交联型生物可控降解骨组织修复材料的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨组织原位再生修复用材料除应具有良好的生物相容性外,还应具备适宜的亲疏水性和力学强度,并且具有与组织生长速率相匹配的降解速率。目前研究的骨组织修复材料主要有合成聚酯类,天然多糖类和无机钙磷盐类等:聚酯类材料力学性能好,但亲水性差,目前多采用在分子结构上引入亲水链段来改善其亲水性,但通常会使分子量和力学性能均有明显下降;天然多糖类材料生物相容性虽好,但加工可塑性差,降解速率难以控制;单相的无机钙磷盐类材料脆性较大,而复合胶原后的材料则因强度低和降解速度太快等问题,限制了它们在临床上的应用。目前临床上虽然有一些骨修复材料,但均难以达到临床所需要的亲疏水性,力学强度以及降解速率的调控性能等。为了解决上述问题,本研究利用可生物降解的交联剂和大分子单体作为新材料的骨架,借助水溶性分子链段的嵌入制备了新型交联型生物可控降解材料,在保证材料既具有适宜的亲疏水性和一定力学强度的同时,又具备可调控的降解速率。
     本研究采用不同的含羟基单体与辛酸亚锡为共引发剂,引发丙交酯开环聚合,分别合成了疏水性的末端双键功能化聚乳酸大分子单体(MC)以及两亲性双乙烯基封端的生物降解交联剂(BC),在与亲水性单体乙烯吡咯烷酮(NVP)反应后,成功的将亲水链段引入聚乳酸体系,制备了具有适宜亲疏水性能的交联共聚物。聚乙烯吡咯烷酮(PVP)链段的引入,使交联大分子在酯键水解后可以形成线型的水溶性分子片断,保证了材料最终完全降解并能够通过体液循环排出体外。当材料的单体组成变化时,其表面水接触角变化为51°~73°,吸水率从20%~110%可调,形成适宜细胞粘附的中等润湿表面。
     与传统的注塑成型或冻干法等材料加工的过程相比,体系中引入了生物降解交联剂,在成型过程中发生交联反应,保证了材料可降解并具有亲水性的同时,又可以通过形成网状聚合物来维持材料的一定力学强度,从而满足临床使用对材料力学性能的要求。交联聚合物的最大拉伸强度在5.29~8.27MPa之间,最大伸长率为68.5~144.7%;无机粉末/交联共聚物复合材料的压缩模量为18.6~109.8MPa可调,在兔桡骨缺损修复试验中,复合异体骨基质的交联材料对组织生长主要起到支撑作用,能有效地修复骨缺损。
     最后,通过调整单体的组成比例来控制材料的亲疏水微区分相结构,从而调控局部酯键的水解速度,达到调控材料的整体降解速率。对材料的体内外降解百分率-时间数据进行回归分析,其拟合方程符合假一级反应动力学模型。随着单体组成中NVP含量的增加,降解速率常数逐渐增大,降解半衰期逐渐减小。随着降解时间的延长,不同单体组成的交联共聚物的即时降解速率均逐渐下降。在降解早期,即时降解速率随着NVP含量增加而增大;而在降解后期,即时降解速率随之增加而减小。PLA交联共聚物的降解速率是由性能各异的单体在交联体系中的组成决定的,具有精细的可调性。与只靠分子量、分子量分布或结晶度来调节降解速率的纯聚乳酸材料相比,PLA交联共聚物具有更为广阔和更精细控制降解速率的优点。
     本研究所获得的新型交联型组织修复材料不仅具有适宜的亲疏水性,同时保证了材料的力学强度和降解速率可调控性,基本解决了材料亲疏水性和力学性能同时改善的科学技术难题;另外,本研究还将上述研制的新材料与异种活性骨基质复合,使材料在植入缺损部位时更易与骨组织结合,为材料的尽快临床使用奠定了基础。
Biomaterials applied to bone repair and regeneration should be characterized by their biocompatibility, hydrophilicity and mechanical properties. They are also supposed to degrade at a rate which can match the growth of tissue. Most present researches are focused on three sorts of materials: polyester, polysaccharid and calcium-phosphate. Polyester has outstanding mechanical strength, nevertheless, poor hydrophilicity. It can be improved by introducing hydrophilic chain, which, however, will bring about an evident reduction in molecular weight and mechanical strength. Polysaccharids has the advantage of biocompatibility, while they are difficult to be shaped and be controlled during degradation. Although the defect of high brittleness of pure calcium-phosphate can be made up by the combination with collagen, it is often followed by lower mechanical properties and over-degradation. For these reasons, so far they only have very limited application for clinical purposes.
     This paper is to discuss a novle kind of biomaterial different from the aforesaid. Biodegradable cross-linker and macromer were employed to construct the molecular backbone, which could ensure the mechanical strength of the material. The incorporation of water-soluble chains into the molecular networks could maintain the hydrophilicity of the material. Also, it played an crucial part in control of the degrading rate.
     The study began with syntheses of the macromers of poly [D,L-lactide-co-(2-hydroxyethyl methacrylate)] (PLA-HEMA, MC) and the biodegradable cross-linker of poly (lactic acid)- poly (ethylene glycol)(PLA-PEG-PLA) plus terminal groups of vinyl(BC). Both of them were then reacted with vinylpyrrolidone (NVP) and brought forth a series of cross-linked terpolymer, whose physicochemical properties were adjustable due to their ingredient, specifically, hydrophobic MC, amphiphilic BC and hydrophilic NVP. As the molar ratio n(BC)/n(MC)/n(NVP) changed from 1:1:10 to 1:4:30, the surface contact angles varied between 51°and 73°, and the water adsorption between 20%and 110%. PVP chains polymerized with NVP were introduced into the networks, which evidently improved the hydrophilicity of the cross-linked materials and the surface condition for cell adhesion. Furthermore, it proved to be possible that the network associated with PVP entirely degraded. With the hydrolysis of the PLA segment, the kinetic chains (polyacrylate-polymethacrylate-PVP) could readily dissolve into water.
     In the second step, the biodegradable cross-linker was used to knit networks so as to maintain the mechanical strength. Compared with those traditional processing methods, such as injection molding and freezing drying, the chemical cross-linking technique could contribute to better degradability and mechanical strength, therefore, could meet the clinical requirements better. Tensile strength of the cross-linked terpolymer ranged between 5.29 and 8.27MPa, and elongation at break between 68.5%and 144.7%; Compression modulus of the inorganic matrix/cross-linked terpolymers ranged between 18.6 and 109.8MPa, which were to serve as scaffolds for tissue growing in rabbit radius defeat experiments.
     Relative length of the molecular chain in the networks were dependent on the n(BC)/n(MC)/n(NVP), and so were the hydrophobic-hydrophilic discrete micro-districts. In this way the degradation rate of the cross-linked terpolymer could be controlled. Regression analysis of sample mass loss%-degradation time showed that the degrading behavior were in accordance with pseudo first-order kinetics. As the ratio of NVP content going up, the pseudo first-order reaction rate constant k' increased, while the degradation half-life decreased. In the early stage of the degradation, the instant degradation rate went up with the increase of n(NVP); While in the late stage, the rate decreased with the increase of n(NVP). The study showed that the degradation of cross-linked PLA terpolymer was possible to be adjusted delicately. That was the development in this study compared with pure PLA which could be controlled only by molecular weight or crystallization degree.
     The cross-linked controllable biodegradable biomaterials obtained in this study have shown the remarkable improvement in terms of hydrophilicity, mechanical properties, controllable degrading rate and cellular biocompatibility.
引文
[1] Wolter JR, Meyer RF. Sessile macrophages forming clear endotheli—um—like membrane on inside of successful keratoprosthesis[J]. Trans Am Ophthalmol Soc, 1984, 82: 187—202.
    [2] Langer R, Vacantil. Tissue engineering, Science, 1993, 260: 920-926
    [3] Wilson J, Low SB. Bioactive ceramics for periodontal treatment: comparative studies in the patusmonkey. J App IBiomater, 1992, 3(2): 123-129.
    [4] 中国医科大学主编.人体解剖学.人民卫生出版社.1978.
    [5] 马克吕.骨生理学.郑州:河南医科大学出版社,2000:47-57
    [6] Joseph A, Buckwalter MD MS. Orthopaedic basic science: Biology and biomechanics of the musculoskeletal system. American Academy of Orthopaedic Surgeons, Second Edition, 2000: 277-287
    [7] 徐传达,实用临床骨缺损修复应用解剖学,2000年01月第1版,39-43
    [8] 材料科学技术百科全书.北京:中国大百科全书出版社,1993.927-928.
    [9] 顾汉卿,徐国风.生物医学材料学.天津:科学技术出版社,1993,361—362.
    [10] Wang M. Developing bioactive composite materials for tissue replacement. Biomaterials 24(2003): 2133-2151.
    [11] Cao W P, Hench L L. Bioactive materials. Ceramics International 22 (1996): 493-507.
    [12] Kokubo T, Kim H M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials 24(2003): 2161-2175.
    [13] Seal B L, Otero T C, Panitch A. Polymeric biomaterials for tissue and organ regeneration: review. Materials Science and Engineering R 34(2001): 147-230.
    [14] 曹文灵,陈际达,王远亮,潘君.骨修复材料的研究进展.国外医学生物医学,工程分册.2000;23(5):309-311.
    [15] 郭颖,李玉宝.骨修复材料的研究进展.科技前沿与学术评论.23(1).33-38.
    [16] 陈亦平,宋雪峰,曹德勇,尹玉姬,姚康德.骨修复材料研究进展.化工进展.2003;22(7):673-677.
    [17] 王小红,马建标,王亦农,何炳林.骨修复材料的研究进展.生物医学工程学杂志.2001;18(4):647—652
    [18] Ramakrishna S, Mayer J, Wintermantel E, Leong K W. Biomedical application of polymer-composite materials: a review. Composite Science and Technology 61(2001): 1189-1224.
    [19] Tancred D C, Carr A J, Mccormack B A O. Development of a new synthetic bone graft. J Mater Sci: Mater Med, 1998 (10): 819-823.
    [20] Perry C R. Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop, 1999(360): 68-71.
    [21] Bauer T W, Muschler G F. Bone graft materials: an overview of the basic science[J]. Clip Orthop, 2000(371): 10-27.
    [22] Saltzman W M, Cell interaction with polymers in principles of tissue engineering, eds by Lamza R, Langer R and Chick W, Austin: Landes R G Company, 1997: 225-226
    [23] Bostamn O. Absorbable imp lants for the fixation of fi'actures. J Bone Joint Surg (Am), 1991, 73: 148.
    [24] V ainionpaa S, Rokkanen P, Tormala P. Surgical app lications of biodegradable polymers in human tissue. Prog Polym Sci, 1989, 14: 679.
    [25] Tormala P. U ltra2high strength self2reinforced absorbable polymeric composites for app lications in different discip lines of surgery. Clin Mater, 1993, 13: 35.
    [26] Rokkanen P, Boatsman O, H irvensalo E, et al. A bsorbable imp iants in the fixation of fracture, O steotom ies, A rthrodeses and ligaments. Acta Orthop Scand, 1994, 65 (Supp 1260): 19.
    [27] Tormala P, V ainionpaa S, Kilp ikari, et al. The effects of fibre rein2 forcement and gold plating on the flexural and tensile strength of PGA/PLA copolymer materials in vitro. Biomaterials, 1987, 8: 42.
    [28] Robert W, Dallas T, Louisville K, et al. Fixation with bioabsorbable screw s for the treatment of fractures of the ankle. J Bone Joint Surg(Am), 1994, 76: 319.
    [29] Peter S J, Suggs L J, Yaszemski M J, et al. Synthesis of polypropylene fumarate) by acylation of propylene glycol in the presence of a proton scavenger. J Biomater Sci Polym Ed 1999, 10(3): 363-73
    [30] Peter S J, Kim P, Yasko AW, et al. Crosslinking characteristics of an injectable polypropylene fumarate)/beta-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. J Biomed Mater Res 1999, 44(3): 314-21
    [31] Yaszemski M J, Payne RCS Hayes WC, et al. In vitro degradation of a poly (propylene fumarate)-based composite material. Biomaterials 1996, 17(22): 2127-30
    [32] Timmer MD, Horch RA, Ambrose Cq et al. Effect of p 坷 Biological temperature on the mechanical properties and network structure of biodegradable polypropylene fumarate)-based networks. J Biomater Sci Polym Ed. 2003, 14(4): 369-82.
    [33] Peter S J, Miller ST, Zhu g, et al. In vivo degradation of a polypropylene fumarate)/beta-tricalcium phosphate injectable composite scaffold. J Biomed Mater Res 1998, 41(1): 1-7
    [34] Brennan M B. Chem. Eng. News, 1999, 77(36): 33-36.
    [35] 张国栋,冯新德.端基含葡氨糖衍生物的聚乳酸的合成与表征.高分子学报,1998,4:509-512.
    [36] Kimura Y, Shirotani K, Yamane H, Kitao T, Polymer, 1993, 34(8), 1741-1748.
    [37] Deng F, Bisht K S, Gross R A ea al. Macromol., 1999, 32: 5159-5161
    [38] John G, Morita M. Macromol., 1999, 32: 1853-1858.
    [39] Kissel T, Brich Z, Bantle S, J. Control. Rel., 1991, 16, 27-42.
    [40] Li Y X, Volland C, Kissel T, Polymer, 1998, 39(14), 3087-3097.
    [41] Hench LL, Po lak JM. Th ird-generation biomedical materials. Science, 2002, 295(5557): 1014-1017.
    [42] 郝杰.成骨细胞与生物材料的黏附及相关蛋白.国外医学生物医学工程分册,2003,26(1):24-28.
    [43] Vacanti JP, L anger R, Up to n J, et al. Transp lantation of cells in matrices fo r tissue regeneration. Adv Drug Deliv Rev, 1998, 33(122): 165-182.
    [44] Hubbell JA, M assia SP, Desai N P, et al. Endothelial cell selective materials fo r tissue engineering in the vascular graft via a new receptor. Bio technology, 1991, 9(6): 568-572.
    [45] Hunter DD, Cashman N, Morris VR, et al. An LRE (leucine-arginine-glutamate) dependent mechanism for adhesion of neuronsto S-laminin. J N euro sci, 1991, 11(12): 3960-3971.
    [46] Patel N, Padera R, Sanders GH, et ai. Spatially contro lied cell engineering on biodegradable polymer surfaces. FA SEBJ, 1998, 12(14):1447-1454.
    [47] Barrera D A, Zylstora E, Cansburg P T, Langer R, J. Am. Chem. Soc., 1993, 115, 11010.
    [48] Theresa A, Holland, Tabata Y, et al. J Controlled Release, 2003, 91: 299~313.
    [49] Van Dijk-Wolthuis W N E, Hoogeboom J A M, Van Steenbergen M J, Tsang S K Y, Hennink W E, Macromolecules, 1997, 30, 4639-4645.
    [50] Sawhney A S, Pathak C P, Hubbell J A, Macromolecules, 1993, 26, 581-587.
    [51] Hart D K, Hubble J A, Macromolecules, 1997, 30, 6077-6083.
    [52] Storey R F, Warren C P, Allison C J, Puckett A D, Polymer, 1997, 38(26), 6025-6301.
    [53] Behravesh E, Vassilios, Sikavitsas, et al. Biomaterials, 2003, 24: 4365~4374.
    [54] Shin H, Seongbong Jo, Antonios G, et al. J Biomed Mater Res, 2002, 61: 169~79.
    [55] Burdick J A, Anseth K S. Biomaterials, 2002, 23: 4315~4323.
    [56] Hem D L, Hubbell J A. J Biomed Mater Res, 1998, 39: 266~276.
    [57] Nijenhuis A T, Cerijpma D W, Pennings A J, Polymer, 1996, 37(13), 2783-2791.
    [58] Ohrlander M, PalmgrenR, Wirsen A, Preparation of poly (L-lactide-grafted acrylic acid) by pre-irradiation grafting, folym Prepr, 1998; 39(2): 215-6.
    [59] Sodergard A. Preparation of poly (L-lactide-graft-acrylic acid) by preirradiation grafting. Polym Prepr, 1998, 39(2): 215-216.
    [60] Schmedlen R H, Masters K S, West J L. Biomaterials, 2002, 23: 4325~4332.
    [61] Hu Y H, Winn S R, Krajbich I, et al. J Biomed Mater Res, 2003, 64A(3): 583~590.
    [62] Tjia J S, Aneskievich B J, Moghe P V. Biomaterials, 1999, 20: 2223-2233.
    [63] Richardson MW. Polymer Engineering Composites. London: Applied Science Publishers. Ltd, 1977.5.
    [64] Bonfield W, Grynpas MD, Tully AE, Bowman AJ. Hydroxyapatite reinforced polyethylene a mechanically compatible implant material for bone replacement[J]. Biomaterials 1981, 2: 185~186
    [65] Doyle C, Saunders D, Bonfield W. Polyhydroxybutyrate reinforced with hydroxyapatite-a novel degradable polymeric composite for fracture fixation[R]. Composites in Bio-Medical Engineering, 1985
    [66] Ishaug-Riley SL, Crane GM, Gurlek A et al.. Ectopic bone formation by marrow stromal osteoblast transplantation using poly (D, L-lactic-co-glycolic acid) foams implanted into the rat mesentery[J]. J Biomed Mater Res, 1997, 36: 1~8
    [67] P. Duchetne, Q. Qiu. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function[J]. Biomaterials, 1999, 20: 2287~2303
    [68] Verheyen C C P M, de Wijn J R, van Blitterswijk C A, Rozing P M, de Groot K. Examination of efferent lymph nodes after 2 years of trans-cortical implantation of poly(L-lactide) containing plugs: A case report. J Biomed Mater Res, 1993, 27: 433.
    [69] Verheyen CCPM, HIein CPAT, de Blieck, Hogervorst J M A, et al. J Mater Sci, Mater Med, 1993, 4: 58.
    [70] Liu Q, de Wijn J R, Bakker D, van Blitterswijk C A. Surface modification of hydroxyapatite to introduce interfacial bonding with polyactive' 70130 in abiodegradable composite. J Mater Sci, Mater Med, 1996, 7: 551.
    [71] Kikuchi M, Suetsugu Y, Tanaka J. Preparation and mechanical properties of calcium phosphate/copoly-L-lactide composites. J Mater Sci, Mater Med, 1997, 8: 361.
    [72] Bostman OM. Absorbable implants for the fixation of fracture[J]. J Bone Jt Surg 1991, 73A: 148~153
    [73] Verheyen CCPM, J K de Wi jn, CA van Blitterswijk, et al, Evaluation of Hydroxyapatite/poly (l-Lactide) composites: Mechanical Behavior[J]. J Biomed Mater Res, 1992, 26: 1277~1296
    [74] Torma P, Vasenius J, Vainionpa S, etal. Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rod for internal fixation of bone fracture: invitro an dinvivo study[J]. J Biomed. Mater. Res., 1991; 25: 1~22
    [75] Ylinen P. Filling of boned effects with porous hydroxyapatite reinforced with polylactide or polyglycolide fibres[J]. J Mater. Sci.: Mater. In Med., 1994, 5: 522~528
    [76] 李玉宝,魏杰.纳米生物材料及其应用[J].中国医学科学院学报,2002,24(2):203~206
    [77] Rhee SH, Suetsugu Y, Tanaka J. Biomimetic configurational arrays of hydroxylapatite nanocrystals on bio-organics[J]. Biomaterials, 2001, 22: 2843~2847
    [78] Banks E, Nakajima S, Shapiro L C. Fibrous apatite grown on modified collagen[J]. Science, 1997, 198: 1164-1166.
    [79] Tenhuisen K S, Martin R I, Klimkiewicz M, Brown P W. Formation and properties of a synthetic bone composite: Hydroxyapatite-collagen. J Biomed Mater Res, 1995, 29: 803.
    [80] Chang M C. Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as crosslinkage agent[J]. J Mater Sci, 2001, 20: 1199-1201.
    [81] Urist M R. Clin. Orthop, 1984, 187: 227
    [82] Ripamontill L L, Heever B, Ma S S, et al. Plant Reconstr Surg, 1992, 89:731.
    [83] Ripamontill L L, Ma S S, Heever B, et al. Plant Reconstr Surg, 1992, 90: 381.
    [84] Sasaki N, Umeda H, Okada S, Kojima R, Fukuda A. Mechanical properties of hydroxyapatite-reinforced gelatin as a model system of bone. Biomaterials, 1989, 10: 129.
    [85] 高寿延,刘稚萍,张佑良,中华医学杂志,1989,44:299.
    [86] 肖建德,朱通伯,杜靖远,中华骨科杂志,1988,8:222.
    [87] Kikuchi M, ltoh S, lchinose, et al. Self-organization mechanism in a bone-like Hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo[J]. Biomaterials, 2001, 22: 1705-1711
    [88] 廖素三,崔福斋,张伟.组织工程中胶原纳米复合材料的研制[J].中国医学科学院学报,2003,25(1):36-39.
    [89] Niemeyer, P, Krause, U, Fellenberg, J, et al. Evaluation of mineralized collagen and[alpha]-tricalcium phosphate as scaffolds for tissue engineering of bone using human mesenchymal stem cells[J]. Cells Tissues Organs, 2004, 177(2): 68-78.
    [90] Serre CM, Papillard M, Chavassieux P, et al. Baivin G. Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts[J]. J Biomed Mater Res, 1998, 42: 626-633.
    [91] Katthagen B D, Arch Orthop Trauma Surg, 1984, 103: 291.
    [92] Chenite A, Chaput C, Wang D, el al. Novel injectable neutral solution ofchitosan from biodegradable gels in situ[J.] Biomaterials, 2000, 21: 2155-216.
    [93] 田中顺三,田口哲志.组织再生 生体材料开发[J].化学工业,2001,52(2):329-335.
    [94] Yin Y, Ye F. Yao K, et al. Preparation and characterization of macroporous chitosan-gelatin/β-tricalcium phosphate composite scaffolds for bone tissue engineering, [J] Biomed MasterBes, 2003, 67A(3): 844-855.
    [95] Shen F, Cui YL, Yao KD. A Study on the fabrication of porous chitosan/gelatin network scaffolds for tissue enginerring. [J]. Polym Inter, 2000, 49: 1596-1599.
    [96] Kania RE, Meunier A, Hamadouche M, Sedel L, Petite H Affition of fibrin sealant to ceramic promotes bone repair; long-term study in rabbit femoral defectmodel[J]. J BiomedMater Res, 1998, 43(1): 38-45.
    [97] Pachence J M, Kohn J. Biodegradable polymers. In: Lanza RP, Larger R, Vacanti), editors. Principles of tissue engineering. 2nd ed. San Diego: Academic Press, 2000.
    [98] Basset D C, editor. Development in crystalline polymers. London: Elsevier, 1988.
    [99] Wang M, Wang CX, Weng J, Ni J. Developing biodegradable composites using polyhydroxybutyrate and its co-polymer. Transactions of the Sixth World Biomaterials Congress, Hawaii, USA, 2000: 81
    [1] 常青,聚乳酸的合成、结构及性能,高分子材料科学与工程,1994,1:140~143
    [2] 马晓妍,石叔先,夏宇正,焦书科,李效玉,聚乳酸及其共聚物的制备和降解性能,北京化工大学学报,2004,31(1):51~56
    [3] 罗丙红,周长忍,梁敏,缪婧,功能化聚乳酸大分子单体的合成与表征,中山大学学报(自然科学版),2005,44(3):67-70
    [4] Wallach J A, Huang A J, Copolymers of itaconic anhydride andmethacrylate-terminated poly(lactic acid) macromonomers, Biomacromolecules, 2000, 1: 174~179
    [5] Cretu A, Gattin R, Brachais L, Barbier-Baudry D, Synthesis and degradation of poly (2-hydroxyethyl methacrylate)-graft-poly(ε-caprolactone) copolymers, Polymer Degradation and Stability, 2004, 83: 399~404
    [6] Eguiburu J L, Fernandez-Berridi M J, Graft copolymers for biomedical applications prepared by free radical polymerization of poly(L-lactide) macromonomers with vinyl and acrylic monomers, Polymer, 1996, 37(16): 3615~3622
    [7] 陈红丽,贝建中,王身国,生物降解高分子——聚己内酯/聚氧乙烯/聚丙交酯三元共聚物水解行为的研究,高分子学报,2000,5:626-627
    [8] 蒋宏亮,朱康杰,聚丙交酯(PL)/丙交酯-聚乙二醇共聚物(PLEG)共混微球的制备、表征及释约行为,生物医学工程学杂,J. biomed. Eng., 2000,17(1):5-9
    [9] 吴之中,聚乳酸—聚乙二醇嵌段共聚物及其交联聚氨酯弹性体的性能研究,Journal of Xinyang Teachers College (NaturalScienceEdition), Vol. 12 No. 2 Apr. 1999
    [10] 宋谋道,朱吉亮,张邦华等,聚乙二醇改性聚乳酸的研究,高分子学报,1998,4:454-460
    [11] 朱志学,刘莉,聚醚二醇钾盐引发D,L-丙交酯的开环聚合研究,合成技术及应用
    [12] WEI Hong-liang, YU Huai-qing, QIAN li-jun, SUN Ling-gang, FENG Zeng-guo One-Pot Synthesis of Macromer of PLA-PEG-PLA Terminated with Methacryloyl Moiety Journal of Functional Polymers Mar. 2005 No. 1 Vol. 18: 71-75
    [13] 黄宁勇,唐颂超,徐志君等,端羟基聚乳酸的合成与表征,功能高分子学报,2004,17(2):285-28
    [1] Lazar M., Rado R., Richly J., Adv. Polym. Sci., 1990, 95: 149
    [2] 陈丽琼,刘杰,李玮等,有机硅改性丙烯酸酯乳液性能的研究,中山大学学报(自然科学版),2003,42(2):38-41
    [3] 何平笙,杨海洋,朱平平等,高分子物理实验,中国科学技术大学出版社,2002,第1版,90
    [4] 陈用,曾兆华,杨建文,辐射固化材料及其应用,化学工业出版社,2003,第1版,22
    [5] Cook W. D., Polymer, 1992, 33: 2152
    [6] Decker C., Elzaouk B., Decker D., J. Macromol. Sci. Pure Appl. Chem., 1996, A33(2): 173
    [7] Anseth K. S., Newman S. M., Bowman C. N., Adv. Polym. Sci., 1995, 122: 177
    [8] Peppas N. A., Fundamentals, Hydrogels in medicine and pharmacy, 1. Boca Raton, FL: CRC Press, 1986
    [9] Gopferich A., Macromolecules, 1997, 30(9): 2598-604
    [1] 崔英德,易国斌,廖列文 编著,聚乙烯吡咯烷酮的合成与应用,科学出版社,2001,第1版,156-158
    [2] ISO 10993213, Bio logical evaluation of medical devices, Part 13: Identification and quantification of degradation productsfrom polymers, 1998
    [3] GB/T 16886. 13 22001 Biological evaluation of medical devices, Part 13: Identification and quantification of degradation products from polymeric medical devices[GB/T 16886. 1322001 医疗器械生物学评价第13部分:聚合物医疗器械的降解产物的定性与定量
    [4] Jain SK, Palmer M. The effect of oxygen radical metabolites and vitamin E on glycosylation of proteins. Free Radic Biol Med, 1997; 22(4): 593-596
    [5] Box HC, Budzinski EE, Dawidzik JB, Gobey JS, Freund HG. Free radical inducedtandem base damage in DNA oligomers. Free Radic Biol Med, 1997; 23(7): 1021-1030
    [6] Meneghini R. Iron homeostasis oxidative stress, and DNA damage. Free Radic Biol Med, 1997; 23 (5): 783-792
    [7] ISO13781. 1997, Poly(L-lactide) resins and fabricated forms for surgical implants: in vitro degradation testing.
    [8] Wang Xin, Shi Yanping, Zhu Xuetao, et al. Evaluation on the cytotoxicity of polymeric material for medical use by MTT-assay. Shandong Journal of Biomedical Engineering, 2003, 22(1): 46-47.
    [9] Fu Yuanfei, Chert Demin, Zhang Jiangzhong. Cytotoxicity of the strontium-substituted hydroxyapatite evaluated by MTT colorimetry. Journal of Biomedical Engineering, 200, 18(3): 389-390.
    [10] Lee HS, Huang GT, Chiang H, et al. Multipotential Mesenchymal Stem Cells from Femoral Bone Marrow Near the Site of Osteonecrosis, Stem Cells 2003 Mar; 21(2): 190
    [11] Wieczorek q SteinhoffC, Schuiz 又 et al. Gene expression profile of mouse bone marrow stromal cells determined by cDNA microarray analysis. Cell Tissue Res 2003 Feb; 311(2): 227
    [12] Abukawa H, Terai H, Hannouche D, et al. Formation of a mandibular condyle in vitro by tissue engineering. J Oral Maxillofac Surg 2003 Jan; 61(1): 94
    [13] Wataha J C, Graig R G, Hanks C T. Precision of a New Method for Testing Vitro Alloy Cytotoxicity. Dent. Mater, 1992, 8(1): 65~71
    [14] Dong Xie, Cheryl A Smyth, Christopher Eckstein, et al. Cytoprotection of PEG-modified adult porcine pancreatic islets for improved xenotransplantation. Biomaterials, 2005, 26: 403-412.
    [15] Wataha J C, Graig R G, Hanks C T. Precision of a New Method for Testing Vitro Alloy Cytotoxicity. Dent. Mater, 1992, 8(1): 65~71
    [16] 吕晓迎,Kapper HF。牙科材料细胞毒性评定的新方法(MTT试验)。中华口腔医学杂志,1995,30(6):377~379
    [17] Lohmann CH, Schw artz Z, Ko ster G, et al. Phagocytsig of wear debris by osteoblasts effects differentiation and local facto r p roduct ion in a manner dependent on particle composition[J], Biomaterials, 2000, 21: 551-561.
    [18] Pittenger M F, Mackay A M, Beck S C et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284: 143
    [19] G. Kelly P. Maguire, P. J. Prendergast and S. Jarvis, Investigating Single Cell Mechanosensitivity using Atomic Force Microscopy(AFM). Bioengineering In Ireland Conference, January 27-28, 2006, Clybaun Hotel, Galway
    [20] Eric Lesniewska, Marie-Ce' cile Giocondi, Eric Finot, Ve' ronique Vie', and Jean-Pierre Goudonnet maging of the Surface of Living Cells by Low-Force Contact-Mode Atomic Force Microscopy Christian Le Grimellec, Biophysical Journal Volume 75 August 1998 695-703
    [21] Lin Y, Vandeputte M, Waer M. Natural killer cell and macrophage mediated rejection of concordant xenografts in the absence of T and B cell responses. J Immunol, 1997, 158: 5658
    [22] Jaiswal N, Haynesworth SE, Caplan AI, et al. Osteogenic differentiation of purified, Culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 1997; 64(2): 295
    [23] Malekzadeh R, Hollinger JO, Buck D et ai. Isolation of human osteoblastic like cells and in vitro amplification for tissueengineering. Periodontology, 1998, 69(11): 1256
    [24] Kamalia N, McCulloch CA, Tenebaum HC et al. Dexamethasone recruitment of self renewing osteoprogenitor cells in chick bone marrow stromal cell cultures. Blood, 1992, 79(2): 320
    [25] Walsh S. Jordan GR. Jefferiss C. High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro: relevance to glucocorticoid induced osteoporosis. Rheumatology, 2001, 40(1): 74
    [26] 王永红,王常勇,郭希民等.人骨髓间质干细胞体外扩增和向成骨细胞分化的实验研究.中国生物医学工程学报,2002,21(3):251
    [27] ISO 10993-6: Biological evaluation of medical devices--Part 6: Tests for local effects after implantation ISO/TC 194, 1994
    [28] C. G. Gomez, C. I. Alvarez Igarzabai, M. C. Strumia, Effect of the crosslinking agent on porous networks formation ofhema-based copolymers, Polymer, 2004, 45: 6189-6194
    [29] 严瑞宣主编,水溶性高分子,化学工业出版社,1998,第1版,229
    [30] 吴谋成主编,仪器分析,科学出版社,2003年第1版,39
    [31] Penny Martens, Andrew T. Metters, Kristi S. Anseth, and Christopher N. Bowman. A Generalized Bulk-Degradation Model for Hydrogel Networks Formed from Multivinyl Cross-linking Molecules J. Phys. Chem. B 2001, 105, 5131-5138
    [32] Andrew T. Metters, Kristi S. Anseth, and Christopher N. Bowman, A Statistical Kinetic Model for the Bulk Degradation of PLA-b-PEG-b-PLA Hydrogel Networks: Incorporating Network Non-ldealitiesJ. Phys. Chem. B 2001, 105, 8069-8076
    [33] Willians DF, Mechanisms of biodegradation of implantable polymers[J]. Clin Mater, 1992, 10(1-2): 9-12
    [34] Sabita Stivastava, Stephen DG. Screening of in vitro cytotoxicity by the adhesivetest[J]. Biomateials, 1990, 11(3): 133-136.
    [35] Abukawa H, Terai H, Hannouche D, et al. Formation of a mandibular condyle in vitro by tissue engineering. J Oral Maxillofac Surg 2003 Jan; 61(1): 94
    [36] Guillermo Gonzalez-Martyn, Claudia Figueroa, Isabel Merino, et al. Allopurinol encapsulated in polycyanoacrylate nanoparticles as potential lysosomatropic carrier: preparation and trypanocidai activity. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 49: 137-142.
    [37] Dong Xie, Cheryl A Smyth, Christopher Eckstein, et al. Cytoprotection of PEG-modified adult porcine pancreatic islets for improved xenotransplantation. Biomaterials, 2005, 26: 403-412.
    [38] Ajay Kumar Gupta, Mona Gupta. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomateriats, 2005, 26: 1565-1573
    [39] Pittenger MF, Mackay AM, Beck SC, et al. Multilinage poiential of adult human mesenchymal stem cell J. Science, 1999, 284(5411): 143-147.
    [40] Hung SC, Chert NJ, Hsieh SL, et al. Isolation and characterization of size sieved stem cells from human bone marrow J. Stem Cells, 2002, 20: 249-258.
    [41] Nadia Quirici, Davide Soligo, Patrizia Bossolasco, et al. Isolation of bone marrow mesenchymal stem cells by anti2nerve growth factor receptor antibodies J. Exp Hematol, 2002, 30: 783-791
    [42] G. Kelly P. Maguire, P. J. Prendergast and S. Jarvis, lnvestigating Single Cell Mechanosensitivity using Atomic Force Microscopy(AFM). Bioengineering In Ireland Conference, January 27-28, 2006, Clybaun Hotel, Galway
    [43] IEric Lesniewska, Marie-Ce' cile Giocondi, Eric Finot, Ve' ronique Vie', and Jean-Pierre Goudonnet maging of the Surface of Living Cells by Low-Force Contact-Mode Atomic Force Microscopy Christian Le Grimellec, Biophysical Journal Volume 75 August 1998 695-703
    [44] Saltzman W M, Cell interaction with polymers in principles of tissue engineering, eds by Lamza R, Langer R and Chick W, Austin: Landes R G Company, 1997: 225-226
    [45] Wu G D, Cramer D V, Chapman F A et al. Genetic control of the humoral immune response to xenografts. I. Functional characterization of rat monoclonal antibodies to hamster heart xenografts. Transplantation, 1995, 60: 1497
    [46] Miyatake T, Sato K, Takigami K et al. Complement fixing elicited antibodies are a major component in the pathogenesis of xenograft rejection. J Immunol, 1998, 160: 4114
    [47] Sato K, Takigami K, Miyatake T et al. Suppression of delayed xenograft rejection by specific depletion of elicited antibodies of the lgM isotype. Transplantation, 1999, 68: 844
    [48] 王永红,王常勇,郭希民等.人骨髓间质干细胞体外扩增和向成骨细胞分化的实验研究.中国生物医学工程学报,2002,21(3):251
    [49] 创伤修复基础,付小兵,1997.5,117-118
    [50] 细胞外基质的分子生物学与临床疾病,成军编著,北京医科大学出版社,1999.6,215-2
    [1] Chrastil J. Solubility of solids and liquids in supercritical gases. J Phys Chem 1982: 86: 3016
    [2] de Philippi RP. CO2 as a solvent: application to fats, oils and other materials. Chem Ind 1982: 390—399
    [3] 卢绮雯,李茜茜,周长忍。超临界CO2及超声波技术处理异种骨的初步探讨,化学世界,2005:46(7):393-396
    [4] Lee HS, Huang GT, Chiang H, et al. Multipotential Mesenchymal Stem Cells from Femoral Bone Marrow Near the Site of Osteonecrosis. Stem Cells 2003 Mar; 21(2): 190
    [5] Wieczorek q SteinhoffC, Schuiz 又 et al. Gene expression profile of mouse bone marrow stromal cells determined by cDNA microarray analysis. Cell Tissue Res 2003 Feb; 311(2): 227
    [6] Abukawa H, Terai H, Hannouche D, et al. Formation of a mandibular condyle in vitro by tissue engineering. J Oral Maxillofac Surg 2003 Jan; 61(1): 94
    [7] ISO13781: 1997, Poly(L-lactide) resins and fabricated forms for surgical implants: in vitro degradation testing.
    [8] ASTM (American Society for Testing and Materials). Standard specification for acrylic bone cement. Book of Standards, F451-95. 1995; 47-53.
    [9] ISO (International Standard Organization) Implants for surgery--Acrylic resin cements; TC150/ISO ISO 5833: 2002
    [10] Moad, G.; Solomon, D. H. The Chemistry of Free Radical Polymerization; Pergamon Press: Oxford, U. K., 1995; pp 72-73.
    [11] Pryor, W. A.; Hendrickson, W. H. Jr. Tetrahedron Lett. 1983, 24, 1459-1462.
    [12] De Feng, X. Makromol. Chem., Macromol. Symp. 1992, 63, 1-18.
    [13] [12] Sato, T.; Kita, S.; Otsu, T. Makromol. Chem. 1975, 176, 561-571
    [14] [13]Kin Dimitris S. Achilias and Irini D. Sideridou*, etics of the Benzoyl Peroxide/Amine Initiated Free-RadicaiPolymerization of Dental Dimethacrylate Monomers: Experimental Studies and Mathematical Modeling for TEGDMA and Bis-EMAMacromolecules 2004, 37, 4254-4265
    [15] Wen, M.; McCormick, A. V. Macromolecules 2000, 33, 9247-9254.
    [16] Achilias, D. S.; Sideridou, I. J. Macromol. Sci., Part A: Pure Appl. Chem. 2002, A39, 1435-1450.
    [17] Stickler, M.; Dumont, E. Makromol. Chem. 1986, 187, 2663-2673.
    [18] 卞忠义,不饱和聚酯树脂反应性研究,玻璃钢/复合材料,2000.1,30-32
    [19] Trommsdorff E, Ko hle H, Lagally P. On the polymerisation of methyl methacrylate. Makromoi Chem 1948; 1: 169-198.
    [20] Maffezzoli A, Ronca D, Guida G, Pochini I, Nicolais L. In-situ polymerization behaviour of bone cements. J Mater Sci Mater Med 1997; 8: 75-83.
    [21] 实用临床骨缺损修复应用解剖学,徐达传,2000年01月第1版,6-8
    [22] Jacques Fages, Aiain Many, Corinne Delga, et al. Use of supercritical CO2 for bone delipidation. Biomaterials 1994; 15(9): 650
    [23] 王大志,杨兰,罗毅等。猪骨羟基磷灰石的结构稳定性,生物物理学报,1998;14(4):604
    [24] Chrastil J. Solubility of solids and liquids in supercritical gases. J Phys Chem 1982; 86: 3016
    [25] 方征平,高分子物理,127-129
    [26] 高建明主编,材料力学性能,187-188
    [27] 王迎军,刘青,郑裕东,吴刚,沉淀法原位复合聚乙烯醇(PVA)P羟基磷灰石(HA)水凝胶的结构与性能研究,中国生物医学工程学报,Vol.24,No.2,Apirl 2005,150-154
    [28] Dalby M J, Childs S, Riehle MO et al, Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time, Biomaterials. 2003 Mar; 24(6): 927-35
    [29] Schlaepfer DD, Hunter T. Signal transduction from the extracellular matrix--a role for the focal adhesion protein-tyrosine kinase FAK. Cell Struct Funct. 1996 Oct; 21(5): 445-50
    [30] Linda A. Amo, W. Bradshaw Amoss, Molecules of the Cytoskeleton, Macmillian, 1991
    [31] GARY S. STEIN AND JANE B. LIAN, Molecular Mechanisms Mediating Proliferation/Differentiation Interrelationships During Progressive Development of the Osteoblast PhenotypeEndocr Rev, 1993, 14: 424-442.
    [32] Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raft, Keith Roberts, and James D. Watson., Molecular Biology of the Cell, New York: Garland, 1994
    [33] Mills B, Singer F, Weiner LP, et al. Long-term culture of cells from bone affected by Paget's disease. CalcifTissue Int. 1979, nov, 26, 29(2): 79
    [34] Friedenstein AJ. Chailakhyan RK, Gerasimov UV Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet, 1987; 20(3): 263
    [35] Bornariu-Ephrat M, Robinson D, Mendes DC} et al. Resurfacing of gaot articular cartilage bu chondrocytes derived from bone marrow. Clin Orthop, 1996; (330): 234
    [36] Pittenger MF, Mackay AM. Beck SC, et al. Multilineage potential of adult human mesenchumal stem cells. Science, 1999; 284(5411): 143
    [37] L assus J , Salo J, J iranek WA, et al. M acrophage activation results in bone reso rp tion. Clin O rthop, 1998, (352): 7215.
    [38] Xia ZD, Zhu TB, Du JY, et al. M acrophages in degradation of co llagenoh ydroxylapatite(CHA), beta-tricalcium phosphate ceram ics(TCP) artificial bone graft. A n in vivo study. Ch inM ed J(Engl), 1994, 107(11): 8452849.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700