新型微纳米生物活性玻璃的研制及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳米生物材料目前已成为生物医用材料领域一个研究热点和难点。大量的研究表明具有微纳米结构特征的生物材料表现出了积极的生物学响应,相对其他生物材料,微纳米材料可以显著促进细胞的粘附、增殖和分化。生物玻璃(BG)与天然的骨及牙齿有着相似的组成,具有较高的生物活性、生物相容性,是一类重要的骨修复材料。然而,目前临床应用的生物玻璃是通过高温熔融法制备,由于高温挥发和坩埚材料等原因易导致生物玻璃组成波动和有害杂质掺杂以及组成不均一等问题,使玻璃结构和性能难以控制。此外,材料的降解性能较差。近年来,通过溶胶-凝胶技术制备的生物玻璃由于其制备条件温和,材料组成和结构可以进行设计,比表面积高,具有纳米孔隙结构,生物活性高,降解性能可调控,使其具有很高的研究及应用价值,可望成为第三代生物材料的重要种类。溶胶-凝胶生物玻璃最大的问题在于颗粒难以分散,其微纳米结构、形态、颗粒尺寸大小难以控制,以至于材料的微纳米效应难以发挥;本论文采用溶胶-凝胶方法结合有机模板合成技术以及胶体化学原理,首次设计制备了具有可控微纳米表面、可调微纳米颗粒形态及尺寸大小的新型溶胶-凝胶生物活性玻璃,并研究了生物玻璃微纳米结构的形成机理、物理化学性质、离子释放动力学行为以及羟基磷灰石矿化活性,详细研究了材料微纳米表面、微纳米形态、微纳米尺寸对骨髓基质干细胞粘附、增殖、分化行为的影响。主要研究工作和结论如下:
     (1)溶胶-凝胶生物玻璃微纳米表面控制及性能研究
     采用溶胶-凝胶工艺,利用有机酸分子结构中的羟基、羧基与生物玻璃溶胶胶体颗粒表面羟基发生的氢键相互作用为机理,成功构建了溶胶-凝胶生物玻璃颗粒的微纳米表面结构;调节工艺参数如有机酸浓度和类型精确控制了材料表面性质如比表面积(80-200 m2/g)、孔隙体积(0.1-0.5 cc/g)、介孔直径(2-60 nm);微纳米表面生物玻璃离子释放行为符合一级动力学释放模型,表面结构和性质的变化调控了材料的离子释放速率和降解性,离子释放对环境的pH值影响不大(7.25-7.55);控制离子释放速率可以有效调控材料的羟基磷灰石(HA)形成活性,微纳米表面结构和快的离子释放速率有着高的HA形成能力;培养形式对材料细胞响应能力有影响,对于悬浮颗粒培养的方式,较低的比表面积及较慢的离子释放速率具有较高的促进细胞粘附和增殖的能力;细胞在颗粒表面培养研究发现具有微纳米表面结构和高比表面积有助于细胞的增殖和分化。
     (2)溶胶-凝胶生物玻璃颗粒的微纳米形态控制及性能研究.
     以溶胶-凝胶技术为基础,采用表面活性剂-分子模板(聚乙二醇PEG)反应机制,详细调节工艺参数,可以精确控制溶胶-凝胶生物玻璃颗粒的形态;以PEG为模板剂可以制备出规则球形的生物活性玻璃(SBG);通过酸性催化剂的选择可以控制SBG的形态;调整模板剂的浓度可以诱导棒状颗粒的形成(RBG);通过调整模板剂和生物玻璃溶胶的加入顺序,可以诱导空心结构的微球颗粒形成(HSBG);通过煅烧HSBG可以制备多孔的生物玻璃颗粒(PBG);SBG的离子释放行为在起初的24h内严格符合固体溶解一级动力学模型,离子释放速率小于无规则形态生物玻璃(IBG),呈现更稳定均一的释放行为;稳定而均一的离子释放行为使得SBG的HA形成速度慢于IBG,但形成的HA颗粒规则,结晶性弱于IBG,HA晶体沿着(002)晶面生长;细胞相容性研究表明,与IBG相比,规则的形态和稳定的离子释放速率可以促进细胞的粘附和增殖。
     在溶胶-凝胶模板技术的基础上,结合热致相分离技术和水热工艺可以制备出三维(3D)多孔贯穿的微纳米修复体(3DPBG),3DPBG具有多级孔径分布(10nm-10μm),纳米级孔壁,通过详细工艺参数可以调节孔壁的尺寸,孔径,孔的形态以及修复体的抗压强度;多级贯穿的孔径分布增加了材料的反应面积,大大提高了修复体的HA形成能力和细胞相容性。
     (3)溶胶-凝胶生物活性玻璃的微纳米尺寸控制以及性能研究
     通过酸催化溶胶-凝胶技术结合生物分子模板技术和酸催化溶胶碱性沉淀技术成功控制了BG的微纳米尺寸分布,制备了分散性良好的微纳米生物活性玻璃粉体等新型生物活性玻璃材料;酸催化溶胶-凝胶模板法可以控制BG颗粒直径在70 nm-5μm之间变化;酸催化溶胶碱性沉淀法可以制备出直径在40-350nm的纳米生物玻璃颗粒;通过加入分散剂聚乙二醇可以进一步控制颗粒直径在20-100 nm之间,并可诱导颗粒中介孔的形成;酸催化溶胶碱性沉淀法制备的纳米颗粒分散性要好于溶胶-凝胶模板法;SBF中的离子释放动力学行为研究表明,释放初期(6h)NBG具有快速的离子释放速率,符合一级动力学模型,速率常数为同期BG的6倍,此后释放速率小于BG,表现为稳定的缓慢释放;与BG相比,NBG具有快速的HA形成能力,反应6 h即有结晶性良好的致密的HA层覆盖在NBG表面,NBG表面形成的HA呈针片形态,而BG表面形成的HA则呈短棒状形态,NBG表面的HA具有更高的结晶度;与普通BG相比,NBG能更好的诱导细胞的粘附,促进细胞短期内的增殖,表现出良好的细胞相容性。
Micro/nano biological material has become the research hotspot and difficulty in the field of biomedical materials. A number of studies have shown that micro/nano structure of biological material can show a positive biological response such as greatly promoting cell adhesion, proliferation and differentiation, comparing with other biological materials. Bioactive glass (BG) possesses the similar chemical composition with the bone and teeth, and has the high apatite-forming bioactivity, biocompatibility, bone conductivity and inductivity. BG is the ideal biomaterial for bone tissue regeneration. However, for the traditional BG preparing by high temperature melting conditions it is difficult to control the structure and this material has the low biological activity and poor degradation. Sol-gel derived bioactive glass possesses lot of advantages such as mild conditions, controlled composition and design, high bioactivity and degradation. The problems for sol-gel BG are that it is difficult to control the dispersion, micro/nano structure, shape and size of BG particle. This study will use sol-gel method combining biological organic templates and colloidal chemistry, to control and design micro/nano structure of bioactive glasses, to study forming mechanism of micro/nano structure and their physical and chemical properties, apatite-forming bioactivity. The biological evaluation of material was carried out using marrow stem cell (MSCs) as a model. Main research work and conclusions are as follows:
     (1) Micro-nanoscale surface control and properties of sol-gel bioactive glass particles
     In sol-gel preparation process, by the hydroxyl bone interactions between hydroxyl-carboxyl acids and bioactive glass sol particles, we successfully controlled the formation of micro/nano surface structure of sol-gel bioactive glass particles.By changing concentrations of organic acids, the surface area, pore volume and mesoporous size can be controlled in between 80-200 m2 / g, 0.1-0.5 cc/g and 2-60 nm, respectively. The ions release behavior are according to the first order kinetic model. Ions release has little effect on the pH of environment. The ions release ratios and HA forming are controlled by surface properties of particles. The micro-nanoscale surface and high ions release can induce the fast HA forming ability. For cell culture of dispersive particles, lower surface area and slow ion release rate of materials are helpful to promote cell proliferation. For the cells culture of bulk particle surface, materials with the micro/nano surface structure and high surface area can enhance cells proliferation and differentiation.
     (2) Micro-nanoscale morphological control and properties of sol-gel bioactive glass particles
     For this study, through sol-gel co-organic template technology and optimizing process parameters, we successfully controlled the morphology of sol-gel bioactive glass particles. Regularly spherical bioactive glasses (SBG) can be prepared using PEG as templates (mean size 4.5μm). Tuning the adding of templates and sintering temperature can induce the formation of hollowly spherical bioactive glasses (HSBG) and porous sol-gel bioactive glasses particles (PBG). RBG can be prepared by increasing the template concentration.The study of short-term ion release behavior showed that SBG greatly reduces the ion release speed of BG and makes the whole ion release speed more uniform; SBG possesses the slower HA forming rate than irregular BG; SBG can induce the formation of uniform nanometer fiber sheets of apatite crystals; The apatite crystals grow along the direction (002); SBG (regular morphology) can significantly improve cell proliferation and adhesion.
     In this study, by sol-gel method and template hydro-thermal process, a three dimensional porous bioactive glass bulk (3D-PBG) with strength was synthesized. 3DPBG has the multi-level pore distributions(10nm-10μm) and nanoscale pore wall. The size of pore wall, pore size, pore morphology and the compressive strength can be controlled by tuning the parameters in detail. Because of the 3D connected pore distributions, 3DPBG presents the high HA forming ability and cellular compatibility.
     (3)Micro-nanoscale size control and properties of sol-gel bioactive glass particles
     In this study, controlled micro-nanoscale bioactive glass particles (NBG) can be prepared successfully by template-acids-catalyzed sol-gel technology and sols-basic precipitation method. The forming mechanism of nanoscale particles can be explained by sol-gel-template interaction. By sol-gel co-template method, the particle size of NBG can be controlled at 70 nm-5μm; Adjusting the volume ratio of water and TEOS can control the particles size of 500 nm-2μm; By sol-basic precipitation method, NBG sizes are about 40-350 nm by adjusting basic concentration and about 20-100 nm by regulating the PEG weight.
     Two stages of ions release can be found for NBG: higher release speed than BG at early time (6h) and stable release at middle or later time; NBG possesses the fast HA-forming ability and well crystalline dense HA layer formed after reaction for 6 h; Better cells attachment on NBG than BG can be found at early time and NBG promoted the cells proliferation.
引文
[1] Flanagan N. Regenerative Medicine Enters Realm of Reality [J]. Genetic Engineering &Bio techno logy News, 2007, 27 (7): 1252-1254
    [2] Horch R.E., Kopp J., Kneser U., et al. Tissue engineering of cultured skin substitutes [J]. J. Cell. Mole. Med., 2005, 9(3): 592- 608
    [3]顾其胜.天然降解性生物材料在整形外科中的应用[J].上海生物医学工程,2002,23 (2):49-52
    [4] Currey J.D. The mechanical adaptations of bones [M]. Princeton: Princeton University press, 1984: 12-100
    [5]欧阳健明.生物矿化的基质调控及其仿生应用[M].北京:化学工业出版社,2006:7-9,46-83,217-221
    [6]托尼史密斯.人体—人体结构,功能与疾病图解[M].左焕琛,上海:上海科学出版社,2003:1-50
    [7] Zhang H.B., Cui F.Z., Wang S., Li H.D. Characterizing the hierarchical structures of natural ivory[J]. MRS. Symp. Proc., 1991, 255: 151-154
    [8] Cui F.Z., Wen H.B., Zhang H.B, Li H.D. Anisotropy of micro indentation and morphology in natural ivory[J]. Mater Sci Eng C, 1994, 1(2): 87-89
    [9] Cui F.Z, Wen H.B, Zhang H.B, Li H.D. Nanophase hydroxyapatite-like crystal in the natural ivory[J]. J Mater Sci Lett, 1994, 13(14): 1024-1027
    [10] Weiner S, Wagner H.D. The material bone: Structure-Mechanical Function Relations[J]. Annu Rev of Mater Sci, 1998, 28(1): 271-298
    [11] Hancox N.M. Biology of Bone [M]. New York: Cambridge University Press, 1972:25-175
    [12] Weiner S, Arad T, Traub W. Crystal organization in rat bone lamellae [J]. FEBS Lett, 1991, 285(1): 49-54
    [13]廖素三.矿化胶原基组织工程骨材料的研究[D].北京:清华大学, 2003:1-95
    [14] Gerald Karp. Cell and Molecular Biology: Concepts and Experiments 3rd [M]. New York: Wiley & Sons, 2002: 14-105
    [15] Hench L.L. Bioactive materials: the potential for tissue regeneration [J]. J Biomed MaterRes, 1998, 41 (4): 511-518
    [16]杨洪,宁黔冀.生物硬组织材料羟基磷灰石—从天然到人工合成[J].生物学通报,2004,39 (5) :627-630
    [17] Yamamuro T, Hench L.L, Wilson J, Eds. CRC Handbook of Bioactive Ceramics, Calcium Phosphate and Hydroxylapatite Ceramics[M], Boca Raton: CRC Press, 1990:373-377
    [18] Hench L.L, Wilson J, Eds. An Introduction to Bioceramics[M]. London:World Scientific, 1993: 199-221.
    [19]宋立群,梁荣奇.牙周骨组织缺损修复的生物材料研究进展[J].口腔材料器械杂志,2003, 12 (2) : 83-85
    [20] Yamamuro T, Hench L. L, Wilson J, Eds. CRC Handbook of Bioactive Ceramics. Calcium Phosphate and Hydroxylapatite Ceramics [M]. Boca Raton: CRC Press, 1990: 89-94.
    [21] Schoen F.J, L evy R.J, Piehler H.R. Pathological considerations in replacement cardiac valves [J]. J Soc Cardiovasc Patho l, 1992, 8(1):29-52
    [22] Hench L.L, Polak J.M. Third-generation biomedical materials [J]. Science, 2002, 295 (5557) : 1014-1017
    [23] Mastrogiacomo M ,Muraglia A, Komlev V, et al. Tissue engineering of bone:search for a better scaffold [J]. Orthod Craniofac Res, 2005, 8(4):277-284
    [24]高春华,黄新友.组织工程与生物材料[J].上海生物医学工程,2003,24 (4) :46-49
    [25]余珐.再生医学的新时代——组织工程学[J].天津科技, 2002, 29 (5) : 33-37
    [26] Wilson J, Low S.B. Bioactive ceramics for periodontal treatment:comparative studies in the patus monkey [J]. J. Appl. Biomater, 1992, 3(2): 123-129
    [27] Greenspan D.C, Zhong J.P, Wheeler D. Bioactivity and biodegradability: melt vs sol-gel derived bioglass in vitro and in vivo [J]. Bioceramics, 1998, 11:345-348
    [28] Jones J.R, Sepulveda P, Hench L.L. Dose-dependent behavior of bioactive glass dissolution [J]. J. Biomed. Mater. Res. 2001, 58B (6):720-726
    [29] Hamadouche M, Meunier A, Greespan D.C, Blanchat C, Zhong J.P, Torre G.P.L. Long-term in vivo bioactivity and degradability of bulk sol-gel bioactive glasses [J]. Journal of Biomedical Materials Research, 2001, 54(4):560-566
    [30] Livingston T, Ducheyne P, Garino J. In vivo evaluation of bioactive scaffold for bone tissue engineering [J]. J Biomed Mater Res. 2002, 62(1): 1-13
    [31] Laqueeiere P, Jallot E, Kilian L, Benhayoune H, Balossier G. Effects of bioactive glass particles and their ionic product on intracellular concentrations[J]. J. Biomed. Mater. Res. 2003, 65A(4):441-446
    [32] Ohura K, Nakamura T, Yamamuro T, Kokubo T, Ebisawa Y, Kotoura Y, Oka M. Bone-bonding ability of P2O5-Free CaO·SiO2 glasses[J]. J. Biomed. Mater. Res.1991, 25(3):357-365
    [33] Xynos I.D, Edgar A.J, Buttery L.D.K, Hench L.L, Polak J.M. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution [J]. J. Biomed. Mater. Res. 2001, 55(2):151-157
    [34] Xynos I.D, Edgar AJ, Buttery L.D.K. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factorⅡmRNA expression and protein synthesis [J]. Biochem. Biophys. Res. Comm. 2000, 276(2):461-465
    [35] Gough J.E, Jones J.R, Hench L.L. Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold [J]. Biomaterials, 2004, 25(11):2039-2046
    [36] Silver I.A, Erecinska M. Interactions of osteoblastic and other cells with bioactive glasses and silica in vitro and in vivo [J]. Mater–wiss. Werksofftech. 2003, 34(12):1069-1075
    [37] Silver IA, Deas J, Erecinska M. Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass?, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability [J]. Biomaterials, 2001, 22(2):175-185
    [38] Valerio P, Pereira MM, Goes AM, Leite MF. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production [J]. Biomaterials, 2004, 25(15):2941-2948
    [39] Bielby R, Christodoulou I.S, Pryce R.S, Radford W.J.P, Hench L.L, Polak J.M. Time- and concentration-dependent effect of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts [J]. Tiss. Eng. 2004, 10(7-8):1018-1026
    [40] Peppas HA, Lanser R. New challenges in biomaterials [J]. Science, 1994, 263(5154):1715-1720
    [41] Lam K, Esselbrugge H, Schakenraad J. Biodegradable of porous versus non-porous poly (L-lactic acid) films [J]. J. Mater. Sci:Mater. Med. 1994;5(5):101-110
    [42] Verrier S, Blaker J.J, Maquet V, Hench L.L, Boccaccini A.R. PDLLA/Bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment [J]. Biomaterials, 2004, 25(15):3013-3021
    [43] Kellom M, Niiranen H, Puumanen K. Bioabsorbable scaffolds for guided bone regeneration and generation [J]. Biomaterials, 2000, 21(24):2495-2505
    [44] Hench L.L, Splinter R.J, Allen W.C, Greenlee T.K. Bonding mechanism at the interface of ceramic prosthetic materials [J]. J. Biomed. Mater. Res. Symp.1971, 2(5):117-141
    [45] Strunz V, Bunte M, Stellmach R, Gross U, Kuhl K, Newesely H, Bromer H, Deutscher K. Glass ceramics as a bioactive implantation material [J]. Dtsch. Zahnarztl. Z. 1976, 31(1):69-70
    [46] Hench L.L. Bioceramics: from concept to clinic [J]. J. Am. Ceramics. Soc, 1991, 74(7): 1487-1490
    [47] Zinger O. Differential regulation of osteoblasts by substrate microstructural features [J]. Biomaterials, 2005, 26(14): 1837–1847
    [48] Boyan, B.D. Osteoblast-mediated mineral deposition in culture is dependent on surface micro-topography [J]. Calcif. Tissue Int. 2002, 71(6):519–529
    [49] Hasirci V. Nanobiomaterials: a review of the existing science and technology, and new approaches [J]. J. Biomater. Sci. Polym. Ed. 2006, 17(11):1241–1268
    [50] Wilkinson, C.D.W. The use of materials patterned on a nano- and micro-metric scale in cellular engineering [J]. Mater. Sci. Eng. 2002, 19C (2-6):263–269
    [51] Teixeira, A.I. The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography [J]. Biomaterials, 2006, 27(21): 3945–3954
    [52] Gomez, N. Immobilized nerve growth factor and microtopography have distinct effects on polarization versus axon elongation in hippocampal cells in culture [J]. Biomaterials, 2007, 28(2): 271–284
    [53] Massia, S.P. and Stark, J. Immobilized RGD peptides on surface-grafted dextran promote biospecific cell attachment [J]. J. Biomed. Mater. Res. 2001, 56(3):390–399
    [54] Vande V.S. RGD-grafted poly-l-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion [J]. Biotechnol. Bioeng. 2003, 82(7): 784–790
    [55] Saremi, M. and Golshan, B.M. Microstructural study of nano hydroxyapatite coating obtained by pulse electrodeposition process on Ti-6Al-V-4. Trans [J]. Inst. Metal Finishing. 2007, 85(2): 99–102
    [56] Caruso R.A., Antonietti M. Sol-Gel nanocoating: an approach to the preparation of structured materials [J]. Chem. Mater. 2001, 13(10):3272–3282
    [57]俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社, 2000: 125-137
    [58] Bunker B.C, Rieke P.C, Tarasevich B.J. Ceramic thin-film formation on functionalized interface through biomimetic processing [J]. Science, 1994, 264(5155): 48-55
    [59] Engh C, Bobyn J, Glassman A. Porous-coated hip replacement-the factors governing bone ingrowth, stress shielding and clinical results [J]. J Bone Joint Surg, 1987, 69(1): 41-45
    [60] Groot K, Geesink R.G.T, Serekian P. Plasma sprayed coatings of hydroxylaptite [J]. J. Biomed. Mater. Res., 1987, 21(11): 1375-1379
    [61] Chen F, Lam W.M, Lin C.J. Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: In vitro evaluation using mesenchymal stem cells [J]. J. Biomed. Mater. Res.,2007,82B(1):183-191
    [62] Albayak O, El-Atwani O, Altintas S. Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: Effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition [J]. Surf. Coat. Tech, 2008, 202(11): 2482-2487
    [63] Ning C.Y, Wang Y.J, Lu W.W. Nano-structural bioactive gradient coating fabricated by computer controlled plasma-spraying technology [J]. J Mater Sci: Mater Med, 2006, 17(10):875-884
    [64]王月勤,陶杰,何娉婷.二氧化钛纳米管上电沉积羟基磷灰石[J].材料科学与工程学报,2007, 25(4):249-251
    [65] Ma J, Wong H, Kong L.B, Peng K.B. Biomimetic processing of nanocrystallite bioactive apatite coating on titanium [J]. Nanotechnology, 2003, 14(6):619-623
    [66] Li Y, Lee I.S, Cui F.Z , Choi S.H. The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. Biomaterials, 2008, 29(13): 2025-2032
    [67] Sato M. Nanophase hydroxyapatite coatings for dental and orthopedic applications [D], PhD Thesis, Purdue University, 2006:1-100
    [68] Zhang L, Webster T.J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration [J]. Nano Today, 2009, 4(1):66—80
    [69] Liu, H. and Webster, T.J. Nanomedicine for implants: a review of studies and necessary experimental tools [J]. Biomaterials, 2007, 28(2):354–369
    [70] Webster T.J, Ergun C, Doremus R.H, Siegel R.W, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, 2000, 21 (17): 1803-1810
    [71] Spoerke, E.D. and Stupp, S.I. Colonization of organoapatite–titanium mesh by preosteoblastic cells. J. Biomed. Mater. Res. 2003, 67A(3):960–969
    [72] Li P. Biomimetic nano-apatite coating capable of promoting bone in growth [J]. J. Biomed. Mater. Res. 2003, 66A(1): 79–85
    [73] Liu J.S, Zhang H.L, Wang Q. Release of Plasmid DNA from Nano-Hydroxyapatite/Chitosan-Gelatin Composite Scaffolds [J]. Rare Metal Materials and Engneering, 2009, 38(2): 850-853
    [74] Zhou G, Li Y.B, Lee S.W. Preparation of a nano-hydroxyapatite/chitosan/konjac glucomannan composite as a novel degradable drug delivery system [J]. J. Ceram Proc. Res, 2008, 9(4): 353-357
    [75] Liu T.Y, Chen S.Y, Liu D.M. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery [J]. Journal of Controlled Release, 2005, 107(1): 112-121
    [76] Wang Y.Y, Liu L, Guo S.R. Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro [J]. Polymer Degradation and Stability, 2010,95( 2): 207-213
    [77] Wang X.J, Song G.J, Lou T. Fabrication and characterization of nano composite scaffold of poly(l-lactic acid)/hydroxyapatite [J]. Journal of Materials Science-Materials in
    [65] Ma J, Wong H, Kong L.B, Peng K.B. Biomimetic processing of nanocrystallite bioactive apatite coating on titanium [J]. Nanotechnology, 2003, 14(6):619-623
    [66] Li Y, Lee I.S, Cui F.Z , Choi S.H. The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. Biomaterials, 2008, 29(13): 2025-2032
    [67] Sato M. Nanophase hydroxyapatite coatings for dental and orthopedic applications [D], PhD Thesis, Purdue University, 2006:1-100
    [68] Zhang L, Webster T.J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration [J]. Nano Today, 2009, 4(1):66—80
    [69] Liu, H. and Webster, T.J. Nanomedicine for implants: a review of studies and necessary experimental tools [J]. Biomaterials, 2007, 28(2):354–369
    [70] Webster T.J, Ergun C, Doremus R.H, Siegel R.W, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, 2000, 21 (17): 1803-1810
    [71] Spoerke, E.D. and Stupp, S.I. Colonization of organoapatite–titanium mesh by preosteoblastic cells. J. Biomed. Mater. Res. 2003, 67A(3):960–969
    [72] Li P. Biomimetic nano-apatite coating capable of promoting bone in growth [J]. J. Biomed. Mater. Res. 2003, 66A(1): 79–85
    [73] Liu J.S, Zhang H.L, Wang Q. Release of Plasmid DNA from Nano-Hydroxyapatite/Chitosan-Gelatin Composite Scaffolds [J]. Rare Metal Materials and Engneering, 2009, 38(2): 850-853
    [74] Zhou G, Li Y.B, Lee S.W. Preparation of a nano-hydroxyapatite/chitosan/konjac glucomannan composite as a novel degradable drug delivery system [J]. J. Ceram Proc. Res, 2008, 9(4): 353-357
    [75] Liu T.Y, Chen S.Y, Liu D.M. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery [J]. Journal of Controlled Release, 2005, 107(1): 112-121
    [76] Wang Y.Y, Liu L, Guo S.R. Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro [J]. Polymer Degradation and Stability, 2010,95( 2): 207-213
    [77] Wang X.J, Song G.J, Lou T. Fabrication and characterization of nano composite scaffold of poly(l-lactic acid)/hydroxyapatite [J]. Journal of Materials Science-Materials inproliferation and apoptosis of osteoblast-like cells [J]. Acta Biomater., 2009, 5 (1): 338–345
    [90] Zandi M, Mirzadeh H, Mayer C. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells [J]. J.Biomed. Mater. Res. 2010, 92A(4 ): 1244-1255
    [91] Huang J, Lin YW, Fu XW, Best SM, Brooks RA, Rushton N. Development of nano-sized hydroxyapatite reinforced composites for tissue engineering scaffolds [J]. J Mater Sci Mater Med, 2007, 18(11):2151–2157
    [92] Chen F, Lam W.M, Lin C.J, Qiu G.X, Wu Z.H, Luk K.D. Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface. in vitro evaluation using mesenchymal stem cells [J]. J Biomed Mater Res B Appl Biomater, 2007, 82(1):183–191
    [93] Lewandrowski K.U, Bondre S.P, Wise D.L, Trantolo D.J. Enhanced bioactivity of a poly(propylene fumarate) bone graft substitute by augmentation with nano-hydroxyapatite [J]. Biomed Mater Eng. 2003,13(2):115–124
    [94] Sarvestani, A. Effect of osteonectin-derived peptide on the viscoelasticity of hydrogel/apatite nanocomposite scaffolds [J]. Biopolymers, 2006, 85 (4):370–378
    [95] Liao S, Wang W, Yokoyama A. In Vitro and In Vivo Behaviors of the Three-layered Nano-carbonated Hydroxyapatite/Collagen/PLGA Composite [J]. J. Bioact. Compat. Poly, 2010, 25(2):154-168
    [96] Lanza, R.P. Principles of Tissue Engineering [M], London;Academic Press, 2000,495-507
    [97] Karlan, M.S, Hench, L.L, Madden, M, Ogino M. Bone-bonding bioactive material implant in head and neck - Bioglass [J]. Surgical Forum,1978, 29: 575-577
    [98] Bognitzki, M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M. Nanostructured fibers via electrospinning [J]. Adv. Mater. 2002, 13(1):70–72
    [99] Yang, F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering [J]. Biomaterials , 2005, 26(15):2603–2610
    [100] Li, W.J, Tuli R, Okafor C, Derfoul A, Danielson K.G, Hall D.J, et al. Athree-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells [J]. Biomaterials, 2005, 26(6):599–609
    [101] Li, W.J, Lautencin C.T, Caterson E.J, Tuan R.S, Ko F. Electrospun nanofibrous structure: a novel scaffold for tissue engineering[J]. J. Biomed. Mater. Res. 2002, 60(4):613–621
    [102] Hench L.L, Splinter R.J, Allen W.C, Greenlee T.K. Bonding mechanisms at the interface of ceramic prosthetic materials [J]. J. Biomed. Mater. Res. 1971, 2(1):117–141
    [103] Hench L.L. Bioceramics: From concept to clinic [J]. J. Am. Ceram. Soc. 1991, 74(7): 1487–1510
    [104] Merwin G.E. Bioglass middle ear prosthesis: preliminary report [J]. Ann.Otology. Rhinol. Laryngol. 1986, 95(1):78–82
    [105] Strunz V, Bunte M, Stellmach R, Gross U, Kuhl K, Newesely H, et al. Glass ceramics as a bioactive implantation material [J]. DtschZahnarztl Z. 1976, 31(1):69-70
    [106] Kokubo T, Ito S, Sakka S. Formation of a high-strength bioactive glass-ceramic in the system MgO-CaO-SiO2-P2O5 [J]. J. Mater.Sci. 1986, 21(2):536-540
    [107] Vogel W, Holand W. Development, structure, properties and application of glass-ceramics for medicine [J]. J. Non-Crys. Solids. 1990, 123(1-3):349-353
    [108] Li R, Clark A.E, Hench L.L. An investigation of bioactive glass powders by sol-gel processing [J]. J. Appl. Biomater. 1991, 2(4):231–239
    [109] Zhong J.P, Greenspan D.C. Processing and properties of sol-gel bioactive glasses [J]. J Biomed Mater Res. 2000, 53A(6):694-701
    [110] Chen X,Meng Y,Li Y. Investigation on bio-mineralization of melt and sol–gel derived bioactive glasses [J]. Applied Surface Science, 2008, 255 (2): 562–564
    [111]陈晓峰,李玉莉,赵娜如.溶胶-凝胶生物活性玻璃的纳米结构分析研究[J].硅酸盐通报, 2007, 26(2): 247-251
    [112]王迎军,陈晓峰,赵娜如.纳米仿生骨组织材料的生理响应及生物矿化[J].华南理工大学学报(自然科学报), 2002, 30(11): 149-154
    [113] Chen X, Wang Y, Zhao N, Yang C. Microstructure and Bio-mineralization Behavior of the sol-gel derived bioactive materials [J]. Key Engineering Materials, 2005, 280-283:1609-1612
    [114] Hench L.L. Sol-gel materials for bioceramic applications [J]. Current Opinion in Solid State Materials Science, 1997, 2(5):604-610
    [115] Pérez-Pariente J, Balas F, Román, Salinas A.J, Vallet-RegíM. Influence of composition and surface characteristic on the in vitro bioactivity of SiO2-CaO-P2O5-MgO sol-gel glasses [J]. J. Biomed. Mater. Res. 1999, 47(2):170-175
    [116] Laczka M, Cholewa-Kowalska K, Laczka-Osyczka A, Tworzydlo M, Turyna B. Gel-derived materials of CaO-P2O5-SiO2 system modified by boron, sodium, magnesium, aluminum and fluorine compounds [J]. J Biomed Mater Res. 2000, 52(4):601-612
    [117] Oki A, Parveen B, Hossain S, Adeniji S, Donahue H. Preparation and in vitro bioactivity of zinc containing sol-gel-derived bioglass materials [J]. J Biomed MaterRes A.2004, 69 (2):216-221
    [118] Arcos D, Greenspan D.C, Vallet-RegíM. Influence of the stabilization temperature on textural and structural features and ion release in SiO2-CaO-P2O5 sol-gel glasses [J]. Chem. Mater. 2002, 14(4): 1515-1522
    [119] Jokinen M, Rahiala H, Rosenholm J.B. Relation between aggregration and heterogeneity of obtained structure in sol-gel derived CaO-P2O5-SiO2 [J]. J. Sol-Gel Sci. Tec. 1998, 12(3):159-167
    [120] Pardini A, Mercier C, Follet-Houttemane C, Lebecq Z, Desanglois F. 31P and 29Si MAS-NMR of SiO2-CaO-Na2O-P2O5 bioactive glasses [A]. Proceedings of 15th Interdisciplinary Research Conference on Biomaterials [C]. Shanghai, 2005: 22-35
    [121] Greenspan D.C, Zhong J.P, Wheeler D. Bioactivity and biodegradability: melt vs. sol-gel derived bioglass in vitro and in vivo [A]. Proceedings of the 11th international Symposium on Ceramics in Medicine, NewYork, 1998,11:345-348
    [122] Jones J. R, Sepulveda P, Hench L. L. Dose-dependent behavior of bioactive glass dissolution [J]. J. Biomed. Mater. Res. 2001, 58B (6):720-726
    [123] Hamadouche M, Meunier A, Greespan D.C, Blanchat C, Zhong J.P, Torre G.P.L. Long-term in vivo bioactivity and degradability of bulk sol-gel bioactive glasses [J]. J. Biomed.Mater. Res. 2001, 54(4):560-566
    [124] Greenspan D.C, Zhong J.P, Chen X.F, LaTorre G.P. The evaluation of degradability of melt and sol-gel derived bioglass in-vitro [J]. Bioceramics.1997;10:391-394
    [125] Huang Z.J, Yang Y.P, Guo X, Li C.J,Yang L.H. Biodegradation of crystalline glass containing calcium phosphate [J]. Bioceramics, 1996, 9:147-150
    [126] Hill R. An alternative view of the degradation of bioglass [J]. J. Mater. Sci. Lett. 1996, 15(13):1122-1125
    [127] Rámila M, Vallet-RegíM. Static and dynamic in vitro study of a sol-gel glass bioactivity. Biomaterials, 2001;22(26):2301-2306
    [128] Izquierdo-Barba I, Salinas A.J, Vallet-Regí. In vitro calcium phosphate layer formation on sol-gel glasses of the CaO-SiO2 system [J]. J. Biomed. Mater. Res. 1999, 47(2):243-250
    [129] Greenspan D.C, Zhong J.P, LaTorre G.P. Effect of surface area to volume ratio on in vitro surfacr reactions of bioactive glass particulates [J]. Bioceramics, 1994,7:55-60
    [130] Pereira M.M, Clark A.E, Hench L.L. Effect of texture on the rate of hydroxyapatiteformation on gel-silica surface [J]. J. Am. Ceram. Soc. 1995, 78(9):2463-2468
    [131] Miyaji F, Kim H.M, Handa S, Kokubo T, Nakamura T. Bonelike apatite coatingon organic polymers: novel nucleation process using sodium silicate solution [J]. Biomaterials, 1999, 20(20):913-919
    [132] Zhu P, Masuda Y, Koumoto K. The effect of surface charge on hydroxyapatite nucleation [J]. Biomaterials, 2004,25(17):3915-3921
    [133] Hench L.L, Wilson J. Bioactive glasses: present and future [J]. Bioceramics, 1998, 11:31-36
    [134] Griss P, Greenspan D.C, Heimke G. Evaluation of a bioglass-coated bioglass-coated AI2O3 total hip prosthesis in sheep [J]. Journal of Biomedical Materials Research, 1976, 10(4): 511-518
    [135] Karlan M.S, Hench L.L, Madden. Bone-bonding bioactive material implant in head and neck - bioglass [J]. Surgical Forum, 1978, 29: 575-577
    [136] Turley P.K, Shapiro P.A, Moffett B.C. The loading of bioglass-coated aluminum-oxide implants to produce sutural expansion of the maxillary complex in the pigtall monkey (macaca-nemestrina) [J]. Archives of oral biology, 1980,25(7): 459-469
    [137] Hench L.L, Pantano C.G, Buscemi. Analysis of bioglass fixation of hip prostheses [J].Journak of biomedical materials research, 1977, 11( 2): 267-282
    [138] Ogino M, Ohuchi F, Hench L.L. Compositional dependence of the formation of calcium-phosphate films on bioglass [J]. Journal of Biomedical Materials research, 1980, 14( 1): 55-64
    [139] Neupert G, Thieme V, Hoffmann H. Cell-compatibility of glassy carbon and bioglass-ceramic [J]. Stomatologie der DDR, 1984, 34(6): 326-332
    [140] Matsuda T, Yamauchi K, ITO G. The influence of bioglass on the growth of fibroblasts. Journal of Biomedical Materials Reseach 1987, 21(4): 499-507
    [141] Vrouwenvelder W.C.A, Groot C.G. , Groot K. Better histology and biochemistry for osteoblasts cultured on titanium-doped bioactive glass: Bioglass 45S5 compared with iron-, titanium-, fluorine- and boron-containing bioactive glasses [J]. Biomaterials, 1994, 15(2): 97-106
    [142] Xynos I.D, Hukkanen M.V.J, Batten J.J. Bioglass (R) 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: Implications and applications for bone tissue engineering [J]. Calcified Tissue Internatioanl, 2000, 67(4): 321-329
    [143] Silver I.A, Deas J, Erecinska M. Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass (R), and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability [J]. Biomaterials, 2001, 22(2): 175-185
    [144] Abiraman S, Varma H.K, Kumari T.V. Preliminary in vitro and in vivo characterizations of a sol-gel derived bioactive glass-ceramic system [J]. Bullentin of Materials Science, 2002, 25(5): 419-429
    [145] Bielby R.C, Christodoulou I.S, Pryce R.S. Time- and concentration-dependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts [J]. Tissue Engineering, 2004, 10(7-8): 1018-1026
    [146] Bielby R.C, Pryce R.S, Hench L.L. Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with ionic dissolution products of 58S bioactive sol-gel glass [J]. Tissue Engineering, 2005, 11(3-4): 479-488Journak of biomedical materials research, 1977, 11( 2): 267-282
    [138] Ogino M, Ohuchi F, Hench L.L. Compositional dependence of the formation of calcium-phosphate films on bioglass [J]. Journal of Biomedical Materials research, 1980, 14( 1): 55-64
    [139] Neupert G, Thieme V, Hoffmann H. Cell-compatibility of glassy carbon and bioglass-ceramic [J]. Stomatologie der DDR, 1984, 34(6): 326-332
    [140] Matsuda T, Yamauchi K, ITO G. The influence of bioglass on the growth of fibroblasts. Journal of Biomedical Materials Reseach 1987, 21(4): 499-507
    [141] Vrouwenvelder W.C.A, Groot C.G. , Groot K. Better histology and biochemistry for osteoblasts cultured on titanium-doped bioactive glass: Bioglass 45S5 compared with iron-, titanium-, fluorine- and boron-containing bioactive glasses [J]. Biomaterials, 1994, 15(2): 97-106
    [142] Xynos I.D, Hukkanen M.V.J, Batten J.J. Bioglass (R) 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: Implications and applications for bone tissue engineering [J]. Calcified Tissue Internatioanl, 2000, 67(4): 321-329
    [143] Silver I.A, Deas J, Erecinska M. Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass (R), and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability [J]. Biomaterials, 2001, 22(2): 175-185
    [144] Abiraman S, Varma H.K, Kumari T.V. Preliminary in vitro and in vivo characterizations of a sol-gel derived bioactive glass-ceramic system [J]. Bullentin of Materials Science, 2002, 25(5): 419-429
    [145] Bielby R.C, Christodoulou I.S, Pryce R.S. Time- and concentration-dependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts [J]. Tissue Engineering, 2004, 10(7-8): 1018-1026
    [146] Bielby R.C, Pryce R.S, Hench L.L. Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with ionic dissolution products of 58S bioactive sol-gel glass [J]. Tissue Engineering, 2005, 11(3-4): 479-488
    [157] Hattar S, Loty S, Gaisser D. Effects of 58s sol-gel glasses on the temporal expression of bone markers during mouse osteoblastic differentiation [J]. Journal of Biomedical Material Research Part A, 2006, 76A(4): 811-819
    [158] Karpov M, Laczka M, Leboy P.S. Sol-gel bioactive glasses support both osteoblast and osteoclast formation from human bone marrow cells [J]. Journal of Biomedical Material Research Part A, 2008, 84A( 3) : 718-726.
    [159] Yan X, Yu C, Zhou X, Tang J, Zhao D. Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities [J]. Angew. Chem., Int. Ed. 2004, 43 (44) 5980-5984
    [160] Shi Q, Wang J, Zhang J, Fan J, Stucky G.D. Rapid-setting, mesoporous, bioactive glass cements that induce accelerated in vitro apatite formation [J]. Adv. Mater. 2006,18 (8): 1038-1042
    [161] Yan X, Deng H, Huang X, Lu G, Qiao S, Zhao D, et al. Mesoporous bioactive glasses I. Synthesis and structural characterization [J]. J. Non-Cryst. Solids, 2005, 351 (40-42):3209-3217
    [162] Zhao L, Yan X, Zhou X, Zhou L, Wang H, Tang J, et al. Mesoporous bioactive glasses for controlled drug release [J]. Microporous and Mesoporous Materials, 2008, 109 (1-3) 210–215
    [163] Ostomel T.A, Shi Q, Tsung C.K, Liang H, Stucky G.D. Spherical Bioactive Glass with Enhanced Rates of Hydroxyapatite Deposition and Hemostatic Activity [J]. Small 2006, 2(11):1261– 1265
    [164] Lopez-Noriega A, Arcos D, Izquierdo-Barba I, Sakamoto Y, Terasaki O, Vallet-Regi M. Ordered Mesoporous Bioactive Glasses for Bone Tissue Regeneration [J]. Chem. Mater. 2006,18 (13): 3137-3144
    [165] Yan X, HuangX, Yu C, Deng H, Wang Y, Zhang Z, et al. The in-vitro bioactivity of mesoporous bioactive glasses [J]. Biomaterials, 2008 27 (18) 3396-3403
    [166] Xia W, Chang J. Well-ordered mesoporous bioactive glasses (MBG):A promising bioactive drug delivery system [J]. Journal of Controlled Release, 2006, 110 (3):522– 530
    [167] Li X, Shi J.L, Dong X.P. A mesoporous bioactive glass/polycaprolactone compositescaffold and its bioactivity behavior. Journal of Biomedical Material Research Part A, 2008,84A(1): 84-91
    [168] Wu C, Ramaswamy Y, Zhu YF. The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly (DL-lactide-co-glycolide) films [J]. Biomaterials, 2009, 30(12): 2199-2208
    [169] Zhu Y, Wu C, Ramaswamy Y, Kockrick E, Simon P, Kaskel S, et al. Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering [J]. Micro. Meso. Mater, 2008, 112 (1): 494–503
    [170] Alcaide M, Portoles P, Lopez-Noriega A. Interaction of an ordered mesoporous bioactive glass with osteoblasts, fibroblasts and lymphocytes, demonstrating its biocompatibility as a potential bone graft material [J]. Acta Biomater, 2010, 6(3): 892-899
    [171] Brunner T.J, Grass R.N, Stark W.J. Glass and bioglass nanopowders by flame synthesis [J]. Chem Commun, 2006, 37(23): 1384-1386
    [172]杨宇霞;王迎军;陈晓峰. CaO-P2O5-SiO2系统生物活性纳米粒子形貌和粒径分布影响因素探讨.硅酸盐通报,2004, 23(6):93-97
    [173] Chen X, Guo C, Zhao N. Preparation and characterization of the sol-gel nano- bio- active glasses modified by the coupling agent gamma- aminopropyltriethoxysilane [J]. Applied Surface Science, 2008, 255(2):466-468
    [174]欧阳健明,段荔,何建华.微乳何胶束有序体系中纳米无机矿物的生长及其在生物矿化领域的应用前景[J].化学世界, 2003, 44(7): 379-387
    [175]邓兰青,欧阳健明.单分子膜和自组装单分子膜调控生物有机晶体生长[J].功能材料, 2006, 37 (1): 18-21
    [176]刘超,成国祥.模板法制备介孔材料的研究进展[J].离子交换与吸附, 2003, 19(4): 374-384
    [177] Chen X, Guo C, Zhao N. Template-assisted synthesis of nano-clusters of bioactive glasses [D].郭常亮,华南理工大学硕士论文,2008
    [178] Hong Z, Liu A, Chen L, Chen X, Jing X. Preparation of bioactive glass ceramic nanoparticles by combination of sol–gel and coprecipitation method [J]. Journal of Non-Crystalline Solids, 2009, 355(6):368-372
    [179] Kim H.W, Kim H.E, Knowles J.C. Production and Potential of Bioactive Glass Nanofibers as a Next-Generation Biomaterial [J]. Adv. Funct. Mater. 2006, 16(12):1529–1535
    [180] Wallenberger F.T. Advanced Inorganic Fibers: Processes, Structures, Properties, Applications [M]. Kluwer Academic Publishers, Boston 2000:123–128
    [181] Quintero F, Pou J, Comesana R. Laser Spinning of Bioactive Glass Nanofibers [J]. Adv. Funct. Mater., 2009, 19(19): 3084-3090
    [182] Hong Y, Chen X, Jing X, Fan H, Guo B, Gu Z, et al. Preparation, Bioactivity, and Drug Release of Hierarchical Nanoporous Bioactive Glass Ultrathin Fibers [J]. Advanced Materials, 2010, 22(6):754-758
    [183] Misra S.K, Mohn D, Brunner T.J. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass (R) composites [J]. Biomaterials, 2008, 29(12): 1750-1761
    [184] Fathi M.H, Doostmohammadi A. Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant [J]. Journal of Materials Processing Technology, 2009, 209(3): 1385-1391
    [185] Misra S.K, Ansari T, Mohn D. Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly (3-hydroxybutyrate) composites [J]. Journal of the Royal Society Interface, 2010, 7 (44): 453-465
    [186] N ina F lanagan. Regenerative Medicine Enters Realm of Reality [J]. Genetic Engineering &Bio techno logy News, 2007, 27 (7) : 1252-1254
    [187] Horch RE, Kopp J, Kneser U. Tissue engineering of cultured skin substitutes [J]. J of Cell and Mole Med, 2005,9(3):592- 608
    [188] Hench L.L , Wilson J. An Introduction to Bioceramics [M]. London:World Scientific, 1993:199-221.
    [189] Radin S, Reilly G, Bhargave G. Osteogenic effects of bioactive glass on bone marrow stromal cells [J]. J Biomed Mater Res A.2005,73(1):21-29
    [190] Xynos I .D, Edgar A .J, Buttery L .D. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass dissolution [J]. J Biomed Mater Res.2001,55(2):151-157
    [191] Day R.M. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro [J]. Tissue Eng.2005,11(5):767-777.
    [192] Webster T.J, Schadler L.S, Siegel R.W, Bizios R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin [J]. Tissue Eng. 2001,7 (3) 291-293
    [193] Sato M. Nanophase hydroxyapatite coatings for dental and orthopedic applications, PhD Thesis, Purdue University, 2006
    [194] Marina A.D, Jeffrey D.C, Barry W. N, Jennifer B.H, Anil K.P, Scott E.M. Method for analysis of nanoparticle hemolytic properties in vitro [J]. Nano Lett. 2008,8 (8): 2180-2187
    [195] Qun G, Donald T.H. Palladium nanoparticle-controlled growth of cobalt nanowires on DNA templates [J]. Mater. Lett. 2008, 62 (17-18) 3047-3050
    [196] Florian N, Matthew W.L, Travis K.H, Norman J.W, Eric W.K, Martin V. Influence of nanoparticle addition on the properties of wormlike micellar solutions [J]. Langmuir, 2008, 24 (15) :7718-7726
    [197] Hu X, Liu J, Lu Y, Mu J. Facile synthesis and characterization of hydroxylapatite nanoparticle chains [J]. Mater. Lett. 2008, 62 (23) 3824-3826
    [198] Yuan J, Laubernds K, Zhang Q, Suib S. Self-Assembly of Microporous Manganese Oxide Octahedral Molecular Sieve Hexagonal Flakes into Mesoporous Hollow Nanospheres [J]. Am. Chem. Soc. 2003, 125 (17) 4966-4667
    [199] Hu X, Zhu Y. Morphology control of PbWO4 nano- and microcrystals via a simple, seedless, and high-yield wet chemical route [J]. Langmuir, 20 (4) :1521-1523
    [200] Hench L.L. Sol-gel materials for bioceramic applications [J]. Curr. Opin. Solid State Mater. Sci. 1997, 2 (5) :604-610
    [201] Pereira M.M, Clark A.E, Hench L.L. Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro [J]. J. Biomed. Mater. Res. 1994,28 (6): 693-698
    [202] Gough J.E., Jones J.R., Hench L.L. Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold [J]. Biomaterials, 2004, 25 (11): 2039-2046
    [203] Jones J.R., Tsigkou O., Coates E.E., Stevens M.M., Polak J.M., Hench L.L.Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells [J]. Biomaterials, 2007, 28 (9): 1653-1663
    [204] Sepulveda P., Jones J.R., Hench L.L. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses [J]. J. Biomed. Mater. Res. 2002, 61 (2) :301-311
    [205] Valerio P., Guimaraes M.H.R., Pereira M.M., Leite M.F., Goes A.M. Primary osteoblast cell response to sol-gel derived bioactive glass foams [J]. J. Mater. Sci: Mater Med. 2005, 16 (9): 851-856
    [206] Meretoja V.V., Helminen A.O., Korventausta J.J., Haapa-aho V., Seppala J.V., Narhi T.O. Crosslinked poly( -caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering [J]. J. Biomed. Mater. Res. 2006, 77A (2): 261-268
    [207] Lee H., Yu H., Jang J., Kim H.W. Bioactivity improvement of poly (ε-caprolactone) membrane with the addition of nanofibrous bioactive glass [J]. Acta Biomater. 2008,4 (3): 622-629
    [208] Webster T.J., Ergun C., Doremus R.H., Siegel R.W., Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics [J]. J. Biomed. Mater.Res. 2000, 51 (3) 475-483
    [209] Fratzl P., Groschner M., Vogl G., Plenk H., Eschberger J., Fratzl-Zelman N, et al. Mineral crystals in calcified tissues: A comparative study by SAXS [J]. J. Bone Miner. Res. 1992, 7 (3): 329-334
    [210] Kim H.M., Rey C., Glimcher M.J. Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature [J]. J. Bone Miner. Res. 1995, 10 (10): 1589-1601
    [211] Hench L.L, West J.K. The sol-gel process [J]. Chem. Rev. 1990, 90 (1): 33-72
    [212] Rubio F., Rubio J., Oteo J.L. A DSC study of the drying process of TEOS derived wet silica gels [J]. Thermochim. Acta, 1997, 307 (1): 51-56
    [213] Rodrigo F.S., Maria E.D.Z. Aluminium-doped zinc oxide films prepared by an inorganic sol-gel route [J]. Thin Solid Films, 2004, 449 (1-2): 86-93
    [214] Izutsu H., Mizukami F., Sashida T., Maeda K., Kiyozumi Y., Akiyama Y. Effect of malic acid on structure of silicon alkoxide derived silica [J]. J. Non-Cryst. Solids, 1997,212 (1) 40-48
    [215] Tanev P.T., Pinnavaia T.G. A neutral templating route to mesoporous molecular sieves [J]. Science, 1995, 267 (5199): 865-657
    [216] Bagshaw S.A., Prouzet E., Pinnavaia T.G. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants [J]. Science, 1995, 269 (5228): 1242-1244
    [217] Andrade A, Valerio P, Goes A.M. Influence of morphology on in vitro compatibility of bioactive glasses [J]. J Non-Crystalline Solids, 2006, 352(32-35): 3508-3511
    [218] Oliveira J.M, Correia R.N,Fernandes M.H. Effects of Si speciation on the in vitro bioactivity of glasses [J]. Biomaterials, 2002, 23(2): 371-379
    [219] Leonelli C,Lusvardi G. Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity [J]. J Non-Crystalline Solids, 2003, 316(2): 198-216
    [220] Notingher I., Jones J.R., Verrier S., Bisson I., Embanga P., Edwards P. et al. Application of FTIR and Raman spectroscopy to characterisation of bioactive materials and living cells [J]. Spectroscopy, 2003, 17 (2-3) 275–288
    [221] Vallet-Regi M., Ragel C.V., Salinas A.J. Glasses with Medical Applications [J]. Eur. J. Inorg. Chem. 2003, 2003(6): 1029-1042
    [222] Yan X., Huang X., Yu C., Deng H., Wang Y., Zhang Z., et al. The in-vitro bioactivity of mesoporous bioactive glasses [J]. Biomaterials, 2006, 27 (18): 3396-3403
    [223] Yan X., Yu C., Zhou X., Tang J., Zhao D. Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities [J]. Angew. Chem. Int. Ed. 2004, 43 (44): 5980-5084
    [224] Celotti F, Colciago A, Negri-Cesi P. Effect of platelet-rich plasma on migration and proliferatioin of SaOS-2 osteoblasts: role of plateletderived growth factor and transforming growth factor-beta [J]. Wound Repair Regen, 2006, 14(2): 195-202.
    [225] Graziani F, Ivanovski S, Cei S. The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts [J]. Clin Oral Implants Res, 2006, 17(2): 212-219
    [226] Vallet-Regi M, Ragel C .V, Salinas A. J. Glasses with medical applications [J]. Euro. J. Inorg. Chem. 2003, 2003( 6): 1029-1042
    [227] Chen X, Lei B, Wang Y, Zhao N. Morphological control and in vitro bioactivity ofnanoscale bioactive glasses [J]. J. Non-Crystal. Solids, 2009, 355(13): 791-796
    [228] Wu C, Ramaswamy Y, Zhu Y, Zheng R, Appleyard R, Howard A, et al. The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly (DL-lactide-co-glycolide) flims [J]. Biomaterials, 2009, 30(12): 2199-2208
    [229] Misra S. K, Mohn D, Brunner T. J, Stark W. J, Philip S .E, Roy I, et al. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass? composites [J]. Biomaterials, 2008, 29(12): 1750-1761
    [230] Hench L L, Wilson J. Surface-active biomaterials [J]. Science, 1984, 226(4675): 630-636
    [231] Yan X, Yu C, Zhou X, Tang J, Zhao D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities [J]. Angew. Chem. Int. Ed. 2004, 43(44) 5980-5984
    [232] Christodoulou I, Buttery L. D. K, Saravanapavan P, Tai G, Hench L. L, Polak J. M. Dose- and Time-Dependent Effect of Bioactive Gel-Glass Ionic-Dissolution Products on Human Fetal Osteoblast-Specific Gene Expression [J]. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2005, 74B(1): 529-537
    [233] Silver I.A, Deas J, Erecinska M. Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability [J]. Biomaterials, 2001, 22(2): 175-185
    [234] Moreau J.L, Xu H.H.K. Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate-chitosan composite scaffold [J]. Biomaterials 2009, 30(14):2675-2682
    [235] Misra S.K, Mohn D, Brunner T.J, Stark W.J, Philip S.E, Roy I, et al. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass R○composites [J]. Biomaterials, 2008, 29(12):1750-1761
    [236] Rosengren A, Oscarssona S, Mazzocchic M, Krajewskic A, Ravagliolic A. Protein adsorption onto two bioactive glass-ceramics [J]. Biomaterials, 2003, 24(1):147-155
    [237] Kaufmann E, Ducheyne P, Radin S, Bonnell D.A, Composto R. Initial events at the bioactive glass surface in contact with protein-containing solutions [J]. Journal of Biomedical Materials Research, 2000,52(4):825-830
    [238] Webster T.J, Siegel R.W, Bizios R. Osteoblast adhesion on nanophase ceramics [J]. Biomaterials, 1999, 20(13):1221-1227
    [239] Palin E, Liu H.N, Webster T.J. Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation [J]. Nanotechnology, 2005,16(9):1828-1835
    [240] Luthen F, Lange R, Becker P, Rychly J, Beck U, Nebe B. The influence of surface roughness of titanium onβ1- andβ3-integrin adhesion and the organization of fibronectin in human osteoblastic cells [J]. Biomaterials, 2005,26(15):2423-2440
    [241] Reilly G.C, Radin S, Chen A.T, Ducheyne P. Differential alkaline phosphatase responses of rat and human bone marrow derived mesenchymal stem cells to 45S5 bioactive glass [J]. Biomaterials, 2007, 28(28):4091-4097
    [242] Hu Q, Tan Z, Liu Y, Tao J, Cai Y, Zhang M, et al. Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells [J]. Journal of Materials Chemistry, 2007,17(44):4690-4698
    [243] Causaa F, Nettib P.A, Ambrosio L. A multi-functional scaffold for tissue regeneration:The need to engineer a tissue analogue [J]. Biomaterials, 2007, 28 (34) 5093–5099
    [244] Kretlow J.D, Klouda L, Mikos A.G. Injectable matrices and scaffolds for drug delivery in tissue engineering [J]. Advanced Drug Delivery Reviews, 2007, 59 (4-5) 263–273
    [245] Vallet-Reg?′M, Balas F, Colilla M, Manzano M. Bone-regenerative bioceramic implants with drug and protein controlled delivery capability [J]. Progress in Solid State Chemistry, 2008, 36 (3) 163-191
    [246] Manzano M, Aina V, Are′an C O, Balas F, Cauda V, Colilla M, et al. Studies on MCM-41 mesoporous silica for drug delivery:Effect of particle morphology and amine functionalization [J]. Chem Eng J, 2008,137(1): 30-37
    [247] Paul W, Sharma C. P. Development of porous spherical hydroxyapatite granules: application towards protein delivery [J]. J Mater Sci Mater Med, 1999,10(7): 383-389
    [248] Slowing I I, Trewyn B.G, Giri S, Lin V .S .Y. Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications [J]. Adv Funct Mater. 2007,17(8): 1225-1236
    [249] Komlev V S, Barinov S.M, Girardin E, Oscarsson S, Rosengren A, Rustichelli F, etal. Porous spherical hydroxyapatite and fluorhydroxyapatite granules: processing and characterization [J]. Sci Technol Adv Mater., 2003,4(6): 503-508
    [250] Huang W, Mohamed N.R, Delbert E.D, Brad A.M. Strength of hollow hydroxyapatite microspheres prepared by a glass conversion process [J]. J Mater Sci Mater Med., 2009,20(1) : 123-129
    [251] Arcos D, Lo′pez-Noriega A, Ruiz-Herna′ndez E, Terasaki A, Vallet-Reg?′M. Ordered mesoporous microspheres for bone grafting and drug delivery [J]. Chem Mater., 2009,21(6):1000-1009
    [252] Radin S, Chen T, Ducheyne P. The controlled release of drugs from emulsified, sol-gel processed silica microspheres [J]. Biomaterials, 2009, 30 (5): 850–858
    [253] Zhang A, Ma Q, Lu M, Yu G, Zhou Y, Qiu Z. Copper?Indium Sulfide Hollow Nanospheres Synthesized by a Facile Solution-Chemical Method [J]. Cryst Growth Des., 2008,8(7):2402–2407
    [254] Wu W, Cheng CL, Shen SL, Zhang K, Meng H, Guo K, et al. Effects of silica sources on the properties of magnetic hollow silica [J]. Colloids Surf A, 2009, 334(1-3):131–137
    [255] S. Lin, C. Ionescu, K. J. Pike, M. E. Smith, and J. R. Jones. Nanostructure Evolution and Calcium Distribution in Sol–Gel Derived Bioactive Glass. [J]. J. Mater. Chem., 2009, 19:1276–1282
    [256] Hong Z., Liu A., Chen L., Chen X., Jing X. Preparation of Bioactive Glass Ceramic Nanoparticles by Combination of Sol–Gel and Coprecipitation Method [J]. J. Non-Cryst. Solids, 2009, 355(6): 368–372
    [257] Roman J., Padilla S., Vallet-Reg?′M. Sol–Gel Glasses as Precursors of Bioactive Glass Ceramics [J]. Chem. Mater., 2003,15 (3): 798–806
    [258] Kokubo T., Kim H.M., Kawashita M. Novel Bioactive Materials with Different Mechanical Properties [J]. Biomaterials, 2003, 24 (13):2161–2175

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700