丝素蛋白作为促血管生长基因载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管的再生是组织工程及原位组织再生领域面临的关键问题。利用转基因技术,将促进血管再生的生长因子基因导入目的细胞并使其表达,可有效促进血管生成。VEGF165和Ang-1是两种最重要的促血管再生生长因子。VEGF作用于血管形成的早期,促进原始血管网的形成,Ang-1则作用于其后的血管改建、塑形,促进形成成熟的且具有空间结构的血管网。联合使用VEGF165和Ang-1双基因转染细胞,则既有利于相互协调共同促进血管的形成,又可使新生血管获得持久稳定的结构。为了将目的基因导入靶细胞,需要依靠基因传递载体。分子量为25kDa的支链PEI是迄今最成功的非病毒高分子基因载体,其表面带有高密度的正电荷,转染效率较高,但细胞毒性较大。丝素蛋白是一种具有良好细胞相容性和可降解性的蛋白质,丝素分子带负电,不能直接包装DNA,但是能够屏蔽PEI多余的正电荷,减小细胞毒性。同时柞蚕丝素蛋白内存在细胞特异性粘附序列RGD,可以与血管内皮细胞、成纤维细胞等细胞表面的受体发生特异性相互作用。因此,用丝素和PEI共同包装质粒DNA,作为基因传递载体,可以通过细胞表面受体介导的特异性相互作用及其内吞作用,代替PEI和细胞的非特异性静电相互作用,以降低细胞毒性,提高转染效率。
     本文以丝素和PEI共同作为VEGF165和Ang-1双基因共表达质粒的传递载体,研究与PEI单独作为传递载体相比,载体的形态、结构、理化性质的变化,及其对细胞毒性、转染效率的影响,并对其影响机制进行初步探讨。
     首先,通过静电吸附方法制备PEI/DNA复合物, DNA的含量为2μg/ml。用琼脂糖凝胶电泳确定能完全包被质粒时,PEI与DNA的N/P比大于3。MTT法证明,细胞培养液中PEI含量在1-5μg/ml时,细胞存活率都在90%以上,细胞毒性较低。PEI含量为3μg/ml时(其中,PEI/DNA复合物的含量为5μg/ml,DNA的含量为2μg/ml),荧光强度最强,转染效率最大,且细胞毒性较低。
     其次,分别用柞蚕丝素(Antheraea pernyi silk fibroin,ASF)和家蚕丝素(Bombyxmori silk fibroin, BSF)包被PEI/DNA,得到ASF/PEI/DNA和BSF/PEI/DNA复合物。用X-射线能谱分析了复合物表面元素的含量变化,证明蚕丝丝素可以结合到PEI/DNA表面。原子力显微镜(AFM)和激光粒度仪(DLS)测试结果显示ASF和BSF都可以包被PEI/DNA形成纳米级颗粒,PEI/DNA的平均粒径为274.3±3.4nm,ASF/PEI/DNA的平均粒径是337.6±7.4nm,SF/PEI/DNA复合物的粒径与PEI/DNA相比有所增大。ASF/PEI/DNA和BSF/PEI/DNA的表面电位与PEI/DNA相比有明显降低。SF/PEI/DNA三元复合物能抵抗核酸酶的降解。
     最后,分别用ASF/PEI/DNA和BSF/PEI/DNA转染L929细胞,激光共聚焦显微镜(LSCM)观察转染情况,流式细胞仪检测绿色荧光蛋白(GFP)阳性细胞比率。结果表明,ASF/PEI/DNA复合物的转染效率比PEI/DNA复合物的高。转染CHL细胞后,出现了相似的结果。MTT法测试结果显示ASF/PEI/DNA组的细胞存活率大于PEI/DNA组的细胞存活率。用ASF与PEI共包被DNA后,一方面能够通过受体介导的内吞作用,增强复合物对细胞的靶向性;另一方面能降低复合物的细胞毒性,使细胞生长状况和功能良好,有利于转录和翻译,从而提高VEGF-Ang-1双基因共表达质粒的基因转染效率。细胞经转染携带双基因片段的质粒后,VEGF的分泌比同种条件下的携带单基因的质粒组分泌的VEGF多。同一时间点,ASF/PEI/DNA组细胞比其它组细胞分泌的VEGF多。证明用ASF与PEI共同包被DNA,不仅能够提高转染效率,而且转染后的VEGF基因能够正常表达、分泌VEGF。
     本文首次用柞蚕丝素蛋白和PEI共同作为VEGF165和Ang-1双基因共表达传递载体转染成纤维细胞,研究表明,与单纯使用PEI相比,能有效提高转染效率并降低细胞毒性,为组织工程及原位组织再生领域的血管再生提供了一种新的基因传递载体。
Revascularization is the key challenge in tissue engineering and in situ tissueregeneration. Transgenic technology can import angiogenesis growth factor genes intotarget cells to express certain growth factor protein and contribute to angiogenesis.Vascular endothelial growth factor (VEGF165) and angiopoietin-1(Ang-1) have beenidentified as two key angiogenesis growth factors. VEGF promotes the formation ofprimitive vascular network in the early formation of blood vessels; Ang-1plays a role inthe vascular reconstruction and shaping, as well as promotes the formation of a matureand spatial structure of vascular network. Combination of VEGF165and Ang-1can notonly enhance angiogenesis but also obtain stable blood vessels. Gene delivery vector isneeded for importing gene into target cells. The branched polyethylenimine (PEI,25kDa)has been the most successful non-viral gene vector. Due to its high positive charge, PEIhas high transfection efficiency, but it has high cytotoxicity. Silk fibroin (SF) is a naturalprotein and presents excellent cell biocompatibility and biodegradability. As an anionicpolymer, SF can not combine with DNA directly. It can bind to the cationic PEI/DNAcomplex electrostatically to modify the complex surface and lower cytotoxicity. At thesame time, ASF has tripeptide sequence RGD which is known to exhibit specificinteractions with cells. It can interact specifically with receptors of vascular endothelialcells and fibroblast to replace the non-specific electrostatic interaction between PEI andcells.
     This paper develops SF and PEI as VEGF165and Ang-1gene delivery vector. Theshape, structure, physical characteristics, cytotoxicity and transfection efficiency wasstudied compared with PEI/DNA. Its mechanism was also discussed.
     First, PEI/DNA complex was prepared (DNA2μg/ml). When N/P is above3, PEIcan entrap DNA completely. MTT assay demonstrate that survival rate of cells is morethan90%when PEI is1-5μg/ml. When PEI is3μg/ml (DNA2μg/ml), GFP-positivepercentage is highest. Here PEI/DNA is5μg/ml (3μg PEI和2μg DNA), which canboth obtain highest transfection efficiency and lowest cell cytotoxicity.
     ASF and BSF were used to encapsulate PEI/DNA to obtain ASF/PEI/DNA andBSF/PEI/DNA complexes. EDS can test the wt%of different elements on the surfaceof complexes and demonstrated ASF can bind to the cationic PEI/DNA complex. Theresults of AFM and DLS indicated ASF and BSF can both entrap PEI/DNA. PEI/DNAshowed274.3±3.4nm particle size and ASF/PEI/DNA showed337.6±7.4nm particlesize. The addition of silk fibroin to the PEI/DNA complex decreased its ξ-potentials.ASF/PEI/DNA complex can avoid hydrolysis.
     L929cells were added ASF/PEI/DNA and BSF/PEI/DNA, transfection wasobserved by LSCM and GFP-positive percentage was detected in the flow cytometer.Results showed that transfection efficiency of ASF/PEI/DNA was higher than that ofPEI/DNA. The results of CHL cells were the same.1d and2d after transfection,GFP-positive percentage of ASF/PEI/DNA (60:3:2) was higher than PEI/DNA. Theresults shows ASF and PEI can raise transfection efficiency of VEGF-Ang-1DNA.Cell cytotoxicity of ASF/PEI/DNA, PEI/DNA and BSF/PEI/DNA was examined.Survival rate of cells with ASF/PEI/DNA was higher than that of PEI/DNA. Theaddition of VEGF165and Ang-1genes raised VEGF more greatly than the addition ofVEGF165. ASF/PEI/DNA group showed the most VEGF than any other group. Thisindicates ASF and PEI can not only raise transfection efficiency, but also can makeVEGF gene express and secrete VEGF.
     This paper uses Antheraea pernyi silk fibroin and PEI for the first time to serve asdelivery vector for VEGF165and Ang-1genes. The results showed improvedtransfection efficiency and low cytotoxicity, providing a new non-viral gene vector fortissue engineering and in situ tissue regeneration.
引文
[1] Nomi M, Atala A, Coppi PD, Soker S. Principals of neovascularization for tissueengineering [J]. Molecular Aspects of Medicine,2002,23:463-483.
    [2] Rouwkema J, Rivron NC, Blitterswijk CA. Vascularization in tissue engineering [J].Cell Press,2008,26(8):434-441.
    [3] Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases [J]. Nature,2000,407:249-257.
    [4] Griffith LG, Naughton G. Tissue engineering-current challenges and expandingopportunities [J]. Science,2002,295(5557):1009-1014.
    [5] Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissueengineering [J]. Advanced Drug Delivery Reviews,2011,63(4):300-311.
    [6] Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bonebiomimetics and drug delivery strategies [J]. Biotechnology Progress,2009,25(6):1539-1560.
    [7] Druecke D, Langer S, Lamme E, Pieper J, Ugarkovic M, Steinau HU, Homann HH.Neovascularization of poly (ether ester) block-copolymer scaffolds in vivo:long-term investigations using intravital fluorescent microscopy [J]. Journal ofBiomedical Materials Research,2004,68(1):10-18.
    [8] Yang SF, Leong KF, Du ZH, Chua CK. The design of scaffolds for use in tissueengineering [J]. Tissue Engineering,2001,7(6):679-689.
    [9] Karageorgiou V, Kaplan D. Porosity of3D biomaterial scaffolds and osteogenesis[J]. Biomaterials,2005,26:5474-5491.
    [10]Wilson CE, Bruijin JD, Blitterswijk CA, Verbout AJ, Dhert WJA. Design andfabrication of standardized hydroxyapatite scaffolds with a definedmacro-architecture by rapid prototyping for bone-tissue-engineering research [J].Journal of Biomedical Materials Research,2004,68(1):123-132.
    [11]Ikemoto S, Mochizuki M, Ymada M, Takeda A, Uchinuma E, Yamashina S,Nomizu M, Kadoya Y. Laminin peptide-conjugated chitosan membrane:application for keratinocyte delivery in wounded skin [J]. Journal of BiomedicalMaterials Research,2006,79(3):716-722.
    [12]Hirschi KK, Skalak TC, Peirce SM, Little CD. Vascular assembly in natural andengineered tissues [J]. Annals of the New York Academy of Sciences,2002,961:223-242.
    [13]Park JE, Keller GA, Ferrara N. The vascular endothelial growth factor (VEGF)isoforms: differential deposition into the subepithelial extracellular matrix andbioactivity of extracellular matrix-bound VEGF [J]. Molecular Biology of the Cell,1993,4:1317-1326.
    [14]Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N. Dual regulation ofvascular endothelial growth factor bioavailability by genetic and proteolyticmechanisms [J]. The Journal of Biological Chemistry,1992,267(36):26031-26037.
    [15]Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growthfactor (VEGF) and its receptors [J]. The Journal of the Federation of AmericanSocieties for Experimental Biology,1999,13(1):9-22.
    [16]Keshawa H, Forbes A, Day RM. Release of angiogenic growth factors from cellsencapsulated in alginate beads with bioactive glass [J]. Biomaterials,2005,26(19):4171–4179.
    [17]Shen YH, Shoichet MS, Radisic Milica. Vascular endothelial growth factorimmobilized in collagen scaffold promotes penetration and proliferation ofendothelial cells [J]. Acta Biomaterialia,2008,4(3):477-489.
    [18]Amsden BG, Timbart L, Marecak D, Chapanian R, Tse MY, Pang SC.VEGF-induced angiogenesis following localized delivery via injectable, lowviscosity poly (trimethylene carbonate)[J]. Journal of Controlled Release,2010,145(2):109-115.
    [19]Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, et al. Isolation ofAngiopoietin-1, a ligand for the Tie2receptor, by secretion-trap expressioncloning [J]. Cell,1996,87(7):1161-1169.
    [20]Suri C, Jones PF, Patan S, et al. Requisite role of Angiopoietin-1, a ligand for theTie2receptor, during embryonic angiogenesis [J]. Cell,1996,87(7):1171-1180.
    [21]Thurston G, Suri C, Smith K, et al. Leakage-resistant blood vessels in micetransgenically overexpressing angiopoietin-1[J]. Science,1999,286(5449):2511-2514.
    [22]Kim I, Moon SO, Park SK, Chae SW, Koh GY. Angiopoietin-1reducesVEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1,and E-selection expression [J]. Circulation Research,2001,89:477-479.
    [23]石海飞.血管生成素促进组织工程真皮支架血管化的研究.硕士学位论文,浙江大学,2005.
    [24]Chen F, Tan Z, Dong CY, et al. Combination of VEGF165/Angiopoietin-1gene andendothelial progenitor cells for therapeutic neovascularization [J]. EuropeanJournal of Pharmacology,2007,568(1):222-230.
    [25]Benest AV, Salmon AH, Wang WY, et al. VEGF and angiopoietin-1stimulatedifferent angiogenic phenotypes that combine to enhance functionalneovascularization in adult tissue [J]. Microcirculation,2006,13(6):423-437.
    [26]Klopper J, Lindenmaier W, Fiedler U, et al. High efficient adenoviral-mediatedVEGF and Ang-1gene delivery into osteogenically differentiated humanmesenchymal stem cells [J]. Microvascular Research,2008,75(1):83-90.
    [27]Su H, Takagawa J, Huang Y, et al. Additive effect of AAV-mediated angiopoietin-1and VEGF expression on the therapy of infracted heart [J]. International Journal ofCardiology,2009,133(2):191-197.
    [28]刘铁连. Ang-1或/和VEGF165转基因细胞修饰的再生丝素膜诱导血管形成效应及分子机制研究.硕士学位论文,苏州大学,2009.
    [29]Manthorpe M, Jensen FC, Hartikka J, Felgner J, Rundell A, Margalith M, Dwarki V.Gene therapy by intramuscular injection of plasmid DNA: studies on fireflyluiferase gene expression in mice [J]. Human gene therapy,1993,4(4):419-431.
    [30]Wu N, Ataai MM. Production of viral vectors for gene therapy applications [J].Current Opinion in Biotechnology,2000,11(2):205-208.
    [31]Cai X, Conley S, Naash M. Nanoparticle applications in ocular gene therapy [J].Vision Research,2008,48(3):319-324.
    [32]Zhang XJ, Godbey WT. Viral vectors for gene delivery in tissue engineering [J].Advanced Drug Delivery Reviews,2006,58(4):515-534.
    [33]Davis ME. Non-viral gene delivery systems [J]. Current Opinion in Biotechnology,2002,13(2):128-131.
    [34]Bleiziffer O, Eriksson E, Yao F, Horch RE, Kneser U. Gene transfer strategies intissue engineering [J]. Journal of Cellular and Molecular Medicine,2007,11(2):206-223.
    [35]Pichon C, Billiet L, Midoux P. Chemical vectors for gene delivery: uptake andintracellular trafficking [J]. Current Opinion in Biotechnology,2010,21(5):640-645.
    [36]Farrell LL, Pepin J, Kucharshi C, Lin X, Xu ZH, Uludag H. A comparison of theeffectiveness of cationic polymers poly-l-lysine (PLL) and polyethylenimine (PEI)for non-viral delivery of plasmid DNA to bone marrow stromal cells (BMSC)[J].European Journal of Pharmaceutics and Biopharmaceutics,2007,65(3):388-397.
    [37]Choi JS, Nam K, Park JY, Kim JB, Lee JK, Park JS. Enhanced transfectionefficiency of PAMAM dendrimer by surface modification with l-arginine [J].Journal of Controlled Release,2004,99(3):445-456.
    [38]Mok H, Park TG. Direct plasmid DNA encapsulation within PLGA nanospheres bysingle oil-in-water emulsion method [J]. European Journal of Pharmaceutics andBiopharmaceutics,2008,68(1):105-111.
    [39]Song BF, Zhang W, Peng R, Huang J, Li Y, Jiang Q, Gao R. Synthesis and cellactivity of novel galactosylated chitosan as a gene carrier [J]. Colloids andSurfaces B: Biointerfaces,2009,70(2):181-186.
    [40]Le VT, August JT, Leong KW. Controlled gene delivery by DNA-gelatinnanospheres [J]. Human Gene Therapy1998,9(12):1709-1717.
    [41]Hosseinkhani H, Yamamoto M, Inatsugu Y, Hiraoka Y, Inoue S, Shimokawa H,Tabata Y. Enhanced ectopic bone formation using a combination of plasmid DNAimpregnation into3-D scaffold and bioreactor perfusion culture [J]. Biomaterials,2006,27(8):1387-1398.
    [42]Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, BehrJP. A versatile vector for gene and oligonucleotide transfer into cells in culture andin vivo: Polyethylenimine [J]. Proceedings of the National Academy of Sciences ofthe United of America,1995,92(16):7297-7301.
    [43]Ferrari S, Pettenazzo A, Garbati N, Zacchello F, Behr JP, Scarpa M.Polyethylenimine shows properties of interest for cystic fibrosis gene therapy [J].Biochimica et Biophysica Acta,1999,1447(2):219-225.
    [44]Fischer D, Bieber T, Li YX, Elsasser HP, Kissel T. A novel non-viral vector forDNA delivery based on low molecular weight, branched polyethylenmine: effectof molecular weight on transfection efficiency and cytotoxicity [J]. PharmaceuticalResearch,1999,16(8):1273-1279.
    [45]Godbey WT, Mikos AG. Recent progress in gene delivery using non-viral transfercomplexes [J]. Journal of Controlled Release,2001,72(1):115-125.
    [46]Godbey WT, Wu KK, Hirasaki GJ, Mikos AG. Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency [J]. GeneTherapy,1999,6(8):1380-1388.
    [47]Godbey WT, Wu KK, Mikos AG. Poly (ethylenimine)-mediated gene deliveryaffects endothelial cell function and viability [J]. Biomaterials,2001,22(5):471-480.
    [48]Jiang HL, Kim YK, Arote R, Nah JW, Cho MH, Choi YJ, Akaike T, Cho CS.Chitosan-graft-polyethylenimine as a gene carrier [J]. Journal of ControlledRelease,2007,117(2):273–280.
    [49]冯敏,王玉洁,彭辉.聚乙烯亚胺-乳酸羟基乙酸共聚物阳离子纳米粒介导宫颈癌细胞基因转染效率的研究[J].中国药学杂志,2007,42(8):585-589.
    [50]张璇,潘仕荣,冯敏,李子俊,张未,罗昕. PEG-PEI共聚物介导VEGF165基因转染及对内皮细胞生长的影响[J].生物化学与生物物理进展,2007,34(10):1065-1071.
    [51]冯敏,李培.聚乙烯亚胺-聚甲基丙烯酸甲酯阳离子纳米粒介导基因转移的研究[J].药学学报,2005,40(10):893-897.
    [52]傅晓源,张浩伟,谢灏,丁诚,彭锴,张阳德.聚乙烯亚胺载基因纳米颗粒的制备及其相关特性的研究[J].中国现代医学杂志,2008,18(24):3570-3576.
    [53]党时鹏,王如兴,张学光,张燕,王明元,郭冬萍,李肖蓉.聚乙烯亚胺修饰的白蛋白微泡转染CHO细胞实验研究[J].南京医科大学学报,2010,30(5):626-631.
    [54]周现锋.基于超分子组装构建基因疫苗的非病毒载体.博士学位论文.吉林大学,2007.
    [55]孙西洋.新型纳米复合载体的构建及其介导NK4基因在治疗乳腺癌中的应用.博士学位论文.中国医科大学,2007.
    [56]李达.基于聚乙烯亚胺为骨架的非病毒转基因载体的研究.博士学位论文.浙江大学,2007.
    [57]Kurosaki T, Kitahara T, Fumoto S, Nishida K, Nakamura J, Niidome T, Kodama Y,Nakagawa H, To H, Sasaki H. Ternary complexes of pDNA, polyethylenimine, andg-polyglutamic acid for gene delivery systems [J]. Biomaterials,2009,30(14):2846-2853.
    [58]Kunath K, Merdan T, Hegener O, Haberlein H, Kissel T. Integrin targeting usingRGD-PEI conjugates for in vitro gene transfer [J]. The Journal of Gene Medicine,2003,5(7):588-599.
    [59]Tian H, Lin L, Chen J, Chen XS, Park TG, Maruyama A. RGD targeting hyaluronicacid coating system for PEI-PBLG polycation gene carriers [J]. Journal ofControlled Release,2011,155(1),47-53.
    [60]Suk JS, Suh J, Choy K, Lai SK, Fu J, Hanes J. Gene delivery to differentiatedneurotypic cells with RGD and HIV Tat peptide functionalized polymericnanoparticles [J]. Biomaterials,2006,27(29):5143–5150.
    [61]Kim WJ, Yockman JW, Jeong JH, Christensen LV, Lee M, Kim YH, Kim SW.Anti-angiogenic inhibition of tumor growth by systemic delivery ofPEI-g-PEG-RGD/pCMV-sFlt-1complexes in tumor-bearing mice [J]. Journal ofControlled Release,2006,114(3):381–388.
    [62]Kim WJ, Yockman JW, Jeong JH, Lee M, Kim YH, Kim SW. Soluble Flt-1genedelivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis [J]. Journal ofControlled Release,2005,106(1):224–234.
    [63]Sakae M, Ito T, Yoshihara C, Tanaka NI, Yanagie H, Eriguchi M, Koyama Y. Highlyefficient in vivo gene transfection by plasmid/PEI complexes coated by anionicPEG derivatives bearing carboxyl groups and RGD peptide[J]. Biomedicine&Pharmacotherapy,2008,62(7):448-453
    [64]Sun YX, Zeng X, Meng QF, Zhang XZ, Cheng SX, Zhuo RX. The influence ofRGD addition on the gene transfer characteristics of disulfide-containingpolyethyleneimine/DNA complexes [J]. Biomaterials,2008,29(32):4356–4365.
    [65]Clements BA, Bai J, Kucharski C, Farrell LL, Lavasanifar A, Ritchie B, Ghahary A,Uludag H. RGD conjugation to polyethyleneimine does not improve DNA deliveryto bone marrow stromal cells [J]. Biomacromolecules,2006,7(5):1481-1488.
    [66]Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S. Silk Fibroin ofBombyx mori Is Secreted, Assembling a High Molecular Mass Elementary UnitConsisting of H-chain, L-chain, and P25, with a6:6:1Molar Ratio [J]. The Journalof Biological Chemistry,2000,275(51):40517-40528.
    [67]Zhou C, Janin J, et al. Silk fibroin: structural implication of a remarkable aminl acidsequence [J]. Proteins,2001,44(2):119-122.
    [68]Mori K, Tanaka K, Kikuchi Y, Waga M, Waga S, Mizuno S. Production of achimeric fibroin light-chain polypeptide in a fibroin secretion-deficient naked pupamutant of the silkworm Bombyx mori [J]. Journal of Molecular Biology,1995,251(2):217-228.
    [69]Tanaka K, Inoue S, Mizuno S. Hydrophobic interaction of P25, containingAsn-linked oligosaccharide chains, with the H-L complex of silk fibroin producedby Bombyx mori [J]. Insect Biochemistry and Molecular Biology,1999,29(3):269–276.
    [70]Lucas F, Shaw J, Smith S. The silk fibroins. Advanced Protein Chemistry,1958,13:107.
    [71]Mori H, Tsukada M. New silk protein: modification of silk protein by geneengineering for production of biomaterials [J]. Reviews in MolecularBiotechnology,2000,74(2):95-103.
    [72]Marcelo CL, Kim YG, Kaine JL. Stratification, specialization, and proliferation ofprimary keratinocyte cultures-evidence of a functioning in vitro epidermal cellsysterm [J]. The Jounal of Cell Biology,1978,79(2):356-370.
    [73]Minoura N, Aiba SI, Higuchi M, Gotoh Y, Tsukada M, Imai Y. Attachment andgrowth of fibrolast cells on sil fibroin [J]. Biochemical and Biophysical ResearchCommunications,1995,208(2):511-516.
    [74]Kaplan DL, Adams WW, Farmer B, Viney C. Silk polymers: Materials science andbiotechnology. ACS Symposium Series,1993:544.
    [75]Altman GH, Diaz F, Jakuba C, Calabro T, Horan R, Chen J, et al. Silk-basedbiomaterials [J]. Biomaterials,2003,24(3):401-416.
    [76]Huemmerich D, Helsen CW, Quedzuweit S, et al. Primary structure elements ofspider dragline silks and their contribution to protein solubility [J]. Biochemistry,2004,43(42):13604-13612.
    [77]Li MZ, Ogiso M, Minoura N. Enzymatic degradation behavior of porous silkfibroin sheets [J]. Biomaterials,2003,24(2):357-365.
    [78]Bini E, Foo CW, Huang J, et al. RGD-functionalized bioengineered spider draglinesilk biomaterial [J]. Biomacromolecules,2006,7(11),3139-3145.
    [79]Numata K, Subramanian B, Currie HA, Kaplan DL. Bioengineered silkprotein-based gene delivery systems [J]. Biomaterials,2009,30(29):5775-5784.
    [80]Megeed Z, Cappello J, Ghandehari H. Controlled release of plamid DNA from agenetically engineered silk-elastinlike hydrogel [J]. Pharmaceutical Rearch,2002,19(7):954-959.
    [81]Gustafson JA, Ghandehari H. Silk-elastinlike protein polymers for matrix-mediatedcancer gene therapy [J]. Advanced Drug Delivery Reviews,2010,62(15):1509-1523.
    [82]Hwang D, Moolchandani V, Dandu R, et al. Influence of polymer structure andbiodegradation on DNA release from silk-elastinlike protein polymer hydrogels [J].International Journal of Pharmaceutics,2009,368(1):215-219.
    [83]Megeed Z, Haider M, Li DQ, et al. In vitro and in vivo evaluation of recombinantsilk-elastinlike hydrogels for cancer gene therapy [J]. Journal of ControlledRelease,2004,94(2):433-445.
    [84]Moghimi SM, Symonds P, Murray JC, et al. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy [J].Molecular Therapy,2005,11(6):990-995.
    [85]Lungwitz U, Breunig M, Blunk T, et al. Polyethylenimine-based non-viral genedelivery systems [J]. European Journal of Pharmaceutics and Biopharmaceutics,2005,60(2):247-266.
    [86]Jeong GJ, Byun HM, Kim JM, et al. Biodistribution and tissue expression kineticsof plasmid DNA complexed with polyethylenimines of different molecular weightand structure [J]. Journal of Controlled Release,2007,118(1):118-125.
    [87]Peng SF, Tseng MT, Ho YC, et al. Mechanisms of cellular uptake and intrcellulartrafficking with chitosan/DNA/poly(γ-glutamic acid) complexes as gene deliveryvector [J]. Biomaterials,2011,32(1):239-248
    [88]Bajaj A, Kondaiah P, Bhattacharya S. Synthesis and gene transfection efficacies ofPEI-Cholesterol-based lipopolymers [J]. Bioconjugate Chemistry,2008,19(8):1640-1651.
    [89]Tian HY, Xiong W, Wei JZ, et al. Gene transfection of hyperbranched PEI graftedby hydrophobic amino acid segment PBLG [J]. Biomaterials,2007,28(18):2899-2907.
    [90]Fang Q, Chen DL, Yang ZM, Li M. In vitro and in vivo research on usingAntheraea pernyi silk fibroin as tissue engineering tendon scaffolds [J]. MaterialsScience and Engineering,2009,29(5):1527-1534.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700