隧道、层状及尖晶石结构锰氧化物的晶体生长和结构表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,因为锰的价态多样,锰的氧化物结构丰富且可调性很大,各种结构和形貌的锰的氧化物的合成受到了极大的关注。它们在电池、催化、离子交换和磁性材料等诸多领域有着重要的应用。
     一直以来,层状和隧道结构的微孔锰氧化物特别的受到关注,其中Na0.44MnO2是一个著名的电极材料,它有着独特的双隧道结构,很利于Na+离子的迁移,所以它也有成为Na+离子传感器的潜质。
     Na0.44MnO2一般是由Na2CO3和Mn203通过高温固相反应合成的。近来,通过水热方法得到了高长径比的Na0.44MnO2纳米线。然而,通过以上方法得到的晶体尺寸都较小,直径低于500nm。相反,助熔剂方法能有效地提高晶体尺寸我们通过Mn203和大过量的NaCl之间的反应得到了较大的Na0.44MnO2晶须(0.01×0.01×0.1mm3)。单晶X射线研究表明此化合物的组成接近Na0.5MnO2,并在S形隧道中发现了一个新的Na位置。NaCl不但是助熔剂,也是其中一个反应物。由于反应速率小,成核少,Mna03和NaCl反应可以得到较大的Na0.5MnO2晶须。
     Eftekhari等通过高温固相法在800℃合成了Na0.5MnO2纳米线束,并假设纳米线是通过Na+离子在层状MnO2中沿一个方向扩散而形成的。我们将NaCl作为助熔剂引入反应体系来提高Na0.5MnO2晶须的晶体的尺寸,并进一步研究它的生长机理。我们发现NaCl在这里起了两个作用:助熔剂和反应物。作为助熔剂,NaCl不仅能提高反应速率,并且提供了一个适于晶体生长的液相环境。同时,作为反应物,可以消耗未能与Na2CO3反应的Mn2O3。这样,由于Na2CO3和NaCl不同的反应活性,我们可以得到纯度高、结晶度高的Na0.5MnO2晶须。另外,通过淬火发现了层状结构的中间产物。Na0 5MnO2的晶体生长包含了层状结构向隧道结构的转变,同时伴随着晶粒各向异性的生长和晶粒之间的取向聚集。
     Birnessite是一类层状结构的混合价态锰氧化物。层由Mn06八面体共棱连接而成,层间存在Na+、K+或其它阳离子和水分子。它的层间距约为7A,层间可以插入不同的物种,如金属阳离子、氧化物粒子和有机分子等,并且层间距随之变化。Birnessite型结构可以用来制作电极、催化剂、离子筛和吸附剂等。在合成隧道结构时,birnessite常作为中间产物出现,所以有人直接用birnessite作为前躯体合成隧道结构。然而直至今日,层状向隧道结构转变的内在机理仍不是很清楚。Silvester等曾研究了较低pH值时富钠的Buserite向六方氢离子交换的birnessite的转化,发现这一过程开始于层内相邻Mn3+的歧化反应生成Mn4+和Mn2+离子。Mn2+离子迁移至层间,进一步被溶解氧氧化成Mn3+,然后形成共顶点的MnO6八面体。然而,这一过程显然不适合于碱性条件下的反应和固相反应,因为几乎没有可溶解的Mn2+离子
     当纳米孔材料处于高压条件下时,不但它们的弹性骨架会受到高压的影响,骨架外的阳离子和客体分子也会受到影响,它们的体积可能收缩,但也可能膨胀,从而导致一些特殊物相的生成。近来,层状结构(如石墨氧化物)在高压下层间可插入多种溶剂分子并体积膨胀的现象引起了人们极大的兴趣。石墨氧化物的层不是绝对的平面,而是起伏的,在官能团的成键位置偏离平面。Birnessite及相关的层状结构有类似石墨氧化物的结构,Mn06八面体层内存在两种价态的Mn(三价和四价),由于Mn3+明显的Jahn-Teller效应,Mn3+O6和Mn4+O6的八面体的尺寸相差较大,这可能会导致Mn06八面体层的扭曲,而高压会增大这种扭曲。通常在常压下得到的birnessite的晶体的尺寸都比较小,无法满足单晶X射线衍射的需要。至今为止,由拟合粉末X射线得到的birnessite的晶体结构模型只能得到简单的平面MnO6层。
     我们在高压条件下(50MPa),成功得到了层状结构K0.66Mn2O4·0.28H2O(K-BT-1)的单晶体,单晶X射线衍射发现它的MnO6八面体层发生了2 x 2扭曲,沿b轴的MnO6八面体链中,每隔两列Mn4+O6八面体双链,有两列Mn3+O6八面体双链,而且为了减小层内应力,Mn3+O6八面体链出现了协同Jahn-Teller扭曲。样品在常压下放置,放生应力释放,同时吸水,并被氧化而转化为K0.99Mn3O6·1.25H2O(K-BT-2),层间距由6.38A增大至7A,扭曲类型变为2 x 1扭曲,其中电荷有序和协同Jahn-Teller扭曲仍然存在。K-BT-1到K-BT-2的转变包含了从结构(电荷)有序到无序再到有序的转变。基于K-BT-1的2 x 2扭曲层结构,我们提出了一个由birnessite转化为a-MnO2的层扭曲和电荷有序机理。另外,对K-BT-1的生长过程的研究表明,升高温度和压力对birnessite的晶体生长都有明显的促进作用。在高压下瞬时降压可以进一步促进birnessite的晶体生长和有序晶相K-BT-1的形成。
     Mn3O4是一种活性较高的尾气分解催化剂,并且是生产工业级铁氧体的重要原材料。在42K时,Mn3O4发生亚铁磁相变,并在其磁相变点附近有一定程度的磁电耦合。我们知道,晶体材料的性质与其结构密切相关。因此,研究并发现新的晶体结构在当前的晶体材料科学中具有重要意义。已知Mn3O4有三种晶型:四方(常温常压)相,立方(高温)相和正交(高压)相。在常温常压下,Mn3O4具有尖晶石结构,由于Mn3+的Jahn-Teller效应,c轴被拉长,晶体为四方相。在高温下,Jahn-Teller效应被弱化,当温度高于1443K时Mn3O4变为立方相,但仍为尖晶石结构。在高压下,当压力高于10GPa时,Mn3O4在室温下就能转化为正交相,其结构类似于marokite(CaMn2O4)。
     我们在高温高压条件下(450℃,100MPa)以KOH为助熔剂,成功得到了毫米级的Mn3O4单晶体。它的形状主要有准八面体、扭曲的平行六面体和准三角形。单晶X射线衍射表明这些晶体的主要外露晶面为(101)面。由解析单晶数据表明产物的平均结构可以用四方相Mn3O4来描述。晶体的进动图像表明它是一个非公度调制结构,a轴和b轴出现了差异。Raman光谱表明晶体的结构接近四方相,晶格扭曲的程度不大。粉末X射线衍射表明晶体的各晶面间距出现了收缩。透射电镜进一步发现晶体内存在一定的应力,高分辨透射电镜清晰的观察到了扭曲的晶格条纹,并且(101)面的晶格间距变小了。
     总之,利用助熔剂法我们成功得到了隧道结构Na0.5MnO2、层状结构K-birnessite和尖晶石结构Mn3O4等锰氧化物的单晶体,结合单晶X射线衍射研究了它们的结构,并对它们的生长机理和压力对晶体生长和结构扭曲的作用进行了深入的讨论。
In recent years, much attention has been paid to synthesizing and designing manganese oxides of a diversity of structures and morphologies owing to their structural flexibility and manganese valence variety. They have found applications in many fields such as batteries, catalysts, ion sieves and magnetic materials.
     For years, porous manganese oxides with layered or tunnel structures are very attractive, among which Na0.44MnO2 is well-known as an electrode material for its unique double tunnel structure that can greatly facilitate the Na+ mobility. It also has great potential to be used as sodium ions sensors.
     Na0.44MnO2 was early synthesized via high temperature solid state reaction of stoichiometric Na2CO3 and Mn2O3. Recently, Na0.44MnO2 nanowires with high aspect ratio have been synthesized using hydrothermal method. The size of the crystals obtained by the above methods is small with diameters below 500nm. In contrast, flux method is particularly suitable for improving the crystal size. We have discovered that large Na0.44MnO2 whiskers (0.01×0.01×0.1mm3) can be obtained by reacting Mn2O3 with NaCl. Single-crystal X-ray structure shows that the composition of this compound approaches Nao.5Mn02 through incorporating a new Na site in the S-shaped tunnel. NaCl acted as not only the flux but also the reactant. For the slow reaction rate, the reaction of Mn2O3 and NaCl favors larger whiskers.
     Eftekhari et. al. have studied the formation of Na0.5MnO2 nanowire bundles by solid state reaction at 800℃and proposed the nanowires are formed by longitudinal diffusion of Na+ across the layered MnO2. Here, NaCl flux is introduced in the reaction system to improve the crystal size of Na0.5MnO2 whiskers (needle crystal) and further examine the growth mechanism. We found that NaCl played two roles here, i.e., as flux and reactant, respectively. As a flux, NaCl can not only accelerate the reaction but also provide a suitable liquid environment for crystal growth. Meanwhile, as a reactant, NaCl can consume the residue Mn2O3 that has not reacted with Na2CO3. Therefore, pure products can be easily obtained due to the activity difference between Na2CO3 and NaCl. On the other hand, by quenching the high temperature flux, the crystals of layered structure as an intermediate product has been identified, and the crystal growth of Na0.5MnO2 was achieved via a layer-to-tunnel structure transformation that was coupled with anisotropic crystal growth and nucleus oriented aggregation.
     Birnessite is a layered mixed-valent manganese oxide built from edge-sharing MnO6 octahedra with Na+, K+, or other cations and H2O molecules filling the interlayer space. Its interlayer spacing is about 7 A and can be tuned by incorporation of different species, such as metallic cations, oxides and organic molecules, etc.. It is usually observed as an intermediate or used as precursor in the synthesis of tunnel structures. However, the intrinsic mechanism of layer-to-tunnel transformation has not been clear yet. Silvester et al. have studied the conversion of synthetic Na-rich buserite to hexagonal H+-exchanged birnessite at low pH and found that the process starts with a disproportionation reaction of neighboring Mn3+ ions in the manganese oxide layers to Mn4+ and Mn2+ ions. The Mn2+ ions migrate into the interlayer space, undergo further oxidation to Mn3+ by oxygen and assist the formation of corner-sharing MnO6 octahedra. However, the transformations in alkaline conditions or solid state reactions are obviously different because there is nearly no soluble Mn2+
     Unexpected fascinating phases may appear when nanoporous materials are subjected to high pressure (HP), because HP not only affects the structure of the flexible open framework but also the fate of extraframework cations and the guest molecules in the nanopores, resulting in volume contraction or expansion. The layered structures, such as graphite oxide (GO), have attracted considerable interest because of their ability to accommodate different solvents under HP. GO layers are buckled, deviating from the ideal planar shape at the positions of functional group bonding. Birnessite-related materials present similar layered structure and the MnO6 octahedral layers may be also buckled due to the mixed-valent MnO6 octahedral layer of Mn3+/Mn4+ with distinct steric environment, which is expected to be magnified under HP. Because it is usually difficult to grow large crystals enough for single-crystal XRD study, to date, however, structure models of birnessite determined from powder XRD show us only simple planar MnO6 layer.
     In this study, HP can not only enhance the crystallinity and crystal size of birnessite, but also force Mn3+ and Mn4+ in ordered state by elongation and orientation of the Mn3+O6 octahedra. A 2×2 buckled MnO6 octahedral layers of K-BT-1 were stabilized at HP (50MPa) and transformed to a 2×1 buckled MnO6 octahedral layers of K-BT-2 when annealed at room temperature in air for one year. Both structures were determined by single-crystal XRD. The transformation of K-BT-1 to K-BT-2 involves Mn3+/Mn4+ order-disorder-order transition. Based on these buckled layers, which is a result of ordering of Mn3+/Mn4+ in separate rows and cooperative Jahn-Teller distortion of Mn3+O6 octahedra, a mechanism of structure transformation from birnessite to tunnel structures was proposed. In addition, temperature and pressure are both important factors for the crystal growth of K-BT-1. Higher temperature and pressure favor larger K-birnessite crystals. Abrupt pressure decrease is responsible for the formation and crystal growth of K-BT-1 crystals.
     Mn3O4 is a well-known candidate as an active catalyst for the decomposition of waste gases and also a raw material for the production of manganese zinc ferrite for magnetic cores in transformers for power supplies. Bulk Mn3O4 undergoes a ferromagnetic transition at 42 K, under which it has magnetodielectric properties. It is well-known that the properties of crystalline materials rely on their structures. As a result, the exploration of new crystal structure is very important fundamentally and practically. To our knowledge, Mn3O4 has three crystalline phases:tetragonal, cubic and orthorhombic. At ambient condition, Mn3O4 has the spinel structure. It is tetragonal distorted because of the Jahn-Teller distortion of Mn3+. Above 1443 K, it transforms to cubic spinel for the degenerate d-orbitals. At high pressure (above 10 GPa), Mn3O4 can transform to an orthorhombic marokite type structure even at room temperature.
     We successfully synthesized large Mn3O4 single crystals at 450℃and 100MPa in KOH flux. The crystals are shaped in octahedron, parallelepiped and triangle. Single-crystal X-ray study reveals that the main exposed surface is(101) planes. Its average crystal structure can be described as the tetragonal Mn3O4. Because of the incorporated strain and the distortion of the structure, the structure becomes incommensurate. XRD and HRTEM both unambiguously conform the contraction of the (101) plane.
     In short, we successfully synthesized the single crystals of tunnel Na0.5MnO2, layered K-birnessite and spinel Mn3O4. Their crystal structures were resolved by single-crystal X-ray diffraction. In addition, the crystal growth mechanism and pressure effect on the crystal growth and structure distortion are discussed.
引文
[1]曹锡章,宋天佑,王杏乔无机化学[M].1992,高等教育出版社,北京.
    [2]吴宇平,戴晓兵,马军旗等 锂离子电池—应用与实践[M].2004,化学工业出版社,北京.
    [3]Hosono E., Matsuda H., Honma I., et al. Synthesis of single crystalline electro-conductive Nao.44Mn02 nanowires with high aspect ratio for the fast charge-discharge Li ion battery [J]. Journal of Power Sources,2008,182: 349-352.
    [4]Jin S., Tiefel T. H., McCormack M., et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-0 films [J]. Science,1994,264:413-415.
    [5]Brock S. L., Duan N., Tian Z. R., et al. A review of porous manganese oxide materials [J]. Chemistry of Materials,1998,10:2619-2628.
    [6]Espinal L., Suib S. L., Rusling J. F. Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and Ⅱ2O2 [J]. Journal of the American Chemical Society,2004,126:7676-7682.
    [7]Gao T., Krumeich F., Nesper R., et al. Microstructures, surface properties, and topotactic transitions of manganite nanorods [J]. Inorganic Chemistry, 2009,48:6242-6250.
    [8]Ma R., Bando Y., Zhang L., et al. Layered MnO2 nanobelts:hydrothermal synthesis and electrochemical measurements [J]. Advanced Materials,2004, 16:918-922.
    [9]Fei J., Cui Y., Yan X., et al. Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment [J]. Advanced Materials,2008,20:452-456.
    [10]Smith A. E., Mizoguchi H., Delaney K., et al. Mn3+ in trigonal bipyramidal coordination:a new blue chromophore [J]. Journal of the American Chemical Society,2009,131:17084-17086.
    [11]Simon A., Dronskowski R., Krebs B., et al. The crystal structure of Mn2O7 [J]. Angewandte Chemie International Edition,1987,26:139-140.
    [12]Dronskowski R., Simon A., Miller G, et al. Die kristall-und molekulstruktur von mangan(Ⅶ)-oxid [J]. Zeitschrift fur Anorganische und Allgemeine Chemie,1988,558:7-20.
    [13]王晓峰稀土及过渡族金属氧化物的高温高压助熔剂方法合成及性质研究[D].2007,吉林大学博士学位论文,长春.
    [14]Glemser O., Schroder H. Uber Manganoxyde. Ⅱ. Zur kenntnis des mangan(Ⅶ)-oxyds [J]. Zeitschrift fur Anorganische und Allgemeine Chemie, 1953,271:293-304.
    [15]Beattie I. R., Gilson T. R., Jones P. J. Vapor phase vibrational spectra for Re2O7 and the infrared spectrum of gaseous HReO4 Molecular shapes of Mn2O7, Tc2O7, and Re2O7 [J]. Inorganic Chemistry,1996,35:1301-1304.
    [16]Oswald H. R., Feitknecht W., Wampetich M. J. Crystal data of Mn5Og and Cd2Mn3O8 [J]. Nature,1965,207:72-72.
    [17]Yamamoto N., Kiyama M., Takada T. A new preparation method of Mn5O8 [J]. Japanese Journal of Applied Physics,1973,12:1827-1828.
    [18]Sugawara M., Ohno M., Matsuki K. Novel preparation method of manganese (II) manganese(IV) oxide (Mn2Mn3O8, Mn5O8) by citrate process [J]. Chemistry Letters,1991,20:1465-1468
    [19]Fritsch S., Sarrias J., Rousset A., et al. Low-temperature oxidation of Mn3O4 hausmannite [J]. Materials Research Bulletin,1998,33:1185-1194.
    [20]Punnoose A., Magnone H., Seehra M. S. Synthesis and antiferromagnetism of Mn5O8 [J]. IEEE Transactions on Magnetics,2001,37:2150-2152.
    [21]Klingsberg C., Roy R. J. Solid-solid and solid-vapor reactions and a new phase in the system Mn-O [J]. Journal of the American Ceramic Society, 1960,43:620-626.
    [22]Oswald H. R., Wampetich M. J. Die kristallstrukturen von Mn5O8 und Cd2Mn3O8 [J]. Helvetica Chimica Acta,1967,50:2023-2034.
    [23]Rask J. H., Buseck P. R. Topotactic relations among pyrolusite, manganite, and Mn5O8:A high-resolution transmission electron microscopy investigation [J]. American Mineralogist,1986,71:805-814.
    [24]Azzoni C. B., Mozzati M. C., Galinetto P., et al. Thermal stability and structural transition of metastable Mn5O8:in situ micro-Raman study [J]. Solid State Communications,1999,112:375-378.
    [25]Gao T., Norby P., Krumeich F., et al. Synthesis and properties of layered-structured Mn5O8 nanorods [J]. The Journal of Physical Chemistry C, 2009,114:922-928.
    [26]Grundy A. N., Hallstedt B., Gauckler L. J. Assessment of the Mn-O system [J]. Journal of Phase Equilibrium,2003,24:21-39.
    [27]王晓峰,李光华,褚清新等Mn203单晶的合成、结构表征及磁性研究[J].高等学校化学学报,2007,28:821-823.
    [28]Goodwin A. L., Tucker M. G., Dove M. T., et al. Magnetic structure of MnO at 10 K from total neutron scattering data [J]. Physical Review Letters,2006, 96:047209.
    [29]Jarosch D. Crystal structure refinement and reflectance measurements of hausmannite, Mn3O4 [J]. Mineralogy and Petrology,1987,37:15-23.
    [30]Paris E., Ross Ⅱ C. R., Olijnyk H. Mn3O4 at high pressure:A diamond-anvil cell study and a structural modelling [J]. European Journal of Mineralogy, 1992,4:87-93.
    [31]Liu X., Xu S., Kato K., et al. Pressure-induced phase transition in MN3O4 as investigated by raman spectroscopy [J]. Journal of the Physical Society of Japan,2002,71:2820-2821.
    [32]Joubert J. C., Chenavas J. New compounds from high pressure [J]. Journal of Solid State Chemistry,1979,27:29-39.
    [33]Reid A. F., Ringwood A. E. Newly observed high pressure transformations in Mn3O4, CaAl2O4, and ZrSiO4 [J]. Earth and Planetary Science Letters,1969, 6:205-208.
    [34]Suzuki T., Katsufuji T. Magnetodielectric properties of spin-orbital coupled system Mn3O4 [J]. Physical Review B,2008,77:220402(R).
    [35]冯雄汉 几种常见氧化锰矿物的合成、转化及表面化学性质[D].2003,华中农业大学博士学位论文,武汉.
    [36]吴忠帅,张向东,臧健等Birnessite型锰氧化物的合成研究进展[J].化学通报,2006,69:1-6.
    [37]Post J. E., Veblen D. R. Crystal structure determinations of synthetic soduim, magnesium, and potassium birnessite using Tem and the Rietveld method. [J]. American Mineralogist,1990,75:477-489.
    [38]Chen R., Zavalij P., Whittingham M. S. Hydrothermal synthesis and characterization of KxMnO2-yH2O [J]. Chem. Mater.,1996,8:1275.
    [39]Gaillot A.-C, Flot D., Drits V. A., et al. Structure of synthetic K-rich birnessite obtained by high-temperature decomposition of KMnO4. I. two-layer polytype from 800℃ experiment [J]. Chemistry of Materials,2003, 15:4666-4678.
    [40]Delmas P. C, Fouassier C. Les phases KxMnO2 (x≤1) [J]. Zeitschrift fur Anorganische und Allgemeine Chemie,1976,420:184-192.
    [41]Julien C., Massot M., Baddour-Hadjean R., et al. Raman spectra of birnessite manganese dioxides [J]. Solid State Ionics,2003,159:345-356.
    [42]Muraoka Y., Chiba H., Atou T., et al. Preparation of a-MnO2 with an open tunnel [J]. Journal of Solid State Chemistry,1999,144:136-142.
    [43]Kijima N., Ikeda T., Oikawa K., et al. Crystal structure of an open-tunnel oxide α-MnO2 analyzed by Rietveld refinements and MEM-based pattern fitting [J]. Journal of Solid State Chemistry,2004,177:1258-1267.
    [44]Tanaka Y., Tsuji M. New synthetic method of producing a-manganese oxide for potassium selective adsorbent [J]. Materials Research Bulletin,1994,29: 1183-1191.
    [45]Feng Q., Kento H. Synthesis of Hollandate-type manganese dioxide with H+ form for lithium rechargeable battery [J]. Journal of the Electrochemistry Society,1994,141:135-136.
    [46]Ohzuku T, Kitagawa M, Sawai K Topotactic reduction of a-manganese (di)oxide in nonaqueous lithium cells [J]. Journal of the Electrochemistry Society,1991,138:360-365.
    [47]Nicolas-Tolentino E., Tian Z.-R., Zhou H., et al. Effects of Cu2+ ions on the structure and reactivity of todorokite-and cryptomelane-type manganese oxide octahedral molecular sieves [J]. Chemistry of Materials,1999,11: 1733-1741.
    [48]Thackeray M. M. Manganese oxides for lithium batteries [J]. Progress in Solid State Chemistry,1997,25:1-71.
    [49]Baddour-Hadjean R., Bach S., Smirnov M., et al. Raman investigation of the structural changes in anatase LixTiO2 upon electrochemical lithium insertion [J]. Journal of Raman Spectroscopy,2004,35:577-585.
    [50]Julien C, Massot M., Rangan S., et al. Study of structural defects in y-by Raman spectroscopy [J]. Journal of Raman Spectroscopy,2002,33: 223-228.
    [51]Feng Q., Kanoh H., Miyai Y., et al. Alkali metal ions insertion/extraction reactions with hollandite-type manganese oxide in the aqueous phase [J]. Chemistry of Materials,1995,7:148-153.
    [52]Tsuji M., Tanaka Y. Spectroscopic study of a cryptomelane-type manganic acid exchanged by divalent transition-metal cations [J]. Journal of Materials Research,2001,16:108-144.
    [53]Li L., Pan Y., Chen L., et al. One-dimensional a-MnO2:Trapping chemistry of tunnel structures, structural stability, and magnetic transitions [J]. Journal of Solid State Chemistry,2007,180:2896-2904.
    [54]Hsu Y.-K., Chen Y.-C., Lin Y.-G., et al. Reversible phase transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in stiu Raman spectroscopy [J]. Chemical Communications,2011,47:1252-1254.
    [55]Polverejan M., Villegas J. C., Suib S. L. Higher valency ion substitution into the manganese oxide framework [J]. Journal of the American Chemical Society,2004,126:7774-7775.
    [56]Mingdeng W., et al. Synthesis of single-crystal manganese dioxide nanowires by a soft chemical process [J]. Nanotechnology,2005,16:245.
    [57]Julien C. M., Massot M., Poinsignon C. Lattice vibrations of manganese oxides:Part I. Periodic structures [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2004,60:689-700.
    [58]Gao T., Glerup M., Krumeich R., et al. Microstruceures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers [J]. The Journal of Physical Chemistry C 2008,112:13134-13140.
    [59]Tanaka Y, Tsuji M., Tamaura Y. ESCA and thermodynamic studies of alkali metal ion exchange reactions on an a-MnO2 phase with the tunnel structure [J]. Physical Chemistry Chemical Physics,2000,2:1473-1479.
    [60]Johnson C. S., Thackeray M. M. Ammonia-and lithia-doped manganese dioxide for 3 V lithium batteries [J]. Journal of Power Sources,2001,97-98: 437-442.
    [61]Athouel L., Moser F., Dugas R., et al. Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte [J]. The Journal of Physical Chemistry C,2008,112:7270-7277.
    [62]Wei W., Cui X., Chen W., et al. Phase-controlled synthesis of MnO2 nanocrystals by anodic electrodeposition:implications for high-rate capability electrochemical supercapacitors [J]. The Journal of Physical Chemistry C, 2008,112:15075-15083.
    [63]Rossouw M. H., Liles D. C., Thackeray M. M., et al. Alpha manganese dioxide for lithium batteries:A structural and electrochemical study [J]. Materials Research Bulletin,1992,27:221-230.
    [64]Thackeray M. M., David W. I. F., Bruce P. G., et al. Lithium insertion into manganese spinels [J]. Materials Research Bulletin,1983,18:461-472.
    [65]Johnson C. S., Dees D. W., Mansuetto M. F., et al. Structural and electrochemical studies of a-manganese dioxide (a-MnO2) [J]. Journal of Power Sources,1997,68:570-577.
    [66]焦晓朋轻元素超硬材料的新合成途径[D].2010,吉林大学博士学位论文,长春.
    [67]Ringwood A. E. Composition and petrology of the earth'mantle [M].1975, McGraw-Hill, Inc. U.S.A.,
    [68]Abelson P. H. Experimental technology [J]. Science,1999,283:1263.
    [69]McMillan P. F.Chemistry at high pressure [J]. Chemical Society Reviews, 2006,35:855-857.
    [70]王雁宾地球内部物质物性的原位高温高压研究:大体积压机与同步辐射源的结合[J].地学前缘,2006,13:1-36.
    [71]Irifune T. Application of synchrotron radiation and Kawai-type apparatus to various studies in high-pressure mineral physics [J]. Mineralogical Magazine, 2002,66:769-790.
    [72]Mao H. K., Hemley R. J. New windows on earth and planetary interiors [J]. Mineralogical Magazine,2002,66:791-811.
    [73]Yoshimura M., Byrappa K. Hydrothermal processing of materials:past, present and future [J]. J. Mater. Sci.,2008,43:2085-2103.
    [74]Wang X., Jacobson A. J. Crystal structure of the microporous titanosilicate ETS-10 refined from single crystal X-ray diffraction data [J]. Chemical Communications,1999,973-974.
    [75]Shiraki T., Wakihara T., Sadakata M., et al. Millimeter-sized sodalite single crystals grown under high-temperature, high-pressure hydrothermal conditions [J]. Microporous and Mesoporous Materials,2001,42:229-234.
    [76]Ghobarkar H., Schaf O., Knauth P. Zeolite synthesis by the high-pressure hydrothermal method:synthesis of natural 6-ring zeolites with different void systems [J]. Angewandte Chemie International Edition,2001,40:3831-3833.
    [77]Tasi J. M., Tu P. T., Chan T. S., et al. Synthesis and characterization of open-framework niobium silicates:Rb2(Nb2O4)(Si2O6)·H2O and the dehydrated phase Rb2(Nb2O4)(Si2O6) [J]. Inorganic Chemistry,2008,47: 11223-11227.
    [78]Lin C. H., Chiang R. K., Lii K. H. Synthesis of thermally stable extra-large pore crystalline materials:A uranyl germanate with 12-ring channels [J]. Journal of the American Chemical Society,2009,131:2068-2609.
    [79]Lin C. H., Chen C. S., Shiryaev A. A., et al. K3(U306)(Si207) and Rb3(U3O6)(Ge2O7):A pentavalent-uranium silicate and germanate [J]. Inorganic Chemistry,2008,47:4445-4447.
    [80]Liao C. H., Chang P. C., Kao H. M., et al. Synthesis, crystal structure, and solid-state NMR spectroscopy of a salt-inclusion stannosilicate:Na3FSnSi3O9 [J]. Inorganic Chemistry,2005,44:9335-9339.
    [81]Lee C.-S., Wang S.-L., Lii K.-H. Cs2K(UO)2Si4O12:a mixed-valence uranium(IV,V) silicate [J]. Journal of the American Chemical Society,2009, 131:15116-15117.
    [82]Lee C. S., Liao Y. C., Hsu J. T., et al. Rb2REGaSi4O12 (RE=Y, Eu, Gd, Tb): Luminescent mixed-anion double layer silicates containing chains of edge-sharing REO7 pentagonal bipyramids [J]. Inorganic Chemistry,2008,47: 1910-1912.
    [83]Hung L. I., Wang S. L., Kao H. M., et al. Flux synthesis, crystal structures, and solid-state NMR spectroscopy of two indium silicates containing varied In-0 coordination geometries [J]. Inorganic Chemistry,2007,46:3301-3305.
    [84]Hung L. I., Wang S. L., Chen Y. H., et al. Rb6(InCo)2(Si9O26):A mixed-metal silicate containing 20-membered-ring silicate single layers with a very low Si: O ratio [J]. Inorganic Chemistry,2006,45:2100-2103.
    [85]Chen P. L., Chiang P. Y., Yeh H. C., et al. Synthesis, crystal structure, magnetic and luminescence properties of KEuGe2O6 a europium cyclogermanate containing infinite chains of edge-sharing Eu-O polyhedra [J]. Dalton Transactions,2008,1721-1726.
    [86]Chen C. S., Lee S. F., Lii K. H. K(UO)Si2O6:A pentavalent-uranium silicate [J]. Journal of the American Chemical Society,2005,127:12208-12209.
    [87]Li C. Y, Hsieh C. Y., Lin H. M., et al. High-temperature, high-pressure hydrothermal synthesis, crystal structure, and solid state NMR spectroscopy of a new Vanadium(IV) silicate:Rb2(VO)(Si4O10)·xH2O [J]. Inorganic Chemistry,2002,41:4206-4210.
    [88]Kao H. M., Lii K. H. The first observation of heteronuclear two-bond J-coupling in the solid state:Crystal structure and solid-state NMR spectroscopy of Rb4(NbO)2(Si8O21) [J]. Inorganic Chemistry,2002,41: 5644-5646.
    [89]Hung L. I., Wang S. L., Kao H. M., et al. Hydrothermal synthesis, crystal structure, and solid-state NMR spectroscopy of a new indium silicate: K2In(OH)(Si4O10) [J]. Inorganic Chemistry,2003,42:4057-4061.
    [90]Hung L. I., Wang S. L., Chen C. Y., et al. Rb3In(H2O)Si5O13:A novel indium silicate with a CsSO4-topological-type structure [J]. Inorganic Chemistry, 2005,44:2992-2994.
    [91]Chen C. S., Kao H. M., Lii K. H. K5(UO2)2Si4O12(OH):A uranyl silicate containing chains of four silicate tetrahedra linked by SiO center dot center dot center dot HOSi hydrogen bonds [J]. Inorganic Chemistry,2005,44: 935-940.
    [92]Chen C. S., Chiang R. K., Kao H. M., et al. High-temperature, high-pressure hydrothermal synthesis, crystal structure, and solid-state NMR spectroscopy of Cs2(UO2)(Si2O6) and variable-temperature powder X-ray diffraction study of the hydrate phase Cs2(UO2)(Si2O6)-0.5H2O [J]. Inorganic Chemistry,2005, 44:3914-3918.
    [93]Pitscheider A., Kaindl R., Oeckler O., et al. The crystal structure of π-ErBO3:New single-crystal data for an old problem [J]. Journal of Solid State Chemistry,2011,184:149-153.
    [94]Schilling A., Cantoni M., Guo J. D., et al. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system [J]. Nature,1993,363:56-58.
    [95]Moriwaki Y., Tatsuki T., Tokiwa-Yamamoto Y, et al. High pressure synthesis of HgBa2Ca2Cu3Oy without a precursor [J]. Journal of Materials Science Letters,1997,16:115-116.
    [96]Sleight A. W. Rare earth plumbates with pyrochlore structure [J]. Inorganic Chemistry,1969,8:1807-1808.
    [97]Attfield J. P., Kharlanov A. L., McAllister J. A. Cation effects in doped La2Cu04 superconductors [J]. Nature,1998,394:157-159.
    [98]Long Y. W., Hayashi N., Saito T., et al. Temperature-induced A-B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite [J]. Nature,2009, 458:60-63.
    [99]McMillan P. F. Chemistry of Materials under extreme high pressure high temperature conditions [J]. Chemical Communications,2003,919-923.
    [100]Gurr G. E., Montgomery P. W., Knutson C. D., et al. The crystal structure of trigonal diboron trioxide [J]. Acta Crystallographica,1970, B26:906-915.
    [101]Prewitt C. T., Shannon R. D. Crystal structure of a high-pressure form of B2O3 [J]. Acta Crystallographica,1968, B24:869-874.
    [102]Huppertz H., von der Eltz B. Multianvil high-pressure synthesis of Dy4B6O15: The first oxoborate with edge-sharing BO4 tetrahedra [J]. Journal of the American Chemical Society,2002,124:9376-9377.
    [103]Knyrim J. S., RoeBner F., Jakob S., et al. Formation of edge-sharing BO4 tetrahedra in the high-pressure borate HP-NiB2O4 [J]. Angewandte Chemie International Edition,2007,46:9097-9100.
    [104]Jin S., Cai G., Wang W., et al. Stable oxoborate with edge-sharing BO4 tetrahedra synthesized under ambient pressure [J]. Angewandte Chemie International Edition,2010,49:4967-4970.
    [105]Feng X. H., Tan W. F., Liu F., et al. Synthesis of todorokite at atmospheric pressure [J]. Chemistry of Materials,2004,16:4330-4336.
    [106]Feng Q., Kanoh H., Ooi K. Manganese oxide porous crystals [J]. Journal of Materials Chemistry,1999,9:319-333.
    [107]Jeong Y. U., Manthiram A. Synthesis of NaxMnO2+delta by a reduction of aqueous sodium permanganate with sodium iodide [J]. Journal of Solid State Chemistry,2001,156:331-338.
    [108]Sauvage F., Laffont L., Tarascon J. M., et al. Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2 [J]. Inorganic Chemistry,2007,46:3289-3294.
    [109]Sauvage F., Baudrin E., Tarascon J. M. Study of the potentiometric response towards sodium ions of Nao.44-xMnO2 for the development of selective sodium ion sensors [J]. Sensors and Actuators B,2007,120:638-644.
    [110]Doeff M. M., Richardson T. J., Kepley L. Lithium insertion processes of orthorhombic NaxMnO2-based electrode [J]. Journal of the Electrochemical Society,1996,143:2507-2516.
    [111]Eftekhari A., Kazemad M., Moztarzadeh F. Effect of Na diffusion on the formation of fibrous microcrystals of manganese oxide [J]. Materials Research Bulletin,2005,40:2205-2211.
    [112]Li Y., Wu Y., Formation of Nao.44Mn02 nanowires via stress-induced splitting of birnessite nanosheets [J]. Nano Research,2009,2:54-60.
    [113]Tokura Y. Fundamental features of colossal magnetoresistive manganese oxides. In Tokura Y. (Ed.) Contribution to colossal magnetoresistance oxides, monographs in condensed matter Science[M].1999, Gordon & Breach, London.
    [114]钱逸泰 结晶化学导论[M].2005,中国科学技术大学出版社,合肥.
    [115]施尔畏,陈之战,元如林等水热结晶学[M].2004,科学出版社,北京.
    [116]张克从,陈万春第二章晶体生长动力学.In张克从and张乐潓(Ed.)晶体生长科学与技术[M].1997,科学出版社,北京.
    [117]Cushing B. L., Kolesnichenko V. L., O'Connor C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles [J]. Chemical Reviews, 2004,104:3893-3946.
    [118]Mumme W. G. The structure of Na4Mn4Ti5O18 [J]. Acta Crystallographica, 1968, B24:1114-1120.
    [119]Parant J. P., Olazcuaga R., Devalette M., et al. Sur quelques nouvelles phases de formule NaxMnO2 [J]. Journal of Solid State Chemistry,1971,3:1-11.
    [120]Floros N., Michel C., Hcrvieu M., et al. Calcium insertion in the Na4Mn9O18 tunnel structure:Na1.1Ca1.8MngO18 [J]. Journal of Solid State Chemistry,2001, 162:34-41.
    [121]Armstong A. R., Huang H., Jennings R. A., et al. Lio.44Mn02:an intercalation electrode with a tunnel structure and excellent cyclability [J]. Journal of Materials Chemistry,1998,8:255-259.
    [122]Sheldrick G. M. A short history of SHELX [J]. Acta Crystallographica,2008, A64:112-122.
    [123]Wang X., Li Y. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods [J]. Chemistry-A European Journal,2003,9:300-306.
    [124]Suib S. L. Porous Manganese oxide octahedral molecular sieves and octahedral layered materials [J]. Accounts of Chemical Research,2008,41: 479.
    [125]Oaki Y., Imai H. One-pot synthesis of manganese oxide nanosheets in aqueous solution:chelation-mediated parallel control of reaction and morphology [J]. Angewandte Chemie International Edition,2007,46: 4951-4955.
    [126]Portehault D., Cassaignon S., Baudrin E., et al. Morphology control of cryptomelane type MnO2 nanowires by soft chemistry, growth mechanisms in aqueous medium [J]. Chemistry of Materials,2007,19:5410-5417.
    [127]Zhang X., Yang W., Yang J., et al. Synthesis and characterization of a-MnO2 nanowires:Self-assembly and phase transformation to b-MnO2 microcrystals [J]. Journal of Crystal Growth,2008,310:716-722.
    [128]Tang N., Tian X., Yang C., et al. Facile synthesis of alpha-MnO2 nanostructures for supercapacitors [J]. Materials Research Bulletin,2009,44: 2062-2067.
    [129]Potter R. M., Rossman G. R. The tetravalent manganese oxides:identification, hydration, and structural relationships by infrared spectroscopy[J]. American Mineralogist,1979,64:1199-1218.
    [130]Zhou X., Xue J., Zhou D., et al. Mn valence, magnetic, and electrical properties of LaMnO3+n nanofibers by electrospinning [J]. ACS Applied Materials & Interfaces 2010,2:2689-2693.
    [131]Lee Y., Vogt T., Hriljac J. A., et al. Non-framework cation migration and irreversible pressure-induced hydration in a zeolite [J]. Nature,2002,420: 485.
    [132]Talyzin A. V., Sundqvist B., Szabo T., et al. Pressure-induced insertion of liquid alcohols into graphite oxide structure [J]. Journal of the American Chemical Society,2009,131:18445.
    [133]Loa I., Syassen K., Kremer R. K., et al. Structural properties of NaV2O5 under high pressure. [J]. Physical Review B,1999,60:R6945.
    [134]Perottoni C. A., da Jornada J. A. H. Pressure induced water insertion in the defect pyrochlore NH4NbWO6. [J]. Physical Review Letters,1997,78:2991.
    [135]Gaillot A. C., Lanson B., Drits V. A. Structure of birnessite obtained from decomposition of permanganate under soft hydrothermal conditions.1. chemical and structural evolution as a function of temperature [J]. Chemistry of Materials,2005,17:2959-2975.
    [136]Azuma M., Yoshida H., Saito T., et al. Pressure-induced buckling of spin ladder in SrCu2O3 [J]. Journal of the American Chemical Society,2004,126: 8244.
    [137]Wang L., Ebina Y., Takada K., et al. A new mesopourous manganese oxide pillared with double layers of alumina [J]. Advanced Materials,2004,16: 1412-1416.
    [138]Chen C. H., Crisostomo V. M. B., Li W. N., et al. A designed single-step method for synthesis and structural study of organic-inorganic hybrid materials:well-ordered layered manganese oxide nanocomposites [J]. Journal of the American Chemical Society,2008,130:14390-14391.
    [139]Luo J., Zhang Q., Huang A., et al. Double-aging method for preparation of stabilized Na-buserite and transformations to todorokites incorporated with various metals [J]. Inorganic Chemistry,1999,38:6106-6113.
    [140]Lu Y, Yang L., Wei M., et al. Studies on structure and electrochemical properties of pillared M-MnO2 (M=Ba2+, Sr2+, ZrO2+) [J]. Journal of Solid State Electrochemistry,2007,11:1157-1162.
    [141]Beal E. J., House C. H., Orphan V. J. Manganese-and iron-dependent marine methane oxidation [J]. Science,2009,325:184-187.
    [142]Silvester E., Manceau A., Drits V. A. Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite II. Results from chemical studies and EXAFS spectroscopy [J]. American Mineralogist,1997,82:962.
    [143]Liu Z., Ma R., Ebina Y., et al. Synthesis and delamination of layered manganese oxide nanobelts [J]. Chemistry of Materials,2007,19:6504-6512.
    [144]Ressler T., Brock S. L., Wong J., et al. Multiple-scattering EXAFS analysis of tetraalylammonium manganese oxide colloids [J]. The Journal of Physical Chemistry B,1999,103:6407-6420.
    [145]Herbstein F. H., Ron G., Weissman A. The thermal decomposition of potassium permanganate and related substances. Part I. Chemical aspects [J]. Journal of the Chemical Society A,1971,1821-1826.
    [146]Chen C. C., Golden D. C., Dixon J. B. Transformation of synthetic birnessite to cryptomelane:an electron microscopic study [J]. Clays and Clay Minerals, 1986,34:565-571.
    [147]Rziha T., Gies H., Rius J. Rub-7, a new synthetic manganese oxide structure type with 2x4 tunnel [J]. European Journal of Mineralogy,1996,8:675.
    [148]Ramachandran R., Rashmi Preparation and characterization of manganous magnetic oxide [J]. Journal of Materials Science:Materials in Electronics 2002,13:257-262.
    [149]Tackett R., Lawes G., Melot B. C., et al. Magnetodielectric coupling in Mn3O4 [J]. Physical Review B,2007,76:024409.
    [150]杜洁海,郑学峰,张振宇 一维调制结构的四维空间点阵[J].吉林工业大学学报,1996,26:60-64.
    [151]彭志忠,西门露露,王鲜华调制结构的概念及复结构的概念及实验方法简介[J].岩石矿物学杂志,1986,5:236-245.
    [152]Zakhour-Nakhl M., Claridge J. B., Darriet J., et al. Structure determination of two new incommensurate compounds, Ba1+x[(CuxRh1-x)O3] with x=0.1605 and x=0.1695, using a general method based on the superspace group approach [J]. Journal of the American Chemical Society,2000,122: 1618-1623.
    [153]Vazquez-Olmos A., Redon R., Rodriguez-Gattorno G., et al. One-step synthesis of Mn3O4 nanoparticles:Structural and magnetic study [J]. Journal of Colloid and Interface Science,2005,291:175-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700