320
    [111]M.wang,R.Joseph,W,Bonfield.Hydroxyapatite-polyehtylene composites for bone substitution:effects of ceramic particle size and morphology.Biomaterials,1998,19:2357-2366
    [112]M.wang,S.Deb,W,Bonfield.Chemically coupled hydroxyapatite -polyehtylene composites:processing and characterization.Materials Letters,2000,44:119-124
    [113]Bonfield W,Grynpas MD,Tully AE,Bowman J,Abram J.Hydroxyapatite reinforced polyethylene-a mechanically compatible implant material for bone replacement.Biomaterials,1981,2:185-6.
    [114]Tanner KE,Downes RN,Bonfield W.Clinical application of hydroxyapatite reinforced polyethylene.Br.Ceram.Trans,1994(93):104-107.
    [115]Downes RN,Vardy S,Tanner KE,Bonfield W.Hydroxyapatite polyethylene composites in orbital surgery.In:Bonfield W,Hastings GW,Tanner KE,eds.Bioceramics,.Oxford:Butterworth Heinemann,1991(4).239-246.
    [116]R. Joseph, W. J. McGregor, M. T. Martyn, et al. Effect of hydroxyapatite morphology/surface area on the rheology and process ability of hydroxyapatite filled polyethylene composites. Biomaterials, 2002(23): 4295-4302
    [117] Ellis H. Clinical anatomy, a revision and applied anatomy for clinical students. Oxford: Blackwell Scientific Publications, 1980. 405-407.
    [118] Stephen Mann. Molecular tectonics in biominerallization and biomimetic materials chemistry. Nature, 1993, 365(7):499-505
    [119] S. Weiner and H. D. Wagner. The Material bone: Structure-Mechanical Function Relations. Annu. Res. Mater. Sci, 1998,28:271-298
    [120]Evans G P, Behiri J C, Currey J D, Bonfield W. Microhardness and Young' s modulus in cortical bone exhibiting a wide range of mineral volume fractions, and in a bone analogue. J. Mater. Sci: Mater. Med, 1990,1:38-43
    [121] A. Firouzi, D Kumar, L. M. Bull, T. Besier et al. Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies. Science, 1995, 267(24): 1138-1143
    [122] C. L. Ma, H.B.Lu, R.Z.Wang, L.F.Zhou, F.Z.Cui, F.Qian. Comparison of controlled crystallization of calcium phosphates under three kinds of monolayers. J. Crystal. Growth, 1997,173:141 -149
    [123] F.Z.Cui, L. F. Zhou, H. Cui, C. L.Ma, H.B.Lu, H.D.Li. Phase diagram for controlled crystallization of calcium phosphate under acidic organic monolayers. J. Crystal. Growth, 1996,169:557-562
    [124] H. B. Lu, C. L. Ma, H. Cui, L.F.Zhou, R.Z.Wang, F.Z.Cui, Controlled crystallization of calcium phosphate under stearic acid monolayer. J. Crystal. Growth, 1995,155:120-125
    [125] Sandra R. Whaley, D.S.English, Evelynl.Hu, Paul F. Bartare, A. Angeta Belchor. Selection of Peptides with Semiconductor Binding Opecificity for Directed Nanocrystal Assembly. Nature, 2000, 405 (8): 665-668
    [126] Jon M. Didymus, Stephen Mann, Willian J. Benton, Ian R. Collins. Interaction of Poly (α,β-aspartate ) with Octadecylamine Monolayers: Adsorption Behavior and Effects on CaCO_3 Crystallization. Langmiur, 1995,11(8) :3130-3136
    [127] K. S. Mayya, V. Patil, P. Madhu Kumar, Mural, Sastry. On the Deposition of Langmiur-Blodyett Films of Q-state CdS Nanoparticles through eletrostatic Immobilization at the Air-Water Interface. The Solid Films, 1998,312:300-305
    [128] A. Firouzi, D Kumar, L.M. Bull, T. Besier et al. Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies. Science, 1995, 267(24): 1138-1143
    [129] Monlka Fritz, Angela M. Belcher, Manfres Radmacher et al. Flat Pearl From Biofabrication of Organized Composites on Inorganic Substrates. Nature, 1994,37(1):49-51
    [130] Douglas D, Archibald and Stephen Mann. Template mineralization of self-assembled anisotropic lipid microstructures. Nature, 1993, 364(29): 430-433
    [131] Samuel I Stapp and Paul V. Braun. Molecular Manipulation of Microstructures: Biomaterials, Ceramic, and Semiconductors. Science, 1997, 277 (29): 1242-1248
    [132] Porter R S, Southern J H, Weeks N G. polymer modulus and morphology, the tentite properties of polyethylene. Polym Eng Sci, 1975,15,213
    
    [133] 益小苏著.高分子材料的制备与加工.浙江:浙江大学出版社,1997
    
    
    [134] ImadaK, Yamamoto T, Shigematsu K, Takaganagi M. Crystal orientation and some properties of solid-state extradate of linear polyethylene. J. Mater. Sci, 1971(6): 537-540
    
    [135] Masayuki Nagai, Koh Nakamura, Hiroki Uehara, et al. Enhanced electrical properties of highly oriented Poly(vinylidene fluoride) films prepared by solid-state coextrusion. Journal of Polymer Science Part B: Polymer Physics, 1999,37(18): 2549-2556
    
    [136] Stephen Ferguson, Dieter Wahl, Sylwester Gogolewski. Enhancement of the mechanical properties of polylactides by solid-state extrusion. II. Poly(L-lactide), poly(L/D-lactide), and poly(L/DL-lactide). Journal of Biomedical Materials Research, 1996, 30 (4): 543-551
    
    
    [137]Daisuke Sawai, Kazuyo Takahashi, Toshiyuki Imamura, et al. Preparation of oriented β-form poly(L-lactic acid) by solid-state extrusion.Journal of Polymer Science Part B:Polymer Physics,2002,40(1):95-104
    [138]黄苏萍,周科朝.羟基磷灰石晶体在有机膜上的受控生长.材料研究学报,2004,2:66-70
    [139]Klein CPAT,de Blieck Hogerworst JMA,Wolke J G C,de Groot k.studies of solubility of different caicium phosphate ceramic particles in vitro.Biomaterials,1990,11:509-512
    [140]Ebrabimpour E,Johnson M,Richardson C F,Nancollas G H.The characterization of HA precipitation.J.Colloid Interface Sci.1993,139:158-163
    [141]Zhou J,Zhang X,Chen J,Zeng S,et al.High temperature characteriatics of synthetic hydroxyapatite.J.Mater.Sci:Mater.Med,1993,4:83-85
    [142]Lazic S.Microcrystalline hydroxyapatite formation from alkaline solutions.J.Grystal Growth,1995,147:147-154
    [143]Tas A C,Korkusuz F,Timucin M,Akkas N.An investigation of the chemical synthesis and high-temperature sintering behaviour of Calcium hydroxyapatite(HA)and tricalcium phosphate(TCP)bioceramic.J.Mater.Sci:Mater.Med,1997,8:91-96
    [144]Madsen HEL,Thodvadarson G.Precipitation of calcium phosphate from moderately acid solutions.J.Crystal.Growth.1984,66:369-376
    [145]Yong LIU,Suping HUANG,Zhou Kechao.Growth of hydroxyapatite crystal in the presence of organic film.Materials Science &technology,2004,20:223-226
    [146]Huang Suping,Zhou Kechao.Controlled crystallization of hydroxyapatite under hexadecylamine self-assembled monalayer.Trans.Nonferrous Met.Soc.China,2004,13:595-599
    [147]张克从著.晶体生长科学与技术.北京:科学出版社,1997
    [148]黄苏萍,黄伯云.有机功能团及矿化液离子对羟基磷灰石晶体生长与形貌影响.中国有色金属学报,2004,9,1604-1608
    [149]仲维卓,华素坤著.晶体生长形态学.北京:科学出版社,1999
    [150]何曼君著.高分子物理,上海:复旦大学出版社,1992
    [151]朱锡雄,主国瑞著.高分子材料强度学.浙江:浙江大学出版社,1991
    [152]Z.Bartczak,A.S.Argona,R.E.Cohena,M.Weinberg.Toughness mechanism in semi-crystalline polymer blends:Ⅰ.High density polyethylene toughened with rubbers.Polymer,1999(40):2331-2346
    [153] Marques, A. P. ; Reis, R. L. ; Hunt, J. A. The biocompatibility of novel starch-based polymers and composites: in vitro studies. Biomaterials, 2002, 23(6): 1471 - 1478
    [154] SUN jiao. Biological evaluation of biomaterials and medical devices. Chinese Journal of Medical Instrumentation, 2003:27:1 - 3.
    [155] Kirkpatrick, C. J. ; Krump-Konvalinkova, V. ; Unger, R. E. ; Bittinger, F. ; Otto, M. ; Peters, K. Tissue response and biomaterial integration: the efficacy of in vitro methods. Biomolecular Engineering, 2002(19)2-6. 211-217
    [156] Seyfert, Ulrich Theo; Biehl, Volker; Schenk, Joachim In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4. Biomolecular Engineering, 2002(19) 2-6. 91-96
    [157] Pairente JL et al. The biocompatibility of catheters and stents used on urology. Prog Urol Apr 1998;8 (2):181
    [158] GB/T 16886.
    
    [159]ISO 10933~1:1992,医疗器械生物学评价[S]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700