高分子/Fe_3O_4纳米复合材料的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性纳米材料及其复合材料的制备是当今纳米新材料研究的一个重要领域。本论文首次利用生物分子葡萄糖为还原剂,通过绿色化学合成方法制备得到了超顺磁性四氧化三铁(Fe3O4)纳米颗粒;还利用原位还原法、共混包埋法、悬浮聚合法等方法分别制备得到了双功能Fe3O4/Se一维纳米板束、Fe3O4/Se/PANI复合材料、双醛淀粉包覆的和聚苯乙烯-丙烯酸包覆的Fe3O4磁性高分子微球。并对产物的组成、结构和性能进行了研究。具体研究内容如下:
     1.利用葡萄糖为还原剂,葡萄糖酸(葡萄糖的氧化产物)为稳定剂和分散剂,通过绿色化学合成方法制得了超顺磁性Fe3O4纳米颗粒。实验结果表明,制得的Fe3O4纳米颗粒为反尖晶石结构,平均粒径大小约为12.5 nm,粒径分布窄,分散性好,室温磁饱和强度达到60.5 emu/g,矫顽力和剩磁为零。这种制备方法非常简便,反应条件温和,可能为绿色合成其他纳米材料提供了一种简便的合适的途径。
     2.利用Fe3O4纳米颗粒能够吸附SeO32(Se(Ⅳ))离子,无需添加任何交联剂和分散剂,通过原位还原法制得均一的新颖的稻草捆样的具有荧光和超顺磁性双重性质的Fe3O4/Se一维纳米板束。结果表明,Fe3O4/Se一维纳米板的长、宽和厚度分别为6-8μm、300-400 nm和50 nm;Fe3O4纳米颗粒在制备双功能纳米复合物过程中可能起到“种子”和催化剂的双重作用;Fe3O4/Se纳米复合物中t-Se由于量子尺寸效应其禁带能隙和电子直接跃迁发生明显的蓝移;Fe3O4/Se一维纳米板束的形成机理可能涉及到Fe3O4/Se纳米球的形成、生长和聚集,以及一维纳米板的形成与自组装。我们所制得的稻草捆样的Fe3O4/Se纳米复合物还可能通过牺牲模板法制备其他具有特殊形貌的双功能纳米材料。例如:Fe3O4/Ag2Se, Fe3O4/Bi2Se3和Fe3O4/CdSe等。这种双功能材料在微电子和生物医学等领域具有潜在的应用价值。并在水热条件下利用SeO32-氧化苯胺,通过表面原位合成法制得兼具磁性和导电性能的纳米Fe3O4/Se/PANI复合材料。
     3.由于淀粉在三氯化铁酸性溶液中可以水解得到还原性糖(葡萄糖),在前面的研究基础上,我们又以淀粉和三氯化铁为原料,也成功地制备得到了超顺磁性Fe3O4纳米颗粒,并通过共混包埋法,以环氧氯丙烷为交联剂,将双醛淀粉包覆在Fe3O4磁性纳米颗粒上,制备出了磁性双醛淀粉复合纳米颗粒,并以牛血清白蛋白为模型对复合纳米颗粒固定蛋白能力进行了研究。磁性双醛淀粉复合纳米颗粒的粒径分布在50 nm-150 nm之间,平均粒径大小约为100 nm,醛基含量约为59.5%,双醛淀粉包裹率约为33.2%,室温饱和磁化强度为29.5 emu/g,没有剩磁和矫顽力,对蛋白的装载率和包封率分别为5.0%和54.4%。这也表明我们制备的产物在药物载体和靶向释药等方面具有潜在的应用。
     4.以苯乙烯为硬单体,丙烯酸为功能单体,利用分散聚合法,以油酸修饰的Fe3O4纳米颗粒为磁核,苯乙烯-丙烯酸共聚物为高分子壳层,制备得到了单分散、含有羧基的Fe3O4聚苯乙烯-丙烯酸[P(St-AA)]滋性高分子复合微球,并以姜黄素为模拟药物对磁性复合微球载药能力进行了研究。结果表明,我们制得的磁性高分子复合微球形貌为球形,粒径分布在50 nm-120 nm之间,平均粒径大小约为100 nm;磁性高分子复合微球中聚苯乙烯-丙烯酸的含量和Fe3O4磁性纳米微粒的含量分别约为74%和24.7%;对姜黄素的装载率和包封率分别为2.5%和44.4%;磁性高分子复合微球室温饱和磁化强度为20.2emu/g,没有剩磁和矫顽力。
The synthesis of magnetic nanomaterials and magnetic nanocomposites is one of important fields in nano-material research. In the dissertation, we have first demonstrated a green synthetic approach for preparing superparamagnetic Fe3O4 nanoparticles usingα-D-glucose as a reducing agent. The other methods including in-situ reduction, co-embedding method, suspension polymerization etc., have been used to synthesize other nanocomposites such as bifunctional Fe3O4/Se one-dimensional (1D) nanoplank bundles, Fe3O4/Se/PANI nanocomposites, magnetic dialdehyde starch nanoparticles and Fe3O4/P(St-AA) magnetic polymer microspheres. The composition, construction and properties of the products have also been investigated.
     The main results can be summarized as follows:
     1. Superparamagnetic Fe3O4 nanoparticles were synthesized by green synthetic approach using a-D-glucose as a reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant without any additional stabilizer and dispersant. The results showed that the inverse spinel structure pure phase polycrystalline Fe3O4 was obtained, and the average size of Fe3O4 nanoparticles was about 12.5 nm, and the sample was similar to well dispersed Fe3O4 nanoparticles with narrow size distribution, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g without coercivity and remanence. Because this method is very simple and easy under mild reaction condition, it might provide a new, mild, green, and economical route for the synthesis of other nanomaterials.
     2. Novel uniform straw-like Fe3O4/Se one-dimensional (1D) nanoplank bundles can be successfully prepared without any additional cross-linking agent and dispersant by in-situ reduction method since SeO32- (Se(Ⅳ)) anions could be adsorbed onto the surface of Fe3O4 nanoparticles. The width, thickness and length of as-prepared nanoplanks could be observed in the range of 300-400 nm,50 nm, and 6-8 μm, respectively. Fe3O4 nanoparticles might act as seeds and catalytic agent for the formation of the bifunctional nanocomposites. The products are of both fluorescent and superparamagnetic properties. More importantly, quantum size effect, which was reflected by marked blue shift of the band gap and direct transitions relative to the values of bulk t-Se, could be observed. The formation mechanism could be described as the linear aggregation and growth of Fe3O4/Se nanospheres, and the self-assembly of 1D Fe3O4/Se nanoplanks. The strawlike Fe3O4/Se could also be potentially converted to a series of bifunctional nanocomposites (e.g., Fe3O4/Ag2Se, Fe3O4/Bi2Se3, and Fe3O4/CdSe) with special morphology via the sacrificing template method. Moreover, the novel bifunctional nanocomposites would open up a potential application in microelectronics, biology, and medicine. Fe3O4/Se/PANI nanocomposites can also be obtained by in situ chemical oxidative polymerization in the presence of SeO32- anions.
     3. On the base of the previous study, superparamagnetic Fe3O4 nanoparticles were also obtained using hydrolysis product of starch i.e.α-D-glucose as the reducing agent, magnetic dialdehyde starch nanoparticles were successfully prepared with epichlorohydrin as crosslinker and dialdehyde starch (DAS) as wrapper by co-embedding method, and bovine serum albumin (BSA) as model drug was immobilized on the suface of magnetic dialdehyde starch nanoparticles. The particle size distribution of magnetic dialdehyde starch nanoparticles was 50-150 nm, and the average size was about 100 nm. The content of aldehyde group was 59.5%, and the package rate of DAS was 33.2%. The ratios of loading and coating of magnetic dialdehyde starch nanoparticles with BSA were 5.0% and 54.4%, respectively. The saturation magnetization of magnetic dialdehyde starch nanoparticles at 300 K was 29.5 emu/g without coercivity and remanence. The as-prepared products might have potential applications such as drug carrier and targeted drug release.
     4. Fe3O4/poly(styrene-co-acrylic acid) magnetic polymer microspheres were synthesized by suspension polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe3O4 nanoparticles modified with oleic acid as magnetic nuclei,and poly(styrene-co-acrylic acid) [P(St-AA)] as shell. Drug-loading capacity of magnetic polymer microspheres with curcumin as model drug was also studied. The results indicated that magnetic polymer microspheres with monodisperse were obtained, the particle size distribution was 50-120 nm, and the average size was about 100 nm. The contents of P(St-AA) and Fe3O4 nanoparticles in magnetic polymer microspheres were 74% and 24.7%, respectively. The ratios of loading and coating of magnetic polymer microspheres with curcumin were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer microspheres at 300 K was 20.2 emu/g without coercivity and remanence.
引文
[1]H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker. Carbon nanotube single-electron transistors at room temperature [J]. Science 2001,293 (5527): 76-79.
    [2]S. X. Zhang, J. B. Li, H. Z. Zhai, B. Zhang. Preparation, microstructure and microwave dielectric properties of Zr2Ti1-xO4(x=0.4-0.6) ceramics [J]. Euro. Ceram. Soc.2001,21:2931-2936.
    [3]J. H. Schon, H. Meng, Z. Bao. Self-assembled monolayer organic field-effect transistors [J]. Nature 2001,413 (6857):713-715.
    [4]P. Poncharal, Z. L. Wang, D. Ugarte, W. A. de Heer. Electrostatic deflections and electrochemical resonances of carbon nanotubes [J]. Science,1999, 283:1513-1516
    [5]P. Tartaj, M. P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, C. J. Serna. Synthesis, properties and biomedical applications of magnetic nanoparticles [M]. Handbook of Magnetic Materials Elsevier:Amsterdam, The Netherlands,2006, p 403.
    [6]M. Chastellain, A. Petri, A. Gupta, K. V. Rao, H. Hofmann. Superparamagnetic silica-iron oxide nanocomposites for application in hyperthermia [J]. Adv. Eng. Mater.2004,6 (4):235-241.
    [7]H. S. Nalwa, Ed. Encyclopedia of Nanoscience and Nanotechnology [M]. American Scientific Publishers:Valencia, CA,2004, Vol.1, p 815.
    [8]S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices [J]. Science 2000,287:1989-1992.
    [9]R.W. Chantrell, K. O'Grady, A. Bradbury, S.W. Charles, J. Popplewell. The isothermal remanent magnetisation of fine magnetic particles [J]. J. Phys. D: Appl. Phys.1985,18:2505-2517.
    [10]J. W. Bulte. Intracellular endosomal magnetic labeling of cells [J]. Methods Mol. Med.2006,124:419-439.
    [11]S. Boutry, S. Laurent, L. Vander Elst, R. N. Muller. Specific E-selectin targeting with a superparamagnetic MRI contrast agent [J]. Contrast Med. Mol. Imaging 2006,1(1):15-22.
    [12]C. Corot, P. Robert, J. M. Idee, M. Port. Recent advances in iron oxide nanocrystal technology for medical imaging [J]. Adv. Drug Deliv. Rev.2006, 58(14):1471-1504.
    [13]L. Babes, B. Denizot, G. Tanguy, J. J. Le Jeune, P. J. Jallet. Synthesis of iron oxide nanoparticles used as MRI contrast agents:a parametric study [J]. Colloid Interface Sci.1999,212(2):474-482.
    [14]M. M. Miller, G. A. Prinz, S. F. Cheng, S. Bounnak. Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor [J]. Appl. Phys. Lett.2002,81:2211-2213.
    [15]M. Modo, J. W. Bulte. Cellular MR imaging [J]. Mol. Imaging 2005,4(3): 143-164.
    [16]T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, V. Labhasetwar. Iron Oxide Nanoparticles for Sustained Delivery of Anticancer Agents [J]. Mol. Pharm.2005,2(3):194-205.
    [17]I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J. F. Fouquenet, S. Cohen-Jonathan, M. Souce, H. Marchais, P. Dubois. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy [J]. Analyst 2005,130 (10):1395-1403.
    [18]C. Burtea, S. Laurent, A. Roch, L. Vander Elst, R. N. Muller. C-MALISA (cellular magnetic-linked immunosorbent assay), a new application of cellular ELISA for MRI [J]. J. Inorg. Biochem.2005,99(5):1135-1144.
    [19]F. Sonvico, C. Dubernet, P. Colombo, P. Couvreur. Metallic Colloid. Nanotechnology, Applications in Diagnosis and Therapeutics [J]. Curr. Pharm. Des.2005,11:2091-2105.
    [20]A. K. Gupta, M. Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials 2005,26(18): 3995-4021.
    [21]M. G. Bawendi, M. L. Steigerwald, L. E. Brus. The quantum mechanics of larger semiconductor clusters("quantum dots") [J]. Annu Rev. Phys. Chem,1990,41: 477-496.
    [22]N. C. Balci, M. Sirvanci, C. Duran, A. Akinci. Hepatic adenomatosis MRI demonstration with the use of superparamagnetic iron oxide [J]. Clin. Imaging 2002; 26:35-38.
    [23]J. Chatterjee, Y. Haik, C. J. Chen. Polythylene magnetic nanoparticle:a new magnetic material for biomedical applications [J]. J. Magn. Magn. Mater.2002, 246:382-391.
    [24]M. F. Bellin, C. Beigelman, S. Precetti-Morel. Iron oxide-enhanced MR lymphography:initial experience [J]. Eur. J. Radiol.2000,34:257-264.
    [25]R. S. Molday, L. L. Molday. Separation of cells labeled with immunonspecific iron dextran microspheres using high magnetic chromatography [J]. FEBS Lett. 1984,170(2):232-237.
    [26]Y. Oka, J. F. Hochepied, M. P. Pileni. Excitonic properties of nanostructure semimagnetic semiconductors [J]. J. Lumin.1996,70:35-47.
    [27]P. R. Levison, S. E. Badger, J. Dennis, P. Hathi, M. J. Davies, I. J. Bruce, D. Schimkat. Recent developments of magnetic beads for use in nucleic acid purification [J]. J. Chromatogr. A 1998,816:107-111.
    [28]J. F. Poduslo, T. M. Wengenack, G. L. Curran, T. Wisniewski, E. M. Sigurdsson, S. I. Macura, B. J. Borowski, C. R. Jack. Molecular Targeting of Alzheimer's Amyloid Plaques for Contrast-Enhanced Magnetic Resonance Imaging [J]. Neurobiol. Dis.2002,11:315-329.
    [29]K. Sooklal, B. S. Cullum, S. M.Angel, C. J. Murphy. Photophysical Properties of ZnS Nanoclusters with Spatially Localized Mn2+[J]. J. Phys. Chem.1996, 100(11):4551-4555.
    [30]L. Levy, N. Feltin, D. Ingert, M. P. Pileni. Three Dimensionally Diluted Magnetic Semiconductor Clusters Cdl-yMnyS with a Range of Sizes and Compositions: Dependence of Spectroscopic Properties on the Synthesis Mode [J]. J. Phys. Chem. B 1997,101(45):9153-9160.
    [31]L. Levy, J. F. Hochepied, M. P. Pileni. Control of the Size and Composition of Three Dimensionally Diluted Magnetic Semiconductor Clusters [J]. J. Phys. Chem.1996,100(47):18322-18326.
    [32]D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker. Magnetic Quantum Dots:Synthesis, Spectroscopy, and Magnetism of Co2+-and Ni2+-Doped ZnO Nanocrystals [J]. J. Am. Chem. Soc.2003,125(43):13205-13218.
    [33]Y. A. Barnakov, M. H. Yu, Z. Rosenzweig. Manipulation of the Magnetic Properties of Magnetite-Silica Nanocomposite Materials by Controlled Stober Synthesis [J]. Langmuir,2005,21(16):7524-7527.
    [34]F. V:Mikulec, M. Kuno, M. Bennati, D. A. Hall, R. G. Griffin, M.G. Bawendi. Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals [J]. J. Am. Chem. Soc.2000,122(11): 2532-2540.
    [35]N. S. Norberg, K. R. Kittilstved, J. E. Amonette, R. K. Kukkadapu, D. A. Schwartz, D. R. Gamelin. Synthesis of Colloidal Mn2+:ZnO Quantum Dots and High-TC Ferromagnetic Nanocrystalline Thin Films [J]. J. Am. Chem. Soc.2004, 126(30):9387-9398.
    [36]D. J. Norris, N. Yao, F. T. Charnock, T. A. Kennedy. High-Quality Manganese-Doped ZnSe Nanocrystals [J]. Nano Lett.2001,1(1):3-7.
    [37]O. Veiseh, C. Sun, J. Gunn, N. Kohler, P. Gabikian, D. Lee, R. Bhattarai, R. Sze, A. Hallahan, J. Olson, M. Q. Zhang. Optical and MRI Multifunctional Nanoprobe for Targeting Gliomas [J]. Nano Lett.2005,5(6):1003-1008.
    [38]B. Zebli, A. S. Susha, G. B. Sukhorukov, A. L. Rogach, W. J. Parak. Magnetic Targeting and Cellular Uptake of Polymer Microcapsules Simultaneously Functionalized with Magnetic and Luminescent Nanocrystals [J]. Langmuir, 2005,21(10):4262-4265.
    [39]C. W. Harrell, M. E. McCarroll, K. F.Morris, E. J. Billiot, I. M. Warner. Fluorescence and Nuclear Magnetic Resonance Spectroscopic Studies of the Effect of the Polymerization Concentration on the Properties of an Amino Acid-Based Polymeric Surfactant [J]. Langmuir,2003,19(26):10684-10691.
    [40]K. W. Kwon, M. Shim. γ-Fe2O3/Ⅱ-Ⅵ Sulfide Nanocrystal Heterojunctions [J]. J. Am. Chem. Soc.2005,127(29):10269-10275.
    [41]X. Hong, J. Li, M. J. Wang, J. J. Xu, W. Guo, J. H. Li, Y. B. Bai, T. Li. Fabrication of Magnetic Luminescent Nanocomposites by a Layer-by-Layer Self-assembly Approach [J]. Chem. Mater.2004,16(21):4022-4027.
    [42]H. Gu, R. Zheng, X. Zhang, B. Xu. Facile One-Pot Synthesis of Bifunctional Heterodimers of Nanoparticles:A Conjugate of Quantum Dot and Magnetic Nanoparticles [J]. J. Am. Chem. Soc.2004,126(18):5664-5665.
    [43]D. Wang, J. He, N. Rosenzweig, Z. Rosenzweig. Superparamagnetic Fe2O3 Beads-CdSe/ZnS Quantum Dots Core-Shell Nanocomposite Particles for Cell Separation [J]. Nano Lett.2004,4(3):409-413.
    [44]H. Kim, M. Achermann, L. P. Balet, J. A. Hollingsworth, V. I. Klimov. Synthesis and Characterization of Co/CdSe Core/Shell Nanocomposites:Bifunctional Magnetic-Optical Nanocrystals [J]. J. Am. Chem. Soc.2005; 127(2):544-546.
    [45]S. Y. Lian, Z. H. Kang, E. B. Wang, M. Jiang, C. W. Hu, L. Xu. Convenient synthesis of single crystalline magnetic Fe3O4 nanorods [J]. Solid State Commun. 2003,127:605-608.
    [46]P. V. Radovanovic, D. R. Gamelin. Electronic Absorption Spectroscopy of Cobalt Ions in Diluted Magnetic Semiconductor Quantum Dots:Demonstration of an Isocrystalline Core/Shell Synthetic Method [J]. J. Am. Chem. Soc.2001,123(49): 12207-12214.
    [47]H. Yang, P. H. Holloway. Electroluminescence from Hybrid Conjugated Polymer-CdS:Mn/ZnS Core/Shell Nanocrystals Devices [J]. J. Phys. Chem. B 2003,107:9705-9710.
    [48]A. P. Philipse, M. P. B. Bruggen, C. Pathmamanoharan. Magnetic Silica Dispersions:Preparation and Stability of Surface-modified Silica Particles with a Magnetic Core [J]. Langmuir 1994,10:92-99.
    [49]Y. Lu, Y. Yin, B. T. Mayers, Y Xia. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach [J]. Nano Lett.2002,2:183-186.
    [50]C. Yang, G. Wang, Z. Lu, J. Sun, J. Zhuang, W. Yang. Effect of ultrasonic treatment on dispersibility of Fe3O4 nanoparticles and syntheses of multi-core Fe3O4/SiO2 core/shell nanopartilces [J]. J. Mater. Chem.2005,15:4252-4257.
    [51]Z. Lu, G. Wang, J. Zhuang, W. Yang. Effects of the concentration of tetramethylammonium hydroxide peptizer on the synthesis of FeO4/SiO2 core/shell nanoparticles, [J]. Colloids Surf. A 2006,278:140-143.
    [52]P.Tartaj, C.J. Serna. Synthesis of Monodisperse Superparamagnetic Fe/Silica Nanospherical Composites [J]. J. Am. Chem. Soc.2003,125:15754-15755.
    [53]P. Tartaj, T. Gonzalez-Carreno, C. J. Serma. Single-Step Nanoengineering of Silica Coated Maghemite Hollow Spheres with Tunable Magnetic Properties [J]. Adv. Mater.2001,13:1620-1624.
    [54]P. Tartaj, T. Gonzalez-Carreno, C. J. Serma. Synthesis of Nanomagnets Dispersed in Colloidal Silica Cages with Applications in Chemical Separation [J]. Langmuir 2002,18:4556-4558.
    [55]P. Tartaj, T. Gonzalez-Carreno, M. L. Ferrer, C. J. Serma. Metallic Nanomagnets Randomly Dispersed in Spherical Colloids:Toward a Universal Route for the Preparation of Colloidal Composites Containing Nanoparticles [J]. Angew. Chem. Int. Ed.2004,43:6304-6307.
    [56]X. Hong, J. Li, M. Wang, J. Xu, W. Guo, J. Li, Y Bai, T. Li. Fabrication of Magnetic Luminescent Nanocomposite by a Layer-by-Layer Self-assembly
    Approach [J]. Chem. Mater.2004,16:4022-4027.
    [57]V. Salgueirioo-Maceira, A. Correa-duarte, M. Spasova, L. M. Liz-Marzan, M. Farle. Composite Silica Spheres with Magnetic and Luminescent. Functionalities [J]. Adv. Funct. Mater.2006,16:509-514.
    [58]J. Gao, B. Zhang, Y. Gao, Y. Pan, X. Zhang, B. Xu. Fluorescent Magnetic Nanocrystals by Sequential Addition of Reagents in a One-Pot Reaction:A Simple Preparation for Multifunctional Nanostructures [J]. J. Am. Chem. Soc. 2007,129:11928-11935.
    [59]S. Y. Yu, H. J. Zhang, J. B. Yu, C. Wang,. L. N. Sun, W. D. Shi. Bifunctional Magnetic-Optical Nanocomposites:Grafting Lanthanide Complex onto Core-Shell Magnetic Silica Nanoarchitecture [J]. Langmuir 2007,23:7836-7840.
    [60]C. W. Lu, Y. Hung, J. K. Hsiao, M. Yao, T. H. Chung, Y. S. Lin, S. H. Wu, S. C. Hsu, H. M. Liu, C. Y. Mou, C. S. Yang, D. M. Huang, Y. C. Chen. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling [J]. Nano Lett.2007,7:149-154.
    [61]J. L. Lyon, D. A. Fleming, M. B. Stone, P. Schiffer, M. E. Williams. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding [J].. Nano Lett.2004,4:71.9-723.
    [62]Z. Xu, Y. Hou, S. Sun. Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties [J]. J. Am. Chem. Soc.2007, 129:8698-8699.
    [63]H. Gu, Z. Yang, J. Gao, C. K. Chang, B. Xu. Formation at a Liquid-Liquid. Interface and Particle-Specific Surface Modification by Functional Molecules [J]. J. Am. Chem. Soc.2005,127:34-35.
    [64]D.Tang, R. Yuan, Y. Chai. Magnetic core-shell Fe3O4@Ag nanoparticle-coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay [J]. J. Phys. Chem. B 2006,110:11640-11646.
    [65]D. K. Yi, S. S. Lee, J. Y. Ying. Synthesis and Applications of Magnetic Nanocomposite Catalysts [J]. Chem. Mater.2006,18:2459-2461.
    [66]B. S. Kim, J. M. Qiu, J. P. Wang, T. A.Taton. Magnetomicelles:Composite Nanostructures from Magnetic Nanoparticles and Cross-Linked Amphiphilic Block Copolymers [J]. Nano Lett.2005,5,1987-1991.
    [67]M. H. Sousa, J. C. Rubim, P. G. Sobrinho. F. A. Tourinho. Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures [J]. J. Magn. Magn. Mater.2001,225:67-72.
    [68]王强斌,古宏晨,朱以华,王胜林.喷雾法制备固定化酶载体——磁性聚丙烯腈微球.华东理工大学学报,2002,2:47-50.
    [69]J. Ugelstad, T. Ellingsen, A. Berge,O. B. Helgee. Process for preparing magnetic polymer particles [P]. USP 4,774,265,1988.
    [70]J. Ugelstad, L. Soderberg, A. Berge, J. Bergstrom. Monodisperse polymer particles-a step forward for chromatography [J]. Nature 1983,303:95-96.
    [71]J. Zhang, S. Xu, E. Kumaeheva. Polymer Microgels:Reaetors for Semiconduetor, Metal, and Magnetic Nanopartieles [J]. J. Am. Chem. Soc.2004, 126(25):7908-7914.
    [72]X. L. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, S. A. Asher. Synthesis and Utilization of Monodisperse Superparamagnetic Colloidal Particles for Magnetically Controllable Photonic Crystals [J]. Chem. Mater.2002,14: 1249-1265.
    [73]N. Yanase, H. Noguchi, H. Asakura, T. Suzuta. Preparation of magnetic latex particles by emulsion polymerization of styrene in the presence of a ferrofluid [J]. J. Appl. Polym. Sci.1993,50:765-776.
    [74]L. P. Ramirez, K. Landfester. Magnetic Polystyrene Nanoparticles with a High Magnetite Content Obtained by Miniemulsion Processes [J]. Macromol. Chem. Phys.2003,204:22-31.
    [75]W. Zheng, F. Gao, H. Gu. Magnetic polymer nanospheres with high and uniform magnetite content [J]. J. Magn. Magn. Mater.2005,288:403-410.
    [76]X. Liu, Y. Guan, Z. Ma, H. Liu. Surface Modification and Characterization of Magnetic Polymer Nanospheres Prepared by Miniemulsion Polymerization [J]. Langmuir 2004,20:10278-10282.
    [77]S. Lu, J. Forcada. Preparation and Characterization of Magnetic Polymeric Composite-Particles by Miniemulsion Polymerization [J]. J. Polym. Sci.:Part A 2006,44:4187-4203.
    [78]P. C. Wang, W. Y. Chiu, C. F. Lee, T. H. Young. Synthesis of Iron Oxide/Poly(methyl methacrylate) Composite Latex Particles:Nucleation Mechanism and Morphology [J]. J. Polym. Sci. Part A:Polym. Chem.2004,42: 5695-5705.
    [79]S. Sacanna, A. P. Philipse. Preparation and Properties of Monodisperse Latex Spheres with Controlled Magnetic Moment for Field-Induced Colloidal Crystallization and (Dipolar) Chain Formation [J]. Langmuir 2006,22: 10209-10216.
    [80]S. L. Lu, J. Ramos, J. Forcada. Self-Stabilized Magnetic Polymeric Composite Nanoparticles by Emulsifier-Free Miniemulsion Polymerization [J]. Langmuir 2007,23:12893-12900.
    [81]A. Rembaum, W. J. Dreyer. Immunomicrospheres:reagents for cell labeling and Separation [J]. Science,1980,208(4442):364-368.
    [82]H. Shang, W. S. Chang, S. Kan, S. A. Majetich, G. U. Lee. Synthesis and characterization of paramagnetic microparticles through emulsion-templated free radical polymerization [J]. Langmuir 2006,22:2516-2522.
    [83]D. Horak, N. Benedyk. Magnetic Poly(Glycidyl Methacrylate) Microspheres Prepared by Dispersion Polymerization in the Presence of Electrostatically Stabilized Ferrofluids [J]. J. Polym. Sci. Part A:Polym. Chem.2004,42: 5827-2837.
    [84]Y. Wang, X. Teng, J. Wang, H. Yang. Solvent-free atom transfer radical polymerization in the synthesis of Fe203@polystyrene core-shell nanoparticles [J]. Nano Lett.2003,3(6):789-793.
    [85]C. R. Vestal, Z. J. Zhang. Atom Transfer Radical Polymerization Synthesis and Magnetic Characterization of MnFe2O4/Polystyrene Core/Shell Nanoparticles [J]. J. Am. Chem. Soc.2002,124(48):14312-14313.
    [86]Y Wang, X. Teng, J. Wang, H. Yang. Solvent-free atom transfer radical polymerization in the synthesis of Fe203@Polystyrene core-shell nanopartieles [J]. Nano Let.2003,3(6):789-793.
    [87]M. Mikhaylova, D. Y. Kim, N. Bobrysheva, M.Osmolowsky, V. Semennov, T. Tsakalakos, M. Muhammed. Superparamagnetism of Magnetite Nanoparticles: Dependence on Surface Modification [J]. Langmuir 2004,20:2472-2477.
    [88]H. Pardoe, W. Chua-anusorn, T. G. S. Pierre, J. Dobson. Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol [J]. J. Magn. Magn. Mater.2001,225:41-46.
    [89]E. B. Denkbas, E. Kilicay, C. Birlikseven, E. Ozturk. Magnetic chitosan microspheres:Preparation and characterization [J]. React. Funct. Polym.2002, 50(3):225-232.
    [90]D. Y. Kim, M. Mikhylova, F. H. Wang, J. Kehr, B. Bjelke, Y. Zhang, T. Tsakalakos, M. Muhammed. Starch-coated superparamagnetic nanoparticles as MR contrast agents [J]. Chem. Mater.2003,15:4343-4351.
    [91]M. Li, K. W. Wong, S. Mann. Organization of inorganic nanoparticles using biotin-streptavidin connectors [J]. Chem. Mater.1999,11:23-26.
    [92]M. Mikhaylova, D. K. Kim, C. C. Berry, A. Zagorodni, M. Toprak, A. S. G. Curtis, M. Muhammed. BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles [J]. Chem. Mater.2004,16: 2344-2354.
    [93]T. Prozorov, S. K. Mallapragad, B. Narasimhan, L. Wang, P. Palo, M. Nilsen-Hamilton, T. J. Williams, D. A. Bazylinski, R. Prozorov, P. C. Canfield. Protein-Mediated Synthesis of Uniform Superparamagnetic Magnetite Nanocrystals [J]. Adv. Funct. Mater.2007,17:951-957.
    [94]M. S. Toprak, B. J. McKenna, M. Mikhaylova, J. H. Waite, G. D. Stucky. Spontaneous assembly of magnetic microspheres [J]. Adv. Mater.2007,19: 1362-1368.
    [95]M. S. Toprak, B. J. McKenna, J. H. Waite, G. D. Stucky. Control of Size and Permeability of Nanocomposite Microspheres [J]. Chem. Mater.2007,19: 4263-4269.
    [96]M. Brahler, R. Georgieva, N. Buske, A. Miiller, S. Muller, J. Pinkernelle, U. Teichgraber, A. Voigt, H. Baumler. Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging [J]. Nano Lett.2006,6: 2505-2509.
    [97]R. Y. Hong, T. T. Pan, Y. P. Han, H. Z. Li, J. Ding, Sijin, J. Han. Magnetic field synthesis of Fe3O4 nanoparticles used as a precursor of ferrofluids [J]. J. Magn. Magn. Mater.2007,310(3):37-47.
    [98]T. John, D. Rannacher, A. Engel. Influence of surface tension on the conical meniscus of a magnetic fluid in the field of a current-carrying wire [J]. J. Magn. Magn. Mater.2007,309(1):31-35.
    [99]P. C. Fannin, C. N. Marin, I. Malaescu, N. Stefu. An investigation of the microscopic and macroscopic properties of magnetic fluids [J]. Physica B 2007, 388:87-92.
    [100]L. Q. Yu, L. J. Zheng, J. X. Yang. Study of preparation and properties on magnetization and stability for ferromagnetic fluids [J]. Mater. Chem. Phys. 2000,66:6-9.
    [101]M. Todorovic, S. Schultz, J. Wong, A. Scherer. Writing and reading of single magnetic domain per bit perpendicular patterned media [J]. Appl. Phys. Lett. 1999,74(17):2516-2518.
    [102]E. Katz, I. Willner. A quinone-functionalized electrode in conjunction with hydrophobicmagnetic nanoparticles acts as a "Write-Read-Erase" information storage system" [J]. Chem. Comm.2005,45:5641-5643
    [103]W. Teunissen, A. A. Bol, J. W. Geus. Magnetic catalyst bodies [J]. Catal. Today 1999,48:329-336.
    [104]W. Teunissen, F. M. F. de Groot, J. Geus, O. Stephan, M. Tence, C. Colliex. The Structure of Carbon Encapsulated NiFe Nanoparticles [J]. J. Catal.2001,204: 169-174.
    [105]Y. Sun, L. Duan, Z. Guo, Y. DuanMu, M. Ma, L. Xu, Y. Zhang, N. Gu. An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application [J]. J. Magn. Magn. Mater.2005, 285:65-70.
    [106]Y. Zhang, J. Zhang. Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells [J]. J. Colloid Interface Sci.2005,283:352-357.
    [107]C. C. Berry, A. S. G. Curtis. Functionalisation of magnetic nanoparticles for applications in biomedicine [J] J. Phys. D:Appl. Phys.2003,36(13):R198-R206
    [108]G. D. Li. Recent progress of magnetic material and application [J]. Rare Metal Mater. Engin.2005,34(5):673-675.
    [109]Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson. Applications of magnetic nanoparticles in biomedicine [J]. J. Phys. D:Appl. Phys.2003,36(13): R167-R181.
    [110]S. H. Sun. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles [J]. Adv. Mater.2006,18(4):393-403.
    [111]M. O. Aviles, H. Chen, A. D. Ebner, A. J. Rosengart, M. Kaminskic, J. A. Ritter. In vitro study of ferromagnetic stents for implant assisted-magnetic drug targeting [J]. J. Magn. Magn. Mater.2007,311(1):306-311.
    [112]J. Chatterjee, Y. Haik, C. J. Chen. Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres [J]. J. Magn. Magn. Mater.2001,225(1-2):21-29.
    [113]N. Wedemeyer, T. Potter. Flow cytometry:an'old'tool for novel applications in medical geneties [J]. Clin. Gene.2001,60(1):1-8.
    [114]A. Perrin, A. Theretz, V. Lanet, S. Vialle, B. Mandrand. Immunomagnetic concentration of antigents and detection based on a scanning force microscopy [J]. J. Immuno. Methods 1999,224,77-87.
    [115]F. Hu, L. Wei, Z. Zhou, Y. Ran, Z. Li, M. Gao. Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer [J]. Adv. Mater.2006,18,2553-2556.
    [116]Z. Li, L. Wei, M. Gao, H. Lei. One-pot reaction to synthesize biocompatible magnetite nanoparticles [J]. Adv. Mater.2005,17,1001-1005.
    [117]S. Mitra, U. Gaur, P. C. Chrosh, A. N. Maitra. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier [J]. J. Control. Release 2001,74,317-323.
    [118]K. J. Widder, R. M. Morris, G. A. Poore, D. P. Howard, A. E. Senyei. Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: Total remission in Yoshida sarcoma-bearing rats [J]. Eur. J. Cancer Clin. Oncol. 1983,19,135-139.
    [119]C. Alexion, W. Arnold, R. Klein, F. G. Parak, P. Hulin, C. Bergemann, W. Erhardt. Locoregional Cancer Treatment with Magnetic Drug Targeting [J]. J. Cancer Res.2000,60,6641-6648.
    [120]R. Hergt, W. Andra, C. G Ambly, I. Hilger, W. A. Kaiser, U. Richter, H. Schmidt. Physical limits of hyperthermia using magnetite fine particles [J]. IEEE Trans. Magn.1998,34,3745-3754.
    [121]N. A. Brusentsov, V. V. Gogosov, T. N. Brusentsova, A. V. Sergeev, N. Y. Jurchenko, A. A. Kuznetsov, O. A. Kuznetsov, L. I. Shumakov, Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro [J]. J. Magn. Magn. Mater.2001, 225,113-117.
    [122]A. Jordan, R. Scholz, P. Wust, H. Schirra, H. Schmidt, R. Felix. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro [J]. J.Magn. Magn. Mater.1999,194,185-196.
    [123]A. Dyal, K. Loos, M. Noto, S. W. Chang, C. Spagnoli, K. V. P. M. Shafi, A. Ulman, M. Cowman, R. A. Gross. Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles [J]. J. Am. Chem. Soc.2003,125, 1684-1685.
    [124]Y. Zhu, S. Kaskel, J. Shi, T. Wage, K. H.Van Pee. Immobilization of Trametes Wersicolor Laccase on Magnetically Separable Mesoporous Silica Spheres [J]. Chem. Mater.2007,19,6408-6413.
    [1]S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst and R. Muller. Magnetic iron oxide nanoparticles:Synthesis, stabilization, vectorization, physicochemical charac-terizations, and biological applications [J]. Chem. Rev. 2008,108:2064-2110.
    [2]K. Yamaguchi, K. Matsumoto, T. Fujii. Magnetic anisotropy by ferromagnetic particles alignment in a magnetic field [J]. J. Appl. Phys.1990,67:4493-4495.
    [3]V. T. Peikove, K. S. Jeon, A. M. Lane. Characterization of magnetic inks by measurements of frequency dependence of AC susceptibility [J]. J. Magn. Magn. Mater.1999,193:307-310.
    [4]C. J. Sunderland, M. Steiert, J. E. Talmadge, A. M. Derfus, S. E. Barry. Targeted nanoparticles for detecting and treating cancer [J]. Drug Dev. Res.2006,67: 70-93.
    [5]A. Ito, M. Shinkai, H. Honda, T. Kobayashi. Medical application of functionalized magnetic nanoparticles [J]. J. Biosci. Bioeng.2005,100(1):1-11.
    [6]H. Choi, S. R. Choi, R. Zhou, H. F. Kung, I. W. Chen. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery [J]. Acad. Radiol.2004,11:996-1004.
    [7]S. P. Lin, J. Brown. MR contrast agents:physical and pharmacologic basics [J]. J. Magn. Reson. Imaging 2007,25:884-899.
    [8]M. Brahler, R. Georgieva, N. Buske, A. Muller, S. Muller, J. Pinkernelle, U. Teichgraber, A. Voigt, H. Baumler. Magnetite-Loaded Carrier Erythrocytes as Contrast Agents for Magnetic Resonance Imaging [J]. Nano Lett.2006,6: 2505-2509.
    [9]H. H. Yang, S. Q. Zhang, X. L. Chen, Z. X. Zhuang, J. G. Xu, X. R. Wang. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations [J]. Anal. Chem.2004,76:1316-1321.
    [10]M. A. Morales, T. K. Jain, V. Labhasetwar, D. L. Leslie-Pelecky. Magnetic studies of iron oxide nanoparticles coated with oleic acid and Pluronic block copolymer [J]. J. Appl. Phys.2005,97:10Q905-1-10Q905-3.
    [11]F. Jiao, J. C. Jumas, M. Womes, A. V. Chadwick, A. Harrison, P. G. Bruce. Synthesis of Ordered Mesoporous Fe3O4 and γ-Fe2O3 with Crystalline Walls Using Post-Template Reduction/Oxidation [J]. J. Am. Chem. Soc.2006,128: 12905-12909.
    [12]J. Lu, X. L. Jiao, D. R. Chen, W. Li. Solvothemal synthesis and characterization of Fe3O4 and γ-Fe2O3 nanoplates [J]. J.Phys. Chem. C 2009,113:4012-4017.
    [13]K. Nakatsuka, B. Jeyadevan, S. Neveu. The magnetic fluid for heat transfer applications [J]. J. Magn. Magn. Mater.2002,252:360-362.
    [14]R. Vijayakumar, Y. Koltypin, I. Felner, A. Gedanken. Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles [J]. Mater. Sci. Eng., A2000,286:101-105.
    [15]T. Fried, G. Shemer, G. Markovich. Ordered two-dimensional arrays of ferrite nanoparticles [J]. Adv. Mater.2001,13:1158-1161.
    [16]P. C. Wang, C. F. Lee, T. H. Young, D. T. Lin, W. Y. Chiu. Preparation and clinical application of immunomagnetic latex [J]. J. Polym. Sci., Part A:Polym. Chem.2005,43:1342-1356.
    [17]A. G. Roca, M. P. Morales, K. O'Grady, C. J. Serna. Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors [J]. Nanotechnology 2006,17:2783-2786.
    [18]T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process [J]. J. Am. Chem. Soc.2001,123:12798-12801.
    [19]S. H. Sun, H. Zeng. Size-controlled synthesis of magnetite nanoparticles [J]. J. Am. Chem. Soc.2002,124:8204-8205.
    [20]Y. Hou, H. Kondoh, M. Shimojo, E. O. Sako, N. Ozaki, T. Kogure, T. Ohta. Inorganic nanocrystals self-assembly via the inclusion interaction of P-cyclodextrins:toward 3D spherical magnetite [J]. J. Phys. Chem. B 2005,109, 4845-4952.
    [21]L. J. Cain, S. R. Harrison, A. Jacqueline. Preparation of α-Fe particles by reduction of ferrous ion in lecithin/cyclohexane/water association colloids [J]. J. Magn. Magn. Mater.1996,155:67-69.
    [22]K. Mondal, H. Lorethova, E. Hippo, T. Wiltowski, S. B. Lalvani. Reduction of iron oxide in carbon monoxide atmosphere-reaction controlled kinetics [J]. Fuel Process. Technol.2004,86:33-47.
    [23]P. Jian, H. Yahui, W. Yang, L. Linlin. Preparation of polysulfone-Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field [J]. J. Membr. Sci.2006,284:9-16.
    [24]X. Teng, D. Black, N. Watkins, Y. Gao, H. Yang. Platinum-maghemite core-shell nanoparticles using a sequential synthesis [J]. Nano Lett.2003,3:261-264.
    [25]L. Y. Wang, J. Luo, Q. Fan, M. Suzuki, I. S. Suzuki, M. H. Engelhard, Y. Lin, N. Kim, J. Q. Wang, C. Zhong. Monodispersed core-shell Fe3O4@Au nanoparticles [J]. J. Phys. Chem. B 2005,109:21593-21601.
    [26]D. K. Kim, M. Mikhaylova, Y. Zhang, M. Muhammed. Protective Coating of Superparamagnetic Iron Oxide Nanoparticles [J]. Chem. Mater.2003,15: 1617-1627.
    [1]X. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility [J]. J. Am. Chem. Soc.1997,119:7019-7029.
    [2]M. Chen, Y. N. Kim, H. M. Lee, C. Li, S.O. Cho. Multifunctional Magnetic Silver Nanoshells with Sandwichlike Nanostructures [J]. J. Phys. Chem. C 2008,112: 8870-8874.
    [3]H. Zeng, J. Li, J. P. Liu, Z. L. Wang, S. Sun. Exchanged-coupled nanocomposite magnets via nanoparticle self-assembly [J]. Nature 2002,420:395-398.
    [4]H. Zeng, J. Li, Z. L. Wang, J. P. Liu, S. Sun. Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles [J]. Nano Lett.2004,4:187-190.
    [5]P. H. C. Camargo, Y. Xiong, L. Ji, J. M. Zuo. Y. Xia. Facile synthesis of tadpole-like nanostructures consisting of Au heads and Pd tails [J]. J. Am. Chem. Soc.2007,129:15452-15453.
    [6]P. Teresa, F. Angela, C. Elvio, G. Cinzia, C. P. Davide, C. Giuseppe, R. Marc, P. Luca, C. Roberto, M. Liberato. Heterodimers based on CoPt3-Au nanocrystals with tunable domain size [J]. J. Am. Chem. Soc.2006,128:6690-6698.
    [7]P. D. Cozzoli, T. Pellegrino, L. Manna. Synthesis, Properties and Perspectives of Hybrid Nanocrystal Structures [J]. Chem. Soc. Rev.2006,35:1195-1208.
    [8]J. H. Gao, B. Zhang, Y. Gao, Y. Pan, X. X. Zhang, B. Xu. Fluorescent Magnetic Nanocrystals by Sequential Addition of Reagents in a One-Pot Reaction:A Simple Preparation for Multifunctional Nanostructures [J]. J. Am. Chem. Soc. 2007,129:11928-11935.
    [9]L. Yang, Y. Shen, A. Xie, J. Liang, J. Zhu, L. Chen. Synthesis of Controllable-Size Core-Shell Se@Ag and Se@Au Nanoparticles in UV-Irradiated TSA Solution [J]. Eur. J. Inorg. Chem.2007,8:1128-1134.
    [10]J. Su, G. Cui, M. Gherasimova, H. Tsukamoto, J. Han, D. Ciuparu, S. Lim, L. Pfefferle, Y. He, A. V. Nurmikko, C. Broadbridge, A. Lehman. Catalytic growth of group Ⅲ-nitride nanowires and nanostructures by metalorganic chemical vapor deposition [J]. Appl. Phys. Lett.2005,86:1546-1548.
    [11]Z. H. Wu, M. Sun, X. Y. Mei, H. E. Ruda. Growth and photoluminescence characteristics of AlGaAs nanowires [J]. Appl. Phys. Lett.2004,85:657-659.
    [12]A. Vantomme, Z. Y. Yuan, G. H. Du, B. L. Su. Surfactant-Assisted Large-Scale Preparation of Crystalline,.CeO2 Nanorods [J]. Langmuir 2005,21:1132-1135.
    [13]B. D. Busbee, S.O. Obare, C. J. Murphy. An improved synthesis of high-aspect-ratio gold nanorods [J]. Adv. Mater.2003,15:414-416.
    [14]J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, X. M. Meng. Lasing in ZnS nanowires grown on anodic aluminum oxide templates [J]. Appl. Phys. Lett.2004,85:2361-2363.
    [15]Y. G. Guo, C. J. Li, L. J. Wan, D. M. Chen, C. R. Wang, C. L. Bai, Y. G. Wang. Well-defined fullerene nanowire arrays [J]. Adv. Funct. Mater.2003,13: 626-630.
    [16]B. Gates, B. Mayers, B. Cattle, Y. N. Xia. Synthesis and Characterization of Uniform Nanowires of Trigonal Selenium [J]. Adv. Funct. Mater.2002,'12: 219-227.
    [17]B. Gates, Y Y Wu, Y. D. Yin, P. D. Yang, Y. N. Xia. Single-Crystalline Nanowires of Ag2Se Can Be Synthesized by Templating against Nanowires of Trigonal Se [J]. J. Am. Chem. Soc.2001,123:11500-11501.
    [18]X. C. Jiang, B. Mayers, T. Herricks, Y. N. Xia. Direct Synthesis of Se@CdSe Nanocables and CdSe Nanotubes by Reacting. Cadmium Salts with Se Nanowires [J]. Adv. Mater.2003,15:1740-1743.
    [19]U. Jeong, J. Kim, Y. Xia, Z.-Y. Li. Monodispersed spherical colloids of Se@CdSe:Synthesis and use as building blocks in fabricating photonic crystals [J]. Nano Lett.2005,5:937-942.
    [20]U. Jeong, Y. N. Xia. Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids [J]. Angew. Chem. Int. Ed.2005, 44:3099-3103.
    [21]Z. Y. Jiang, Z. X. Xie, S. Y. Xie, X. H. Zhang, R. B. Huang, L. S. Zheng. High purity trigonal selenium nanorods growth via laser ablation under controlled temperature [J]. Chem. Phys. Lett.2003,368:425-429.
    [22]Z. Chen, Y. Shen, A. Xie, J. Zhu, Z. Wu, F. Huang. L-Cysteine-Assisted Controlled Synthesis of Selenium Nanospheres and Nanorods [J]. Cryst. Growth Des.2009,9(3):1327-1333.
    [23]X. B. Cao, Y. Xie, S. Y. Zhang, F. Q. Li. Ultra-thin trigonal selenium nanoribbons developed from series-wound beads [J]. Adv. Mater.2004,16:649-653.
    [24]S. Y. Zhang, Y. Liu, X. Ma, H. Y. Chen. Rapid, Large-Scale Synthesis and Electrochemical Behavior of Faceted Single-Crystalline Selenium Nanotubes [J]. J. Phys. Chem. B 2006,110:9041-9047.
    [25]B. Zhang, W. Dai, X. C. Ye, F. Zuo, Y. Xie. Photothermally Assisted Solution-Phase Synthesis of Microscale Tubes, Rods, Shuttles, and an Urchin-Like Assembly of Single-Crystalline Trigonal Selenium [J]. Angew. Chem. Int. Ed.2006,45:2571-2574.
    [26]X. M. Li, Y. Li, S. Q. Li, W. W. Zhou, H. B. Chu, W. Chen, I. Li, Z. K. Tang. Single crystalline trigonal selenium nanotubes and nanowires synthesized by sonochemical process [J]. Cryst. Growth Des.2005,5:911-916.
    [27]Q. Y Lu, F. Gao, S. Komarneni. Cellulose-directed growth of selenium nanobelts in solution [J]. Chem. Mater.2006,18:159-163.
    [28]Y. R. Ma, L. M. Qi, J. M. Ma, H. M. Cheng. Micelle-mediated Synthesis of Single-Crystalline Selenium Nanotubes [J]. Adv. Mater.2004,16:1023-1026.
    [29]S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, R. N. Muller. Magnetic iron oxide nanoparticles:Synthesis, stabilization, vectorization, physicochemical charac-terizations, and biological applications [J]. Chem. Rev. 2008,108:2064-2110.
    [30]C. J. Sunderland, M. Steiert, J. E. Talmadge, A. M. Derfus, S. E. Barry. Targeted nanoparticles for detecting and treating cancer [J]. Drug Dev. Res.2006,67: 70-93.
    [31]A. Ito, M. Shinkai, H. Honda, T. Kobayashi. Medical application of functionalized magnetic nanoparticles [J]. J. Biosci. Bioeng.2005,100(1):1-11.
    [32]H. Choi, S. R. Choi, R. Zhou, H. F. Kung, I. W. Chen. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery [J]. Acad. Radiol.2004,11:996-1004.
    [33]S. P. Lin, J. Brown. MR contrast agents:physical and pharmacologic basics [J]. J. Magn. Reson. Imaging 2007,25:884-899.
    [34]M. Brahler, R. Georgieva, N. Buske, A. Muller, S. Muller, J. Pinkernelle, U. Teichgraber, A. Voigt, H. Baumler. Magnetite-Loaded Carrier Erythrocytes as Contrast Agents for Magnetic Resonance Imaging [J]. Nano Lett.2006,6: 2505-2509.
    [35]H. H. Yang, S. Q. Zhang, X. L. Chen, Z. X. Zhuang, J. G. Xu, X. R. Wang. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations [J]. Anal. Chem.2004,76:1316-1321.
    [36]H. W. Gu, R. K. Zheng, X. X. Zhang, B. Xu. Facile One-Pot Synthesis of Bimodal Heterodimers of Nanoparticles:A Conjugate of Quantum Dot and Magnetic Nanoparticles [J]. J. Am. Chem. Soc.2004,126:5664-5665.
    [37]K. W. Kwon, M. Shim. γ-Fe2O3/Ⅱ-Ⅵ sulfide nanocrystal heterojunctions [J]. J. Am. Chem. Soc.2005,127:10269-10275.
    [38]H. W. Gu, R. K. Zheng, H. Liu, X. X. Zhang, B. Xu. Direct Synthesis of a Bimodal Nanosponge Based on FePt and ZnS [J]. Small 2005,1:402-406.
    [39]D. S. Wang, J. B. He, N. Rosenzweig, Z. Rosenzweig. Superparamagnetic Fe2O3 Beads-CdSe/ZnS Quantum Dots Core-Shell Nanocomposite Particles for Cell Separation [J]. Nano Lett.2004,4:409-413.
    [40]H. Kim, M. Achermann, L. P. Balet, J. A. Hollingsworth, V. I. Klimov. Synthesis and characterization of Co/CdSe core/shell nanocomposites:bifunctional magnetic-optical nanocrystals [J]. J. Am. Chem. Soc.2005,127:544-546.
    [41]J. Stejskal, A. Hlavata, P. Holler, M. Trchova, J. Prokes, I. Sapurina. Polyaniline prepared in the presence of various acids:A conductivity study [J]. Polym. Int. 2004,53(3):294-300.
    [42]S. C. Hobaica. Stability of polyaniline in air and acidic water [J]. J. Polym. Sci., Part B:Polym.Phys.2002,41(8):807-22.
    [43]X. F. Lu, Y. H. Yu, L. Chen, H. Mao, H. Gao, J. Wang, W. Zhang, Y. Wei. Aniline dimer-C.OOH assisted preparation of well-dispersed polyaniline-Fe3O4 nanoparticles [J].Nanotechnology,2005,16:1660-1665.
    [44]Z. Zhang,M. X. Wan, Y. Wei. Electromagnetic functionalized polyaniline nanostructures [J]. Nanotechnology,2005,16:2827-2832.
    [45]Y. Z. Long, Z. J. Chen, J. L. Duvail, Z. Zhang, M. Wan. Electrical andmagnetic properties of polyaniline/Fe3O4 nanostructures [J]. Physica B,2005,370: 121-130.
    [46]P. Xu, X. J. Han, J. J. Jiang, X. H. Wang, X. H. Li, A. H. Wen. Synthesis and Chara-cterization of Novel Coralloid Polyaniline/BaFe12O19 Nanocomposites [J] J. Phys. Chem. C,2007,111:12603-12608.
    [47]R. L. D. Loyo, S. I. Nikitenko, A. C. Scheinost, M. Simonoff. Immobilization of Selenite on Fe3O4 and Fe/Fe3C Ultrasmall Particles [J]. Environ. Sci. Technol. 2008,42:2451-2456.
    [48]N. F. Mott, E. A. Davis. Electronic Processes in Non-Crystalline Semiconductors [M]. Clarendon Press:Oxford,1979.
    [1]Y. Zhang, J. Zhang. Surface modification of monodisperse magnetite nanoparticles for improved intracellular up take to breast cancer cells [J]. J. Colloid Interface Sci.2005,283(2):352-357.
    [2]F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, D. B. Shieh. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications [J]. Biomaterials,2005,26(7):729-738.
    [3]K. Nakatsuka, B. Jeyadevan, S. Neveu. The magnetic fluid for heat transfer applications [J]. J. Magn. Magn. Mater.2002,252:360-362.
    [4]R. Vijayakumar, Y. Koltypin, I. Felner, A. Gedanken. Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles [J]. Mater. Sci. Eng. A 2000,286:101-105.
    [5]T. Fried, G. Shemer, G. Markovich. Ordered two-dimensional arrays of ferrite nanoparticles [J]. Adv. Mater.2001,13:1158-1161.
    [6]P. C. Wang, C. F. Lee, T. H. Young, D. T. Lin, W. Y. Chiu. Preparation and clinical application of immunomagnetic latex [J]. J. Polym. Sci., Part A:Polym. Chem. 2005.,43:254-262.
    [7]A. G. Roca, M. P. Morales, K. O'Grady, C. J. Serna. Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors [J]. Nanotechnology 2006,17:2783-2786.
    [8]T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process [J]. J. Am. Chem. Soc.2001,123:12798-12801.
    [9]S. H. Sun, H. Zeng. Size-controlled synthesis of magnetite nanoparticles [J]. J. Am. Chem. Soc.2002,124:8204-8205.
    [10]S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R. Muller. Magnetic iron oxide nanoparticles:Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications [J]. Chem Rev, 2008,108:2064-2110.
    [11]K. Yamaguchi, K. Matsumoto, T. Fujii. Magnetic anisotropy by ferromagnetic particles alignment in a magnetic field [J]. J. Appl. Phys.1990,67:4493-4495.
    [12]V. T. Peikove, K. S. Jeon, A. M. Lane. Characterization of magnetic inks by measurements of frequency dependence of AC susceptibility [J]. J. Magn. Magn. Mater.1999,193:307-310.
    [13]C. J. Sunderland, M. Steiert, J. E. Talmadge, A. M. Derfus, S. E. Barry. Targeted nanoparticles for detecting and treating cancer [J]. Drug Dev. Res.2006,67: 70-93.
    [14]A. Ito, M. Shinkai, H. Honda, T. Kobayashi. Medical application of functionalized magnetic nanoparticles [J]. J Biosci. Bioeng.2005,100(1):1-11.
    [15]H. Choi, S. R. Choi, R. Zhou, H. F. Kung, I. W. Chen. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery [J]. Acad. Radiol.2004,11:996-1004.
    [16]S. P. Lin, J. Brown. MR contrast agents:physical and pharmacologic basics [J]. J. Magn. Reson. Imaging 2007,25:884-899.
    [17]M. Brahler, R. Georgieva, N. Buske, A. Muller, S. Muller, J. Pinkernelle, U. Teichgraber, A. Voigt, H. Baumler. Magnetite-Loaded Carrier Erythrocytes as Contrast Agents for Magnetic Resonance Imaging [J]. Nano Lett.2006,6: 2505-2509.
    [18]H. H. Yang, S. Q. Zhang, X. L. Chen, Z. X. Zhuang, J. G. Xu, X. R. Wang. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations [J]. Anal. Chem.2004,76:1316-1321.
    [19]A. S. Arbab, L. A. Bashaw, B. R. Miller, E. K. Jordan, B. K. Lewis, H. Kalish, J. A. Frank. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging [J]. Radiology,2003,229(10):838-846.
    [20]K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Kortum. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles [J]. Cancer Res.2003,63(5): 1999-2004.
    [21]C. Alexiou, W. Arnold, R. J. Klein, F. G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil, A. S. Lubbe. Locoregional cancer treatment with magnetic drug targeting [J]. Cancer Res.2000,60(12):6641-6648.
    [22]K. J. Landmark, S. DiMaggio, J. Ward, C. Kelly, S. Vogt, S. Hong, A. Kotlyar, A. Myc, T. P. Thomas, J. E. Penner-Hahn, J. R. Baker, Jr., M. M. Banaszak Holl, B. G. Orr. Synthesis, Characterization, and in Vitro Testing of Superparamagnetic Iron Oxide Nanoparticles Targeted Using Folic Acid-Conjugated Dendrimers [J]. ASC Nano 2008,4(2):773-783.
    [23]L. A. Harris, J. D. Goff, A. Y. Carmichael, J. S. Riffle, J. J. Harburn, T. G. St. Pierre, M. Saunders. Magnetite naoparticle dispersion stabilized with triblock copolymers [J]. Chem. Mater.2003,15(6):1367-1377.
    [24]T. Laura, R. Eija, K. Tarja, R. Seppo, P. Jukka, U. Arto, P. Soili, J.Kristiina. Starch acetate microparticles for drug delivery into retinal pigment epithelium in vitro study [J]. J. Contr. Rel.2004,98:407-413.
    [25]S. Linda, S. Lena, S. Ingvar. Starch microparticles as an adjuvant in immunization:effect of route of administration on the immune response in mice [J]. Vaccine,2004,22:2863-2872.
    [26]L. D. Wikingsson, I. Sjoholm. Polyacryl starch microparticles as adjuvant in oral immunisation, inducing mucosal and systemic immune responses in mice [J]. Vaccine,2002,20:3355-3363.
    [27]S. Pohja, E. Suihko, M. Vidgren, P. Paronen, J. Ketolainen. Starch acetate as a tablet matrix for sustained drug release [J]. J Contr Rel,2004,94:293-302.
    [28]X. He, B. Shen, X. Liu. Production and applications on dialdehyde starch [J]. Chin J Bioproc Eng,2004,2(3):1-4.
    [29]R. Wongsagona, S. Shobsngobb, S. Varavinita. Preparation and physicochemical properties of dialdehyde tapioca starch [J]. Starch 2005,57:166-172.
    [30]A. Para, K. K.Stanislawa. Metal complexes of starch dialdehyde dithiosemicarbazone [J]. Carbohydr. Polym.2002,50:151-158.
    [31]R. Tang, Y. Du, L. Fan. Dialdehyde starch-crosslinked chitosan films and their antimicrobial effects [J]. J. Polym. Sci. Part B:Polym. Phys.2003,41:993-997.
    [32]H. Wang, R. Wei, H. Shen. Study on flexible immobilized papain with dialdehyde starch [J]. Chin. J. Bioproc. Eng.2004,2(1):25-29.
    [33]H. Onishi, T. Nagai. Characterization and evaluation of dialdehyde starch as an erodible medical polymer and a drug carrier [J]. J. Pharm.1986,30(2-3): 133-141.
    [34]B. T. Hofreiter, B. H. Alexander. Rapid estimation of dialdehyde content of periodate oxystarch through quantitative aikali cousumption [J]. Anal. Chem. 1955,27:1930-1931.
    [35]J. C. Rankin, C. L. Mehltretter. Determination of dialdehyde units in periodate-oxidized comstarch [J]. Anal. Chem.1956,28:1012-1024.
    [36]C. S. Wise, C. L. Mehltretter. Colorimetric method for determining dialdehyde content of periodate oxidized starch [J]. Anal. Chem.1958,30:174-175
    [1]L. T. Chang, C. C. Yen. Studies on the preparation and properties of conductive polymers. Ⅷ. Use of heat treatment to prepare metallized films from silver chelate of PVA and PAN [J]. J. Appl. Polym. Sci.1995,55:371-374.
    [2]Y. Nakao. Noble metal solid sols in poly (methyl methacrylate) [J]. J. Colloid Interface Sci.1995,171:386-391.
    [3]V. Valtchev. Core-shell polystyrene/zeolite a microbeads [J]. Chem. Mater.2002, 14:956-958.
    [4]D. B.Shenoy, A. A. Antipov, G. B. Sukhorukov, H. Mohwald. Layer-by-layer engineering of biocompatible, decomposable core-shell structures [J]. Biomacromolecules 2003,4(2):265-272.
    [5]Y. Zhu, H. Da, X. Yung, Y. Hu. Preparation and characterization of core-shell monodispersed magnetic silica microspheres[J]. Colloid Surf. A 2003,231, 123-129.
    [6]G. Qiu, B. Zhu, Y. Xu. a-Amylase immobilized by Fe3O4/poly (styrene-co-maleic anhydride) magnetic composite microspheres:preparation and characterization [J]. J. Appl. Polym. Sci.2005,95:328-335.
    [7]X. Q. Liu, Y. P. Guan,Y. Yang, Z..Y. Ma, X.B. Wu, H. Z. Liu. Preparation of superparamagnetic immunomicrospheres and app lication for antibody purification [J]. J. Appl. Polym. Sci.2004,94:2205-2211.
    [8]Z. Liu, Z. Ding, K. Yao. Preparation and characterization of polymer-coated core-shell structured magnetic microbeads [J]. J. Magn. Magn. Mater.2003,265: 98-105.
    [9]S. A. Gomez-Lopera, R. C. Plaza, A. V. Delgado. Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles [J]. Colloid Interface Sci.2001,240(1):40-47.
    [10]H. Furukawa, R. Shimojyo, N. Ohnishi, H. Fukuda, A. Kondo. Affinity selection of target cells from cell surface displayed libraries:a novel procedure using thermo-responsive magnetic nanoparticles [J]. Appl. Microbiol. Biotechnol. 2003,62:478-483.
    [11]M. S. Detlef, S. R. Thomas. Thermo sensitive magnetic polymer particles as contactless controllable drug carriers [J]. J. Magn. Magn. Mater.2006,302(1): 267-271.
    [12]M. Tanaka, K. Hayashi. Preparation of polymer particles covered with ferrite powder by suspension polymerization:effect of wettability of powder on composite particle size distribution [J]. J. Mater. Sci.1990, (25):987-991.
    [13]Y. Chang, Z. X. Su. Preparation and characterization of thermosensitive magnetic particles [J]. Mater. Sci. Eng. A 2002,333:155-159.
    [14]D. Horak, B. Rittich, A. Lpanova. Carboxyl-functionalized magnetic microparticle carrier for isolation and identification of DNA in dairy products [J]. J. Magn. Magn. Mater.2007,311(1):249-254.
    [15]Y. H. Deng, W. L. Yang, C. C. Wang, S. K. Fu. A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core-shell structure [J]. Adv. Mater.2003,15(20):1729-1732.
    [16]C. F. Lee, Y. H. Chou, W. Y. Chiu. Synthesis and morphology of Fe3O4 /polystyrene/poly (isopropylacrylamide-co-methyl acrylate acid) magnetic composite latex-2,2'-azobis (2-methylpropionamidine) dihydrochloride as initiator [J]. J. Polym. Sci., Part A:Polym Chem.2007,45(17):3912-3921.
    [17]N. Shamim, L. Hong, K. Hidajat, M. S. Uddin. Thermosensitive-polymer-coated magnetic nanoparticles:adsorption and desorption of Bovine Serum Albumin [J]. J. Colloid Interface Sci.2006,304(1):1-8.
    [18]Y. Sun, B. Wang, H. Wang, J. Jiang. Controllable preparation of magnetic polymermicrospheres with differentmorphologies by miniemulsion polymerization [J]. J. Colloid Interface Sci.2007,308(2):332-336.
    [19]Z. Z. Xu, C. C. Wang, W. L. Yang, Y. H. Deng, S. K. Fu. Encap sulation of nanosized magnetic iron oxide by polyacrylamide via inverse miniemulsion polymerization [J]. J. Magn. Magn. Mater.2004,277 (1/2):136-143.
    [20]X. Yang, X. Lin, F. Pan, C. Tao. Preparation and Characterization of Magnetic Polymer Microspheres with Surface Carboxyl Groups [J]. Chemical World 2006, 47(5):276-280.
    [21]C. Menager, O. Sandre, J. Mangili, V. Cabuil. Preparation and swelling of hydrophilic magnetic microgels [J]. Polymer,2004,45(8):2475-2481.
    [22]Y Deng, L. Wang, W. Yang, S. Fu. Preparation of magnetic polymeric particles via inverse microemulsion polymerization process [J]. J. Magn. Magn. Mater. 2003,257(1):69-78.
    [23]J. Hong, P. J. Gong, J. H. Yu, D. M. Xu, H. W. Sun, S. Yao. Conjugation of a-chymotryp sin on a polymeric hydrophilic nanolayer covering magnetic nanoparticles [J]. J. Mol. Catal. B:Enzym.2006,42(3/4):99-105.
    [24]C. L. Lin, W. Y. Chiu, T.M. Don. Superparamagnetic thermoresponsive composite latex via W/O miniemulsion polymerization [J]. J. Appl. Polym. Sci. 2006,100:3987-3996.
    [25]N. Feltion, M. P. Pilemi. New technique for synthesizing iron ferrite magnetic nanosized particles [J]. Langmuir 1997,13:3927-3933.
    [26]D. K. Lee, Y. S. Kang, C. S. Lee, P. Stroeve. Structure and characterization of nanocomposite langmuir-blodgett films of poly (maleic monoester)/Fe3O4 nanoparticle complexes [J]. J. Phys. Chem. B 2002,106:7267-7271.
    [27]H. Pardoe, W. Chua-Anusorn, T.G. St Pierre, J. Dobson. Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol [J]. J. Magn. Magn. Mater.2001,225:41-46.
    [28]E. B. Denkbas, E. Kilicay, C. Birlikseven, E. Ozturk. magnetic chitosan microsphere:preparation and characterization [J]. React. Funct. Polym.2002,50: 155-159.
    [29]D. R. Vera, R. F. Mattrey. A molecular CT blood pool contrast agent [J]. Acad. Radiol.2002, (9):784-792.
    [30]M. Farshad, M. Le Roux. Compression properties of magnetostrictive polymer composite gels [J]. Polym. Test.2005,24:163-168.
    [31]Q. L. Yang, J. Zhai, L. Feng. Synthesis and characterization of conducting polyaniline/γ-Fe2O3 magnetic nanocomposite [J]. Synth. Met.2003,35:819-820.
    [32]L. Josephson, J. M. Perez, R. Weissleder. Magnetic Nanosensors for the detection of oligonucleotide sequences [J]. Angew. Chem. Int. Ed.2001,40:3204-3206.
    [33]F. Patolsky, Y. Weizmann, E. Katz, I. Willner. Magnetically amplified DNA assays (MADA):Sensing of viral DNA and single-base mismatches by using nucleic acid modified magnetic particles [J]. Angew. Chem. Int. Ed.2003,42, 2372-2376.
    [34]Z. Li, L. Wei, M. Gao, H. Lei. One-pot reaction to synthesize biocompatible magnetite nanoparticles [J]. Adv. Mater.2005,17:1001-1005.
    [35]Y. Zhu, W. Lu. Progress of Magnetic Microspheres and Magnetic Nanoparticles [J]. Chin. J. Pharm.2005,36(9):581-584.
    [36]T. Kubo, T. Sugita, S. Shimose, Y. Nitta, Y. Ikuta, T. Murakami. Targeted delivery of anticancer drugs with int ravenously administered magnetic liposomes in osteosarcoma bearing hamsters [J]. Int. J. Oncol.2000,17(2): 309-315.
    [37]S. C. Goodwin, C. A. Bittner, C. L. Peterson, G. Wong. Single-dose toxicity study of hepatic intra-arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier [J]. Toxicol. Sci.2001,60(1):177-183.
    [38]H. Nakayama, A. Arakaki, K. Maruyama, H. Takeyama, T. Matsunaga. Single-nucleotide polymorphism analysis using fluorescence resonance energy transfer between DNA-labeling fluorophore, fluorescein isothiocyanate, and DNA intercalator, POPO-3, on bacterial magnetic particles [J]. Biotechnol. Bioeng.2003,84:96-102.
    [39]H. F. Jia, G. Y. Zhu, P. Wang. Catalytic behaviors of enzymes attached to nanoparticles:the effect of particle mobility [J]. Biotechnol. Bioeng.2003,84: 406-414.
    [40]C. Billotey, C. Wilhelm, M. Devaud, J. C. Bacri, J. Bittoun, F. Gazeau. Cell internalization of anionic maghemite nanoparticles:Quantitative effect on magnetic resonance imaging [J]. Magn. Reson. Med.2003,49:646-654.
    [41]G. V. Patil. Biopolymer albumin for diagnosis and in drug delivery [J]. Drug Dev. Res.2003,58:219-247.
    [42]P. Tartaj, T. Gonzalez-Carreno, C. J. Serana. Magnetic behavior of y-Fe2O3 nanocrystals dispersed in colloidal silica particles [J]. J. Phys. Chem. B 2003, 107(1):20-24.
    [43]X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, S. A. Asher. Superparamagnetic photonic crystals [J]. Adv. Mater.2001,13:1681-1684.
    [44]B. Lindlar, M. Boldt, S. E. Assmann, G. Maret. Synthesis of monodisperse magnetic methacrylate polymer particles [J]. Adv. Mater.2002,14:1656-1658.
    [45]Z. B. Huang, F. Q. Tang. Preparation, structure, and magnetic properties of polystyrene coated by Fe3O4 nanoparticles [J]. J. Colloid Interface Sci.2004,275: 142-147.
    [46]G. P. Song, J. Bo, R. Guo. Preparation of polystyrene/Fe3O4 nanoparticles in triton X-100/sodium dodecyl benzenesulfonate mixed surfactant system [J]. Chin. J. Chem.2005,23,997-1000.
    [47]L. Li, B. Ahmed, K. Mehta, R. Kurzrock. Liposomal curcumin with and without oxaliplatin:effects on cell growth, apoptosis, and angiogenesis in colorectal cancer [J]. Mol. Cancer Ther.2007,6(4):1276-1282.
    [48]L. Li, F. S. Braiteh, R. Kurzrock. Liposome-encapsulated curcumin:in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis [J]. Cancer, 2005,104(6):1322-1331.
    [49]G. Kuttan, K. B. Kumar, C. Guruvayoorappan. Antitumor, anti-invasion, and antimetastatic effects of curcumin [J]. Adv. Exp. Med. Biol.2007,595(8): 173-184.
    [50]V. P. Menon, A. R. Sudheer. Antioxidant and antiinflamatory properties of curcumin [J]. Adv. Exp. Med. Biol.2007,595 (8):105-125.
    [51]A. Maczurek, K. Hager, M. Kenklies, M. Sharman, R. Martins, J. Engel, D. A. Carlson, G. Munch. Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer's disease [J]. Adv. Drug Deliv. Rev.2008,60(13-14): 1463-1470.
    [52]D. Suresh, K. Srinivasan. Studies on the in vitro absorption of spice principles-curcumin, capsaicin and piperine in rat intestines [J]. Food Chem. Toxicol.2007,45(8):1437-1442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700