核基质结合蛋白SATB1调控肝癌细胞侵袭转移的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的原发性肝癌为最常见恶性肿瘤之一,肝癌患者临床确诊时大部分已出现肝内或肝外转移,是导致死亡的主要原因。肿瘤侵袭转移过程涉及细胞EMT改变、癌细胞迁移等多个方面,许多与肿瘤侵袭转移有关的基因、转录因子及细胞因子等参与其中,彻底阐明它们的相互作用极为困难。最近研究发现核基质结合蛋白SATB1在乳腺癌转移调控中起着重要作用。SATB1与传统转录因子识别特异基因特殊位点不同,它可识别并结合不同基因MAR区富含AT碱基序列从而调控基因复制、转录。本研究将检测SATB1在肝癌组织和细胞中的表达,研究其在肝癌侵袭转移中的作用机制。
     方法收集45例原发性肝癌及相应癌旁组织、选择8种不同转移潜能的肝癌细胞株,半定量PCR、western blot、免疫组化及免疫荧光检测SATB1 mRNA和蛋白水平表达,并用real-time PCR对SATB1 mRNA水平进行定量分析。采用shRNA干扰方法和真核表达SATB1全长基因下调或上调高、低转移潜能肝癌细胞株SATB1表达,而后进行以下实验:基因芯片技术筛选SATB1可调控的肝癌侵袭转移相关基因;real-time PCR、CHIP证实SATB1结合肝癌侵袭转移部分相关基因;倒置显微镜下观察细胞形态变化情况;鬼笔环肽标记细胞F-actin,采用激光共聚焦及免疫荧光技术检测细胞骨架重组情况;western blot检测细胞Vimentin、Tight junction protein 1、E-cadherin表达变化;transwell侵袭迁移实验检测细胞侵袭转移能力的改变;裸鼠皮下肿瘤生长实验及原位移植实验检测SATB1对肿瘤生长和转移的调控作用。
     结果45例原发性肝癌组织中,28(62%)例癌组织检测到SATB1蛋白水平表达,癌细胞核内可见棕黄色颗粒,癌组织中SATB1表达明显高于癌旁组织(18例,占40%,u=2.1, p<0.05), SATB1 mRNA水平定量分析结果显示,SATB1表达与肿瘤直径、分化程度、合并肝硬化以及癌组织转移有关(p<0.05),而与患者年龄、性别、肿瘤结节数无关。HBsAg阳性患者中肝癌组织SATB1 mRNA表达明显高于HBsAg阴性患者(p≤0.01);8种不同转移潜能的肝癌细胞株中,高转移潜能的肝癌细胞SK-Hep-1、HCCLM8、MHCC-97H中SATB1 mRNA高表达(Ct值分别为2.83±0.6、2.72±0.54、2.09±0.28),中、低转移潜能肝癌细胞株MHCC-97L、SMMC-7721、HepG2、Huh7中SATB1mRNA低表达(Ct值分别为0.29±0.1、0.35±0.11、0.19±0.08、0.14±0.02,与高转移潜能的肝癌细胞相比,p<0.05),无转移能力Hep3B细胞中几乎无SATB1表达;高转移潜能SK-Hep-1细胞抑制SATB1后基因芯片技术检测结果表明,1450个基因表达上调2倍,1635个基因表达下调2倍;低转移潜能肝癌SMMC-7721细胞上调SATB1表达,1286个基因表达上调2倍,1463个基因表达下调2倍,两组结果对比,SATB1可调节肝癌侵袭转移基因有近200个,如粘附分子CDH3、FNl,信号转导基因TCF4,抑癌基因APC,蛋白酶MMP12、SLPI、CTSL1,转录因子Ets1,转移相关基因SERPINB5、VIL2等,对其中部分基因采用real-time PCR、CHIP实验方法研究,结果显示,SATB1可与这些基因MAR区相应位点结合并调控其表达;SK-Hep-1细胞抑制SATB1表达后,细胞形态明显改变,长纺锤体细胞收缩呈多角形,细胞规律方向性生长改为呈岛状增殖,鬼笔环肽标记细胞F-actin后,激光共聚焦显微镜下观察发现细胞骨架消失,横贯于细胞长轴的粗大应力纤维解聚成细小微丝,散布于细胞核周围,而SMMC-7721细胞上调SATB1表达后,椭圆形细胞拉长变为长纺锤体形,细胞间隙增宽,细胞长轴方向可见明显聚集的应力纤维,与抑制SATB1表达诱导细胞形态和骨架变化相反;抑制SATB1表达后,western blot检测细胞形态、骨架改变相关关键蛋白分子,发现Tight junction protein 1 (0.62±0.02 vs 0.06±0.01,p<0.01)、E-cadherin表达增强(0.82±0.04 vs 0.42±0.01, p<0.05), Vimentin表达下降(0.27±0.02vs 0.57±0.06,p<0.05),上调SATB1表达后,与对照相比,Tight junction protein 1 (0.35±0.01 vs 0.51±0.04, p<0.05)、E-cadherin表达下降(0.36±0.02 vs 0.64±0.06,p≤0.01), Vimentin表达增强(0.64±0.03 vs 0.34±0.04, p<0.05); transwell侵袭迁移实验结果表明,抑制SATB1表达,穿过基质胶的细胞较对照组明显减少(OD值0.16±0.02vs 0.33±0.05,p<0.05),迁移实验示穿过膜孔细胞较对照减少(OD值0.76±0.12 vs0.22±0.06,p<0.05);上调SATB1表达,穿过基质胶的细胞明显增多,实验组与对照组相比p<0.05(0.67±0.08 vs 0.26±0.04);迁移实验示穿过膜孔细胞增多,实验组与对照组相比p<0.05(0.79±0.11 vs 0.26±0.04);裸鼠皮下肿瘤生长实验表明,下调SATB1表达,实验组与对照组肿瘤平均重量分别为0.14±0.02g、0.43±0.06g(p<0.05),上调SATB1表达,实验组与对照组肿瘤平均质量分别为0.57±0.05g、0.2±0.07g(p<0.05)。肝癌组织原位移植(肿瘤组织接种到肝脏)实验检测SATB1上调或下调后对肿瘤侵袭转移能力的影响,因裸鼠在观察期内死亡,未观察到活体肿瘤侵袭转移方面的改变。
     结论SATB1在肝癌组织中高表达,其表达与肝癌组织远处转移有关,转移能力越强的肝癌细胞株,SATB1表达越高;下调或上调SATB1表达,可调控许多肝癌侵袭转移相关基因表达,SATB1可与这些基因MAR区相应位点结合并调控其表达,诱导细胞出现MET-EMT样的形态、骨架改变,并调控Vimentin、Tight junction protein 1、E-cadherin蛋白表达的增强或下降;下调或上调SATB1表达的综合效应为肝癌细胞株侵袭转移能力的降低或增强。体内实验表明,SATB1可调控肿瘤生长。
Background:Hepatocellular carcinoma is one of the most common malignant tumors worldwide. At the very early hepatocellular carcinoma usually has little or no symptoms until the clinical diagnosis, then most have occurred intrahepatic or extrahepatic metastasis which due to the main cause of the death in hepatocellular carcinoma patients. Tumor metastasis contains several steps:EMT, loss of cellular adhesion, increased motility and invasiveness, entry and survival in the circulation, exit into new tissue, and eventual colonization of a distant site. Lots of genes, transcription factors and cytokines were involved in, and there is interaction between them; this increases the difficulty to screening target genes or molecules for treatment. Recently, Han report that SATB1 play important role in breast cancer. Unlike the classic transcription factors which only bind special binding sites in individual target gene, SATB1 is a DNA-binding protein, locates in the vicinity of gene regulatory elements and regulates gene expression via binding the MAR sites on chromosomes. Here we detected SATB1 expression in tumor samples and hepatoma cells, and investigated the role of SATB1 in metastasis and invasion of HCC.
     Methods:Forty-five Chinese patients who underwent resection of hepatocellular carcinoma in thedepartment of Surgery, Tongji Hospital, Huazhong University of Science and Technology between 2008~2009. Cell lines used in the study include HCCLM8, MHCC-97H,SK-HEP-1,MHCC-97L,HepG2,SMMC-7721,Huh7,Hep3B. SATB1 was detected by Semi-quantitative PCR, western blotting, immunohistochemistry immunofluorescence in cells and HCC tissues, the relationship between SATB1 mRNA expressions with clinicopathological features was further analyzed by real-time PCR; SATB1 expression was inhibited by shRNA in SK-Hep-1 cell and over-expressed by transfected with the whole length of SATB1 cDNA in SMMC-7721 cell, expression microarray analysis was applied to find genes related to metastasis which were regulated by SATB1. Real-Time PCR and CHIP was used to verified the genes regulated by SATB1 in hepatocellular carcinoma, cell morphology was observed using inverted microscope, the cytoskeleton was observed using confocal laser scanning microscopy after F-actin staining by TRITC-labeled phalloidin; the cell ability of migration and invasion was examined by transwell analysis when downregulation/upregulation of SATB1 expression; tumor growth and metastasis assay was used to tested after downregulation/upregulation of SATB1 in HCC.
     Results:We detected SATB1 expression in 45 cases of HCC tissues and their corresponding non-tumorous liver samples,28 (62%) cases of the tumors and 18 (40%) cases of the non-tumorous liver samples were positive for SATB1, the SATB1 protein was located in nucleus, the mRNA and the protein of the SATB1 expression showed a higher level in tumor tissues than the non-tumorous liver samples. The relationship between SATB1 mRNA with clinicopathological features was further analyzed. The data suggested that SATB1 expression increased with the liver cirrhosis, tumor diameter, portal invasion, lymph node metastases and poor differentiation (p<0.05), it should be noted that a significant difference in the levels of SATB1 expression was observed between the Serum HBsAg positive and negative tissues (p< 0.05). Then we examined SATB1 expression in 8 kinds of hepatoma cell lines with different metastatic potential, including high metastatic potential cancer cell linesSK-HEP-1, HCCLM8, MHCC-97H (Ct value were 2.83±0.6,2.72±0.54,2.09±0.28), medium and low metastatic potential cell lines MHCC-97L, HepG2, SMMC-7721, Huh7 (Ct value were 0.29±0.1, 0.35±0.11,0.19±0.08,0.14±0.02), non metastatic potential cell lines Hep3B had little SATB1 expression. we knocked down SATB1 expression via SATB1-shRNA mediated RNA interference in human hepatoma SK-HEP-1 cell line; over-expressed SATB1 in SMMC-7721 by transfecting with the whole length of SATB1 plasmids pEGFP1-SATB1, Expression microarray analysis indicated that 1450 SATB1-activated genes and 1634 SATB1-repressed genes are marked by double-headed arrows between the shRNA-control and shRNA-SATB1 in SK-Hep-1 cells, while 1286 SATB1-activated genes and 1463 SATB1-repressed genes are marked by double-headed arrows between the pEGFP1-control and pEGFP1-SATB1 in SMMC-7721 cells. SATB1 regulated nearly 200 genes compared of the two sets of results which involved in invasion and metastasis of HCC, such as CDH3, FN1 adhesion molecules; TCF4 signal transduction genes; APC tumor suppressor gene; MMP12, CTSL1 protease; Etsl transcription factor; SLPI,SERPINB5,Vil2 gene. These genes were verified by Real-Time and CHIP and the results show that SATB1 regulated genes expression by binding the ATC sites in DNA. Down-regulation of SATB1 result in cell displaying cobblestone epithelial morphology instead of the usual typical long spindle shape using reverse microscope which showed in control group. Up-regulation of SATB1 leaded to cell elongating and lacking adherens junctions, the cell appeared an Epithelial-Mesenchymal Transition like changes. We also investigated the distribution of F-actin between the cells stably expressing SATB1 shRNA, full-length SATB1 cDNA and their corresponding control group. Down-regulation of SATB1 in SK-Hep-1 caused cytoskeleton disappeared and the microfilament beam scattered around the cells. Up-regulation of SATB1 induced filaments into stress fibers which were orientated parallel to the long axis of the cell and were present throughout the nucleoplasm. We detected vimentin, E-cadherin, tight junction protein 1 expression, and found knocking down of SATB1 expression in SK-HEP-1, the cell had increased expressions of E-cadherin(0.82±0.04 vs 0.42±0.01, p<0.05) and tight junction protein (0.62±0.02 vs 0.06±0.01, p<0.01) and a decreased expressions of vimentin(0.27±0.02 vs 0.57±0.06, p<0.05), while the opposite results appeared in the SMMC-7721 transfecxted with the pEGFPl-SATBl plasmids, the cell had decreased expressions of E-cadherin(0.36±0.02 vs 0.64±0.06, p<0.01) and tight junction protein (0.35±0.01 vs 0.51±0.04,p<0.05) and increased expressions of vimentin(0.64±0.03 vs 0.34±0.04, p<0.05). Then we examined whether downregulation/upregulation of SATB1 expression had effect on the cell migration and invasion. We evaluated the serum induced migration of cells using transwell migration and invasion assay. The results suggested that down-regulation of SATB1 resulted in significantly reduced ability in cell migration and invasion (the OD value was 0.16±0.02 vs 0.33±0.05, P< 0.01,0.76±0.12,0.22±0.06,p< 0.05), while up-regulation of SATB1 increased ability in migration and invasion (the OD value was 0.79±0.11 vs 0.26±0.04, P< 0.05,0.67±0.08 vs 0.26±0.04, p< 0.05). In order to observe the effect of SATB1 expression on the growth and migration of tumors in vivo, we established four xenograft tumor models in BALB/c nude mice. The mean weight of tumors of SATB1-shRNA of SK-Hep-1 was significantly lower than that of control group (experimental vs control 0.14±0.02g vs 0.43±0.06g, p<0.5). In contrast with the results of the above, the mean weight of tumors of pEGFP1-SATB1 of SMMC-7721 group was significantly more than those of control tumors groups (experimental vs control 0.57±0.05g vs 0.2±0.07g, p<0.5). As the BALB/c nude mice died during the observation, the result of tumor migration assay in vivo was not obtained.
     Conclusions:SATB1 expression was detected in HCC and cell lines, SATB1 expression was related to distant metastases, the SATB1 expression increased in high metastatic potential cells; down-expressed and over-expressed SATB1 could regulated many genes expression by binding the MARsites of gene DNA sequence; SATB1 induced cell changes in MET-EMT like morphology and cytoskeletal reorganization, and regulated Vimentin,Tight junction protein 1,E-cadherin expression, and result in decreased or increased ability in migration and invasion in vitro and tumor growth in vivo.
引文
1. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis:from genes to environment. Nat Rev Cancer.2006 Sep;6(9):674-87.
    2. NguyenDX, Massague J.Genetic determinants of cancer metastasis. Nat Rev Genet. 2007 May;8(5):341-52.
    3. Gupta GP, Massague J. Cancer metastasis:building a framework.Cell.2006 Nov 17;127(4):679-95.
    4. Han HJ, Russo J, Kohwi Y, Kohwi-Shigematsu T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature.2008 Mar 13;452(7184):187-93.
    5. Richon VM. A new path to the cancer epigenome. Nat Biotechnol.2008 Jun;26(6):655-6.
    6. Li QQ, Chen ZQ, Xu JD, Cao XX, Chen Q, Liu XP, Xu ZD. Overexpression and involvement of special AT-rich sequence binding protein 1 in multidrug resistance in human breast carcinoma cells. Cancer Sci.2010 Jan;101(1):80-6.
    7. Patani N, Jiang W, Mansel R, Newbold R, Mokbel K. The mRNA expression of SATB1 and SATB2 in human breast cancer. Cancer Cell Int.2009 Jul 30;9:18.
    8. Zhao XD, Ji WY, Zhang W, He LX, Yang J, Liang HJ, Wang LL.Overexpression of SATB1 in Laryngeal Squamous Cell Carcinoma. ORL J Otorhinolaryngol Relat Spec.2010 Jan 22;72(1):1-5.
    9. Dickinson LA, Joh T, Kohwi Y, Kohwi-Shigematsu T.A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition.Cell.1992 Aug 21;70(4):631-45.
    10. Dickinson LA, Dickinson CD, Kohwi-Shigematsu T. An atypical homeodomain in SATB1 promotes specific recognition of the key structural element in a matrix attachment region.J Biol Chem.1997 Apr 25;272(17):11463-70.
    11. Alvarez JD, Yasui DH, Niida H, Joh T, Loh DY, Kohwi-Shigematsu T. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev.2000 Mar 1;14(5):521-35.
    12. Chattopadhyay S, Pavithra L.MARs and MARBPs:key modulators of gene regulation and disease manifestation. Subcell Biochem.2007;41:213-30.
    13. Kieffer LJ, Greally JM, Landres I, Nag S, Nakajima Y, Kohwi-Shigematsu T, Kavathas PB. Identification of a candidate regulatory region in the human CD8 gene complex by colocalization of DNase I hypersensitive sites and matrix attachment regions which bind SATB1 and GATA-3. J Immunol.2002 Apr 15;168(8):3915-22.
    14. Cai S, Han HJ, Kohwi-Shigematsu T.Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet.2003 May;34(1):42-51.
    15. Douglas NC, Jacobs H, Bothwell AL, Hayday AC. Defining the specific physiological requirements for c-Myc in T cell development. Nat Immunol.2001 Apr;2(4):307-15.
    16. Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature.2002 Oct 10;419(6907):641-5.
    17. Konzarides T. Histone acetylases and deacetylases in cellproliferation. Curr Opin Genet Dev.1999.9:40-48.
    18. Dickinson LA, Kohwi-Shigematsu T. Nucleolin is a matrix attachment region DNA-binding protein that specifically recognizes a region with high base-unpairing potential. Mol Cell Biol.1995 Jan;15(1):456-65.
    19. Seo J, Lozano MM, Dudley JP. Nuclear matrix binding regulates SATB1-mediated transcriptional repression.J Biol Chem.2005 Jul 1;280(26):24600-9.
    20. Yamaguchi H, Tateno M, Yamasaki K. Solution structure and DNA-binding mode of the matrix attachment region-binding domain of the transcription factor SATB1 that regulates the T-cell maturation.J Biol Chem.2006 Feb 24;281(8):5319-27.
    21. Nie H, Maika SD, Tucker PW, Gottlieb PD.A role for SATB1, a nuclear matrix association region-binding protein, in the development of CD8SP thymocytes and peripheral T lymphocytes.J Immunol.2005 Apr 15;174(8):4745-52.
    22. Alvarez-Nava F, Soto M, Martinez MC, Prieto M, Alvarez Z. FISH and PCR analyses in three patients with 45,X/46,X,idic(Y) karyotype:clinical and pathologic spectrum. Ann Genet.2003 Oct-Dec;46(4):443-8.
    23. Gasser SM, Laemmli UK.Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes of D. melanogaster.Cell.1986 Aug 15;46(4):521-30.
    24. Boulikas T.Chromatin domains and prediction of MAR sequences.Int Rev Cytol. 1995;162A:279-388.
    25. Spitzner JR, Muller MT. Application of a degenerate consensus sequence to quantify recognition sites by vertebrate DNA topoisomerase II.J Mol Recognit.1989 Sep;2(2):63-74.
    26. Kas E, Laemmli UK. In vivo topoisomerase II cleavage of the Drosophila histone and satellite Ⅲ repeats:DNA sequence and structural characteristics.EMBO J.1992 Feb;11(2):705-16.
    27. Bode J, Kohwi Y, Dickinson L, Joh T, Klehr D, Mielke C, Kohwi-Shigematsu T. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 1992,255:195-197.
    28. Rollini P, Namciu SJ, Marsden MD, Fournier RE. Identification and characterization of nuclear matrix-attachment regions in the human serpin gene cluster at 14q32.1. Nucleic Acids Res.1999 Oct 1;27(19):3779-91.
    29. Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM. Expression profiling using cDNA microarrays.Nat Genet.1999 Jan;2112-(1 Suppl):10-4.
    30. Cheung VG, Morley M, Aguilar F, Massimi A, Kucherlapati R, Childs G.Making and reading microarrays.Nat Genet.1999 Jan;21(1 Suppl):15-9.
    31. Fan X, Shi L, Fang H, Cheng Y, Perkins R, Tong W. DNA microarrays are predictive of cancer prognosis:a re-evaluation. Clin Cancer Res.2010 Jan 15;16(2):629-36.
    32. Cairns RA, Khokha R, Hill RP. Molecular mechanisms of tumor invasion and metastasis:an integrated view. Curr Mol Med.2003 Nov;3(7):659-71.
    33. Kadler KE, Hill A, Canty-Laird EG. Collagen fibrillogenesis:fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol.2008 Oct;20(5):495-501.
    34. Saadeddin A, Babaei-Jadidi R, Spencer-Dene B, Nateri AS. The links between transcription, beta-catenin/JNK signaling, and carcinogenesis. Mol Cancer Res.2009 Aug;7(8):1189-96.
    35. Kennell J, Cadigan KM. APC and beta-catenin degradation. Adv Exp Med Biol. 2009;656:1-12.
    36. Nenan S, Boichot E, Lagente V, Bertrand CP. Macrophage elastase (MMP-12):a pro-inflammatory mediator? Mem Inst Oswaldo Cruz.2005 Mar; 100 Suppl 1:167-72.
    37. Cailhier JF, Sirois I, Laplante P, Lepage S, Raymond MA, Brassard N, Prat A, Iozzo RV, Pshezhetsky AV, Hebert MJ. Caspase-3 activation triggers extracellular cathepsin L release and endorepellin proteolysis. J Biol Chem.2008 Oct 3;283(40):27220-9.
    38. Fujimoto J, Aoki I, Toyoki H, Khatun S, Sato E, Sakaguchi H, Tamaya T.Clinical implications of expression of ETS-1 related to angiogenesis in metastatic lesions of ovarian cancers. Oncology.2004;66(5):420-8.
    39. Fievet B, Louvard D, Arpin M. ERM proteins in epithelial cell organization and functions. Biochim Biophys Acta.2007 May;1773(5):653-60.
    40. Devoogdt N, Rasool N, Hoskins E, Simpkins F, Tchabo N, Kohn EC. Overexpression of protease inhibitor-dead secretory leukocyte protease inhibitor causes more aggressive ovarian cancer in vitro and in vivo. Cancer Sci.2009 Mar;100(3):434-40.
    41. Terashima M, Maesawa C, Oyama K, Ohtani S, Akiyama Y, Ogasawara S, Takagane A, Saito K, Masuda T, Kanzaki N, Matsuyama S, Hoshino Y, Kogure M, Gotoh M, Shirane M, Mori K. Gene expression profiles in human gastric cancer:expression of maspin correlates with lymph node metastasis. Br J Cancer.2005 Mar 28;92(6):1130-6.
    42. Thiery JP. Epithelial-mesenchymal transitions in tumour progression.Nat Rev Cancer.2002 Jun;2(6):442-54.
    43. Zeisberg M, Neilson EG Biomarkers for epithelial-mesenchymal transitions.J Clin Invest.2009 Jun;119(6):1429-37.
    44. Kalluri R, Weinberg RA.The basics of epithelial-mesenchymal transition.J Clin Invest.2009 Jun; 119(6):1420-8.
    45. Wells A, Yates C, Shepard CR. E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clin Exp Metastasis.2008;25(6):621-8.
    46. Takai E, Tan X, Tamori Y, Hirota M, Egami H, Ogawa M. Correlation of translocation of tight junction protein Zonula occludens-1 and activation of epidermal growth factor receptor in the regulation of invasion of pancreatic cancer cells. Int J Oncol. 2005 Sep;27(3):645-51.
    47. Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M. Vimentin and epithelial-mesenchymal transition in human breast cancer--observations in vitro and in vivo. Cells Tissues Organs.2007; 185(1-3):191-203.
    48. Yu D, Wang SS, Dulski KM, Tsai CM, Nicolson GL, Hung MC. c-erbB-2/neu overexpression enhances metastatic potential of human lung cancer cells by induction of metastasis-associated properties. Cancer Res.1994 Jun 15;54(12):3260-6.
    49. Sato N, Maehara N, Mizumoto K, Nagai E, Yasoshima T, Hirata K, Tanaka M. Telomerase activity of cultured human pancreatic carcinoma cell lines correlates with their potential for migration and invasion. Cancer.2001 Feb 1;91(3):496-504.
    50. Tang ZY, Sun FX, Tian J, Ye SL, Liu YK, Liu KD, Xue Q, Chen J, Xia JL, Qin LX, Sun SL, Wang L, Zhou J, Li Y, Ma ZC, Zhou XD, Wu ZQ, Lin ZY, Yang BH. Metastatic human hepatocellular carcinoma models in nude mice and cell line with metastatic potential. World J Gastroenterol.2001 Oct;7(5):597-601.
    1. Dickinson LA, Joh T, Kohwi Y, Kohwi-Shigematsu T. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition.Cell.1992 Aug 21;70(4):631-45.
    2. Dickinson LA, Dickinson CD, Kohwi-Shigematsu T. An atypical homeodomain in SATB1 promotes specific recognition of the key structural element in a matrix attachment region. J Biol Chem.1997 Apr 25;272(17):11463-70.
    3. Kouzarides T. Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev.1999 Feb;9(1):40-8.
    4. Kieffer LJ, Greally JM, Landres I, Nag S, Nakajima Y, Kohwi-Shigematsu T, Kavathas PB. Identification of a candidate regulatory region in the human CD8 gene complex by colocalization of DNase I hypersensitive sites and matrix attachment regions which bind SATB1 and GATA-3. J Immunol.2002 Apr 15;168(8):3915-22.
    5. Douglas NC, Jacobs H, Bothwell AL, Hayday AC. Defining the specific physiological requirements for c-Myc in T cell development. Nat Immunol.2001 Apr;2(4):307-15.
    6. Kohwi-Shigematsu T, Kohwi Y. Torsional stress stabilizes extended base unpairing in suppressor sites flanking immunoglobulin heavy chain enhancer. Biochemistry.1990 Oct 16;29(41):9551-60.
    7. Bode J, Kohwi Y, Dickinson L, Joh T, Klehr D, Mielke C, Kohwi-Shigematsu T. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science.1992 Jan 10;255(5041):195-7.
    8. Dickinson LA, Kohwi-Shigematsu T. Nucleolin is a matrix attachment region DNA-binding protein that specifically recognizes a region with high base-unpairing potential. Mol Cell Biol.1995 Jan;15(1):456-65.
    9. Nakagomi K, Kohwi Y, Dickinson LA, Kohwi-Shigematsu T. A novel DNA-binding motif in the nuclear matrix attachment DNA-binding protein SATB1. Mol Cell Biol.1994 Mar; 14(3):1852-60.
    10. Wang B, Dickinson LA, Koivunen E, Ruoslahti E, Kohwi-Shigematsu T.A novel matrix attachment region DNA binding motif identified using a random phage peptide library. J Biol Chem.1995 Oct 6;270(40):23239-42.
    11. Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature.2002 Oct 10;419(6907):641-5.
    12. Cai S, Han HJ, Kohwi-Shigematsu T. Tissue-specific nuclear architecture and gene expression regulated by SATB1.Nat Genet.2003 May;34(1):42-51.
    13. Broussard-Diehl C, Bauer SR, Scheuermann RH.A role for c-myc in the regulation of thymocyte differentiation and possibly positive selection.J Immunol.1996 May 1;156(9):3141-50.
    14. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, Del Bianco C, Rodriguez CG, Sai H, Tobias J, Li Y, Wolfe MS, Shachaf C, Felsher D, Blacklow SC, Pear WS, Aster JC. c-Myc is an important direct target of Notch 1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev.2006 Aug 1;20(15):2096-109.
    15. Douglas NC, Jacobs H, Bothwell AL, Hayday AC. Defining the specific physiological requirements for c-Myc in T cell development. Nat Immunol.2001 Apr;2(4):307-15.
    16. Beadling C, Smith KA.Tactics for the isolation of interleukin-2-induced immediate-early genes. Semin Immunol.1993 Oct;5(5):365-73.
    17. Beadling C, Johnson KW, Smith KA. Isolation of interleukin 2-induced immediate-early genes. Proc Natl Acad Sci U S A.1993 Apr 1;90(7):2719-23.
    18. Alvarez JD, Yasui DH, Niida H, Joh T, Loh DY, Kohwi-Shigematsu T. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev.2000 Mar 1;14(5):521-35.
    19. Galande S, Dickinson LA, Mian IS, Sikorska M, Kohwi-Shigematsu T. SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol Cell Biol.2001 Aug;21(16):5591-604.
    20. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature.1990 Nov 22;348(6299):334-6.
    21. Sato N, Hotta K, Waguri S, Nitatori T, Tohyama K, Tsujimoto Y, Uchiyama Y. Neuronal differentiation of PC 12 cells as a result of prevention of cell death by bcl-2. J Neurobiol.1994 Oct;25(10):1227-34.
    22. Chen Q, Turner J, Watson AJ, Dive C. v-Abl protein tyrosine kinase (PTK) mediated suppression of apoptosis is associated with the up-regulation of Bcl-XL. Oncogene.1997 Oct;15(18):2249-54.
    23. Young RL, Korsmeyer SJ.A negative regulatory element in the bcl-2 5'-untranslated region inhibits expression from an upstream promoter.Mol Cell Biol.1993 Jun;13(6):3686-97.
    24. Miyashita T, Harigai M, Hanada M, Reed JC. Identification of a p53-dependent negative response element in the bcl-2 gene.Cancer Res.1994 Jun 15;54(12):3131-5.
    25. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC.Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene.1994 Jun;9(6):1799-805.
    26. Heckman CA, Mehew JW, Ying GG, Introna M, Golay J, Boxer LM. A-Myb up-regulates Bcl-2 through a Cdx binding site in t(14;18) lymphoma cells.J Biol Chem. 2000 Mar 3;275(9):6499-508.
    27. Schiavone N, Rosini P, Quattrone A, Donnini M, Lapucci A, Citti L, Bevilacqua A, Nicolin A, Capaccioli S. A conserved AU-rich element in the 3'untranslated region of bcl-2 mRNA is endowed with a destabilizing function that is involved in bcl-2 down-regulation during apoptosis. FASEB J.2000 Jan; 14(1):174-84.
    28. Wu Y, Mehew JW, Heckman CA, Arcinas M, Boxer LM. Negative regulation of bcl-2 expression by p53 in hematopoietic cells. Oncogene.2001 Jan 11;20(2):240-51.
    29. Heckman CA, Mehew JW, Boxer LM. NF-kappaB activates Bcl-2 expression in t(14;18) lymphoma cells. Oncogene.2002 May 30;21(24):3898-908.
    30. Donnini M, Lapucci A, Papucci L, Witort E, Jacquier A, Brewer G, Nicolin A, Capaccioli S, Schiavone N. Identification of TINO:a new evolutionarily conserved BCL-2 AU-rich element RNA-binding protein. J Biol Chem.2004 May 7;279(19):20154-66. Epub 2004 Feb 9.
    31. Chen HM, Boxer LM. Pi 1 binding sites are negative regulators of bcl-2 expression in pre-B cells. Mol Cell Biol.1995 Jul;15(7):3840-7.
    32. Wilson BE, Mochon E, Boxer LM. Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol.1996 Oct;16(10):5546-56.
    33. Perillo B, Sasso A, Abbondanza C, Palumbo G.17beta-estradiol inhibits apoptosis in MCF-7 cells, inducing bcl-2 expression via two estrogen-responsive elements present in the coding sequence.Mol Cell Biol.2000 Apr;20(8):2890-901.
    34. Lang G, Gombert WM, Gould HJ. A transcriptional regulatory element in the coding sequence of the human Bcl-2 gene. Immunology.2005 Jan; 114(1):25-36.
    35. Tsujimoto Y, Jaffe E, Cossman J, Gorham J, Nowell PC, Croce CM. Clustering of breakpoints on chromosome 11 in human B-cell neoplasms with the t(11;14) chromosome translocation. Nature.1985 May 23-29;315(6017):340-3.
    36. Mol Cell Biol.2005 Aug;25(15):6475-84. Both V(D)J coding ends but neither signal end can recombine at the bcl-2 major breakpoint region, and the rejoining is ligase IV dependent. Raghavan SC, Hsieh CL, Lieber MR.
    37. Raghavan SC, Swanson PC, Ma Y, Lieber MR. Double-strand break formation by the RAG complex at the bcl-2 major breakpoint region and at other non-B DNA structures in vitro. Mol Cell Biol.2005 Jul;25(14):5904-19.
    38. Raghavan SC, Chastain P, Lee JS, Hegde BG, Houston S, Langen R, Hsieh CL, Haworth IS, Lieber MR. Evidence for a triplex DNA conformation at the bcl-2 major breakpoint region of the t(14;18) translocation. J Biol Chem.2005 Jun 17;280(24):22749-60.
    39. Ramakrishnan M, Liu WM, DiCroce PA, Posner A, Zheng J, Kohwi-Shigematsu T, Krontiris TG.Modulated binding of SATB1, a matrix attachment region protein, to the AT-rich sequence flanking the major breakpoint region of BCL2.Mol Cell Biol.2000 Feb;20(3):868-77.
    40. Zhang J, Ma C, Han X, Durrin LK, Sun Y. The bcl-2 major breakpoint region (mbr) possesses transcriptional regulatory function. Gene.2006 Sep 1;379:127-31.
    41. Ma C, Zhang J, Durrin LK, Lv J, Zhu D, Han X, Sun Y. The BCL2 major breakpoint region (mbr) regulates gene expression. Oncogene.2007 Apr 19;26(18):2649-57.
    42. Nature.2008 Mar 13;452(7184):187-93. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis.Han HJ, Russo J, Kohwi Y, Kohwi-Shigematsu T.
    43. Gal-Yam EN, Saito Y, Egger G, Jones PA. Cancer epigenetics:modifications, screening, and therapy. Annu Rev Med.2008;59:267-80.
    44.Flotho C, Claus R, Batz C, Schneider M, Sandrock I, Ihde S, Plass C, Niemeyer CM, Lubbert M. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells.Leukemia.2009 Jun;23(6):1019-28.
    45. Ghoshal K, Bai S. DNA methyltransferases as targets for cancer therapy. Drugs Today (Barc).2007 Jun;43(6):395-422.
    46. Ravandi F, Issa JP, Garcia-Manero G, O'Brien S, Pierce S, Shan J, Borthakur G, Verstovsek S, Faderl S, Cortes J, Kantarjian H. Superior outcome with hypomethylating therapy in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome and chromosome 5 and 7 abnormalities. Cancer.2009 Dec 15; 115(24):5746-51.
    47. Gardner JM, Evans KG, Goldstein S, Kim EJ, Vittorio CC, Rook AH. Vorinostat for the treatment of bullous pemphigoid in the setting of advanced, refractory cutaneous T-cell lymphoma.Arch Dermatol.2009 Sep;145(9):985-8. No abstract available.
    48. Watanabe T, Kato H, Kobayashi Y, Yamasaki S, Morita-Hoshi Y, Yokoyama H, Morishima Y, Ricker JL, Otsuki T, Miyagi-Maesima A, Matsuno Y, Tobinai K. Potential efficacy of the oral histone deacetylase inhibitor vorinostat in a phase I trial in follicular and mantle cell lymphoma.Cancer Sci.2010 Jan; 101(1):196-200.
    49. Kerr JS, Galloway S, Lagrutta A, Armstrong M, Miller T, Richon VM, Andrews PA.Nonclinical safety assessment of the histone deacetylase inhibitor vorinostat.Int J Toxicol.2010 Jan-Feb;29(1):3-19.
    50. Duvic M, Olsen EA, Breneman D, Pacheco TR, Parker S, Vonderheid EC, Abuav R, Ricker JL, Rizvi S, Chen C, Boileau K, Gunchenko A, Sanz-Rodriguez C, Geskin LJ.Evaluation of the long-term tolerability and clinical benefit of vorinostat in patients with advanced cutaneous T-cell lymphoma.Clin Lymphoma Myeloma.2009 Dec;9(6):412-6.
    51. Nickols NG, Jacobs CS, Farkas ME, Dervan PB. Modulating hypoxia-inducible transcription by disrupting the HIF-1-DNA interface. ACS Chem Biol.2007 Aug 17;2(8):561-71.
    52. Nickols NG, Dervan PB. Suppression of androgen receptor-mediated gene expression by a sequence-specific DNA-binding polyamide. Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10418-23. Epub 2007 Jun 12.
    53. Nickols NG, Jacobs CS, Farkas ME, Dervan PB. Improved nuclear localization of DNA-binding polyamides. Nucleic Acids Res.2007;35(2):363-70. Epub 2006 Dec 14.
    54. Richon VM. A new path to the cancer epigenome. Nat Biotechnol.2008 Jun;26(6):655-6.
    55. Zheng J. Is SATB1 a master regulator in breast cancer growth and metastasis? Womens Health (Lond Engl).2008 Jul;4(4):329-32.
    56. Dupont C, Armant DR, Brenner CA. Epigenetics:definition, mechanisms and clinical perspective. Semin Reprod Med.2009 Sep;27(5):351-7.
    57. Bird A. Perceptions of epigenetics. Nature.2007 May 24;447(7143):396-8.
    58. Wutz A, Gribnau J. X inactivation Xplained. Curr Opin Genet Dev.2007 Oct;17(5):387-93.
    59. Heard E, Avner P. Role play in X-inactivation. Hum Mol Genet.1994;3 Spec No:1481-5.
    60. Agrelo R, Souabni A, Novatchkova M, Haslinger C, Leeb M, Komnenovic V, Kishimoto H, Gresh L, Kohwi-Shigematsu T, Kenner L, Wutz A. SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Dev Cell.2009 Apr;16(4):507-16.
    61. Savarese F, Flahndorfer K, Jaenisch R, Busslinger M, Wutz A. Hematopoietic precursor cells transiently reestablish permissiveness for X inactivation.Mol Cell Biol.
    62. Agrelo R, Wutz A. Cancer progenitors and epigenetic contexts:an Xisting connection. Epigenetics.2009 Nov;4(8):568-70.
    63. Agrelo R, Wutz A. ConteXt of change--X inactivation and disease. EMBO Mol Med.2010 Jan;2(1):6-15.
    64. Brekken RA, Sage EH. SPARC, a matricellular protein:at the crossroads of cell-matrix. Matrix Biol.2000 Dec;19(7):569-80.
    65. Li K, Cai R, Dai BB, Zhang XQ, Wang HJ, Ge SF, Xu WR, Lu J.SATB1 regulates SPARC expression in K562 cell line through binding to a specific sequence in the third intron.Biochem Biophys Res Commun.2007 Apr 27;356(1):6-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700