一氧化碳水合制低碳醇反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一氧化碳水合制低碳醇过程为工业CO的利用提供了新途径。该方法不仅节省了氢源,而且用普通的过渡元素和主族元素催化剂,避免了对贵金属的依赖。
     本文首先通过对溶剂及活性组份的筛选,发现PbTiO_3催化剂具有较佳的催化反应性。考察了碱金属碳酸盐类助剂和溶剂对反应活性的影响。结果表明,碱金属碳酸盐类助剂作用随溶解度的增加而明显增强,总的甲醇和乙醇的收率顺序为K_2CO_3>Na_2CO_3>Li_2CO_3。溶剂的作用与其碱性有密切关系,强碱性的有机多胺能够有效促进该反应,相对于非极性溶剂的2.0mg.g~(-1).h~(-1),在碱性溶剂中相同催化剂活性最高可达到23.1mg.g~(-1).h~(-1)。提出在碱金属碳酸盐K_2CO_3的作用下可能遵循两步循环反应的反应机理。
     超细催化剂的特殊表面结构和性质也为CO水合制低碳醇反应活性的提高提供了可能。本文首次发现溶胶-凝胶法制备的超细TiO_2催化剂表现出较好的活性。分别用三种不同方法制备了超细TiO_2催化剂,结合TG-DTA、IR、XRD、TEM、XPS等表征技术,对不同方法制备的超细TiO_2催化剂进行了比较。另外还发现TiO_2催化剂的热处理温度对反应的CO转化率影响不明显,但是甲、乙醇的收率却随热处理温度的上升而增加明显,1023K金红石与锐钛矿质量比为9:2的混晶条件下,醇产物达到最高。
     在此基础上首次用溶胶—凝胶法合成组分单一的PbTiO_3超细粒子。催化剂粒子分散性良好,颗粒分布均匀,经统计平均计算的1:1催化剂的样品平均粒径为31.2nm。实验结果表明利用TiO_2调变PbO催化剂,能够使醇产物中乙醇比例上升,副产物CO_2选择性下降。
     对于PbTiO_3催化剂,在反应的还原性气氛中,仍存在催化剂的部分还原,另外还存在K_2CO_3在催化剂表面的聚集,因此必须经过空气焙烧和水洗两步处
    
    一氧化碳水合制低碳醉过程研究
    理才能使Pb五03催化剂的反应性能得到较好恢复。实验数据还表明,这两种处
    理方式次序对催化剂最终性能没有明显影响。同样对于五伍催化剂,经过水洗
    处理,催化剂的反应活性就可以得到较好恢复。
Catalytic conversion of CO and PfcO to alcohols (methanol and ethanol) is a new promising route for the utilization of CO in industry process. Not only the hydrogen energy is saved, but also the catalyst is composed of transition element. So that this rout is independent of the noble metal.
    In the present paper, performance of the solvents and the active composition was studies at first and the PbTiO3 catalyst was found to be the best. Moreover, the effects of alkali metal carbonate promoters and the solvents were investigated at the same time. Experimental results showed that with the increase of the solubility of the alkali carbonate (K2CO3 > Na2CO3 > Li2CO3), the subsequent production of alcohols ranged from 2.0 mg.g-1.h-1 to 23.1 mg.g-1.h-1. The results also suggested that the effect of the solvents on PbTiOs catalyst for catalytic conversion of CO and H2O to alcohols was very sensitive. The catalytic activity was found to increase with the alkalescence of solvents. So the two-step reaction mechanism of direct catalytic conversion of CO and H2O to alcohols is presented that the combination of the carbonate recycle and formate catalytic decomposition results in the final alcohols synthesis.
    Ultrafine catalyst make it possible for the promotion of catalytic activity of alcohols synthesis from catalytic conversion of CO and H2O. For the first tune, it is reported that the ultrafine TiO2 catalyst prepared by sol-gel method has the stable activity. By means of TG-DTA> IR, XRTK TEM and XPS techniques for the characterization of catalysts, different preparation methods were compared.
    
    
    Moreover, the influence of calcining temperature on the reaction performance of the was also investigated. It was found that the STY of MeOH and EtOH increased
    with the calcining temperature and it reached the maximum 1.82mg.m-2.h-1 as the ratio of rutile to anatase is 9:2, while the corresponding conversion of CO did not be effected remarkably.
    On this basis, the ultrafine PbTiOs particles was prepared by the same method (sol-gel). The dispersion and the distribution of particles is very well, the average particles size is 31.2nm. It is found that with the addition of the TiO2, the proportion of ethanol increases and the CO conversion decreases at the same time.
    In the present paper, a new process for the regeneration of catalyst in catalytic conversion of CO and H2O was put forward. For the PbTiO3 catalyst, because of the reduction of catalyst in part and the assembling of K2CO3 on the surface of catalyst, the regeneration process includes two steps: oxidation hi air and washing with water. Experimental results show that the order of the two steps has no effect on the performance of regenerated PbTiO3 catalyst. As for the TiO2, only one washing step is required.
引文
[1] 成思危,当代天然气化学工业的技术发展.天然气化工,1996,21(2):5-11.
    [2] Kirk, R. E., Other, D. E, Encyclopedia of Chemical Technology, 1982, 15, 398.
    [3] Nunan, J. G., Herman, R. G., Klier, K., Higher alcohol and oxygenate synthesis over cesium/copper/zinc oxide/M_2O_3 (M=aluminum, chromium) catalysts. J.Catal., 1989, 116: 222.
    [4] Klier, K., Herman, R. G, Young, C. W., Promotion of methanol synthesis over copper/zinc oxide catalysts by doping with cesium. Prep. Amer. Chem .Soc., Div, Fuel. Chem., 1984, 29(5): 273.
    [5] Calverley, E. M., and Anderson, R. B., Synthesis of higher alcohols over promoted copper catalysts. J.Catal., 1987, 104: 434.
    [6] Nunan, J. G., Bogdan, C. E., Klier, K., et al., Higher alcohol and oxygenate synthesis over cesium-doped copper/zinc oxide catalysts. J. Catal., 1989, 116: 195.
    [7] Smith, K. J., and Anderson, R.B., A chain growth scheme for the higher alcohols synthesis. J. Catal., 1984, 85: 428.
    [8] Elliott,D.J., and Pennella, F., Mechanism of ethanol formation from synthesis gas over copper oxide/zinc oxide/alumina. J. Catal., 1988, 114: 90.
    [9] Elliott, D. J., and Pennella, E, Formation of ketones in the presence of carbon monoxide over cupric oxide/zinc oxide/alumina. J. Catal., 1989, 119: 359.
    [10] Schneider, M., Lochloef, K., and Bock, O., EP, Appl.0152809A2 to SUD CHEMIE AG, 1955, 26: 1.
    [11] Tronconi, E., Cristiani, C., Ferlazzo, N., et al., Synthesis of alcohols from carbon oxides and hydrogen. V. Catalytic behavior of pure chromium, zinc, manganese oxides towards carbon monoxide/hydrogen. Appl.Catal., 1987, 32: 285.
    [12] Forzatti, P., Cristiani, C., Ferlazzo, N., et al,, Synthesis of alcohols from carbon oxides and hydrogen. ⅩⅧ. Preparation chemistry, phase transformations and catalytic behavior of unpromoted manganese-chromium-oxygen systems in the synthesis of alcohols from carbon monoxide and hydrogen. Appl. Catal., 1990, 56: 253.
    [13] Lietti,L., Botta,D., Forzatti,P., et al., Synthesis of alcohols from carbon oxides and
    
    hydrogen. Ⅷ. A temperature-programmed reaction study of butanal on zinc-chromium oxide. J.Catal., 1988, 111: 360.
    [14] Cristiani, C., Forzatti, E, Lietti, L., Pasquon, I., Villa, P. L., Bellotto, M. Preparation chemistry and phase transformations in the Zinc-Manganese-Chromium-Oxygen system. Solid State Ionics, 1989, 112-22.
    [15] Forzatti, P., Tronconi, E., Busca, G, Tittarelli, P. Oxidation of methanol to methyl formate over vanadium-titanium oxide catalysts. Catal. Today, 1987, (1-2): 209-218.
    [16] Cristiani, C., Bellotto. M., Forzatti, P., et al., Synthesis of alcohols from carbon oxides and hydrogen. Ⅶ. Preparation, activation, and catalytic behavior of a zinc-manganese-chromium-potassium oxide catalyst. Appl.Catal., 1988, 111: 120.
    [17] Paggini, A., Sanfilippo, D., Pecci, G., Dybkjaer, I. mplementation of the methanol plus higher alcohols process by Snamprogetti, Enichem, Haldor Topsoe A/S "MAS technology". Symp. Int. Carbur. Alcool., 7th, 62-7. Technip: Paris, Fr. 1986.
    [18] 徐杰,王文祥,苏运来,沉淀法制备Fe—Ti系合成醇催化剂.催化学报,1994,15(6):432.
    [19] Hindermann, J. P., Razzaghi, A., Breault, R., Kieffer, R., Kiennemann, A. Orientation towards alcohols in carbon monoxide, hydrogen reactions on some iron catalysts. React. Kinet. Catal. Lett., 1984,26(3-4): 221-6.
    [20] 林维明,黄传荣,甘世凡,在熔融铁催化剂上合成低碳醇的研究,天然气化工,1987,2:1.
    [21] 徐杰,王文祥,合成低碳醇的熔铁催化剂的研究,天然气化工,1993,18(1):3.
    [22] 卡.巴什基洛夫,兹维兹德金娜,奥尔洛娃,燃料文献译从,第七期,合成醇,科学出版社.北京,1965,62.
    [23] Bonzel, H. E, Krebs, H. J., Surf. Sci., 1981, 109: L527.
    [24] Nunan, John, Klier, Kamil, Young, Chyi-Woei, Himelfarb, Paul B., Herman, Richard G., Promotion of methanol synthesis over copper/zinc oxide catalysts by doping with cesium. J. Chem. Soc., Chem. Commun, 1986, (3): 193-5.
    [25] Chiyama, S., Ohbayashi.Y., Hayasaka, T., and Kawata,N., Production of higher alcohols from synthesis gas over nickel containing catalysts: effects of adding copper and sodium to copre cipitated nickel oxide-titania catalysts. Appl.Catal., 1988, 42: 143.
    [26] Takeuchi,K., Matsuzaki,T., Arakawa, H., and Sugi,Y., Synthesis of ethanol from syngas over cobalt-rhenium-strontium/silica catalysts. Appl. Catal., 1985,18:325.
    
    
    [27] Takeuchi, K., Matsuzaki, T., Arakawa, H., and Sugi, Y., Synthesis of C2-oxygenates from syngas over cobalt catalysts promoted by ruthenium and alkaline earths. Appl.Catal., 1989,48:149.
    [28] Courty, P., Durand, D., Freund, E., and Sugier, A., C1-C6 alcohols from synthesis gas on copper-cobalt catalysts. J.Mol.Catal., 1982, 17:241.
    [29] Cosimo, J.I.D., Apesteguia. C. R., Preparation of ternary copper/cobalt/aluminum catalysts by the amorphous citrate process. Ⅰ. Decomposition of solid amorphous precursors. J. Catal., 1989, 116: 71.
    [30] Sheffer, G.R., Ling, J.S., Effect of preparation parameters on the catalytic nature of potassium promoted copper-cobalt-chromium higher alcohol catalysts. Appl.Catal., 1988, 44: 153.
    [31] Sheffer, G. R., Jacobson, R. A., King, T. S., Chemical nature of alkali-promoted copper-cobalt-chromium oxide higher alcohol catalysts. J.Catal., 1989, 116: 95.
    [32] Sugier, A., Freund, E., US Patent 4,122,110, 1978
    [33] 童琨,刘崇徽,刘金尧,杨光华,原位X射线衍射法研究合成低碳醇的Cu-Co-Al催化体系的活性物相,催化学报,1986,7(2):124.
    [34] 王峰云,张慧,辛勤等,不同方法制备的Cu—Co低碳醇合成催化剂的比较研究Ⅰ.吸附态CO的红外光谱.催化学报,1994,15(2):79.
    [35] Courty, P.. Durand,D.. Freund, E.. et al.. Fr. Patent 2523957. 1982
    [36] 牛玉琴,胡学武,陈正华,合成气制低碳醇Cu—Co尖晶石催化剂的制各与催化活性.燃料化学学报,1994,22(3):252.
    [37] Courty, P., Chaumette, P., Durand, D., et al., Eur Patent 238399, 1986
    [38] Szymanski, R., Travers, C., Chaumette, P., et al, Comparison of the quantitative studies by STEM of hydrated hydroxycarbonates and related mixed oxides catalysts for carbon monoxide hydrogantion to alcohols. Stu.Surf.Sci.Catal., 1987, 37: 739.
    [39] 储伟,A.Kiennemann,熊国兴等,CoCu-Y催化体系上MoO_X的助剂作用和协同效应的研究,分子催化,1993,7(3):219.
    [40] Kiennemann, A., Diagne, C., and Hindevmann, J. P., Higher alcohols synthesis from carbon monoxide+hydrogen on cobalt-copper catalyst: use of probe molecules and chemical trapping in the study of the reaction mechanism. Appl. Catal., 1989, 53: 197.
    [41] Castner, D. G., and Blackadar, R. L., Carbon monoxide hydrogenation over clean and
    
    oxidized rhodium foil and single crystal catalysts. Correlations of catalyst activity, selectivity and surface composition. J.Catal., 1980, 66: 257.
    [42] Watson, P. R., Somorjai, G. A., The formation of oxygen-containing organic molecules by the hydrogenation of carbon monoxide over a lanthanum rhodate catalyst. J. Catal., 1982, 74: 282.
    [43] Ichikawa, M., Cluster-derived supported catalysts and their use. Chemtech., 1982, 674.
    [44] Gysling, H. I., Mommier, J. R., Apai, G., Synthesis, characterization and catalytic activity of lanthanum rhodium oxide (LaRhO3). J.Catal., 1987, 103: 407.
    [45] Bond, G.C., Riehard,D.G., Lanthanium oxide promoted Rhodium/Titania and RhodiumPlatinum/Titania catalysts for alcohols formation from synthesis gas Appl.Catal., 1986, 28: 303.
    [46] Luo, H. Y., Bastein, A. G.T.M., Muldor, A.A.J.P., et al., Appl.Catal., 1988,35: 241.
    [47] Quarderer, G. J., AICHE Spring National Metting, New Orleans., 1986
    [48] Youchang, X., Naasz, B. M., Somorjai, G. A., Alcohol synthesis from CO and H_2 over Molybdeum sulfide --The effect of pressure and promotion by potassium carbonate. Appl. Catal., 1986, 27: 233.
    [49] Hakki, A., AICHE Spring National Metting, New Orleans., 1986
    [50] Tatsumi, T., Fujimoto, K., Tominaga, H. Proe. Bifunctional and hybrid catalysts for selective Fiseher-Tropsch synthesis, Int. Conf. Coal Sci., Pergamon: Sydney, Australia. 1985: 323-6.
    [51] Tatsumi, T., Muramatsu, A., Yokota, K., Tominaga, H., Active species and mechanism for mixed alcohol synthesis over silica-supported molybdenum catalysts.Stud. Surf. Sci. Catal., 36(Methane Convers.), 1988: 219-28.
    [52] Tronconi, E., Cristiani, C., Ferlazzo, N., Forzatti, P., Villa, P. L., Pasquon, I., Synthesis of alcohols from carbon oxides and hydrogen. V. Catalytic behavior of pure chromium, zinc, manganese oxides towards carbon monoxide/hydrogen. Appl. Catal., 1987, (1-2): 285-92.
    [53] Inoue, M., Inoue, M. B., Cruz-Vazquez, C., Mizuno, M., Asaji, T., Prabhumirashi, L. S., Nakamura, D. Electrical properties, proton NMR and ESR of TTT-and TMTSF-copper complexes. Synth. Met., 1988, 27(3-4), B151-B156.
    [54] Lietti, L., Tronconi, E., Forzatti, P., Pasquon, I., Synthesis of alcohols from carbon oxides and hydrogen. ⅩⅥ. Reactivity of mixed zinc-chromium oxide towards linear C4
    
    oxygenated molecules by the TPSR method. Stud. Surf. Sci. Catal., 1989:581-9.
    [55] 魏双绍,国外合成气混合醇的催化剂及工艺改进,天然气化工,1987,6:18.
    [56] Lietti, L., Botta, D., Forzatti, P., Mantica, E., Tronconi, E., Pasquon, I. Synthesis of alcohols from carbon oxides and hydrogen. Ⅷ. A temperature-programmed reaction study of butanal on zinc-chromium oxide. J. Catal., 1988, 111(2): 360-73.
    [57] Mross, W. D., Alkali doping in heterogeneous catalysis. Catalysis. Rev., 1983, 25: 591.
    [58] M.,Ichikwa, T.Fuku.Shima, and K.Shika Kura, Pro.of 8th Int.Cong.Catal., Berlin, Germany, 1984, 11: 69-80.
    [59] P. R. Watson, and G. A. Somorjai, J.Catal., 1981, 72: 347.
    [60] Isogai,Y., Okawa, T., Hokashi,M., et al., Ethanol, JP 61,282,329, 1986
    [61] Sapienza, R.S., Slegeir, W.A., Goldberg,R.I., Catalysts for the production of hydrocarbons from carbon monoxide and water. US H243, 1987
    [62] Rathke J W, Klinger R J, Heiberger J J, Catalyst for producing lower alcohols. US 4,656, 152,1987.
    [63] Klinger, R.J., and Rathke,J.W., J.Am.Chem.Soc., Catalytic Methanol Synthesis from Carbon Monoxide and Water. 1984, 106: 7650-7652.
    [64] N.Ichinose, et al, Surperfine Particle Technology, Springer-Verlag, 1988
    [65] S.C.Davis, K.J.Klabunde, Unsupported small metal particles: preparation, reactivity, and characterization. Chem.Rev., 1982, 82:153
    [66] Zi Yi Zhong, Qi Liang, Jie Qi, et al, Preparation of nanometer perovskite-type complex oxide LaMnO_3 and catalytic combustion of methane on it. Chin. Chem. Lett. 1995, 6(2): 167
    [67] M. Devinder, K. Atsushi, G. Nandiata, Fiseher-Tropsch synthesis catalyzed by ultrafine particles of iron cessation of water-gas shift activity. J. Chem .Soc. Chem. Commun, 1994, 7:795
    [68] Yining Fan, Wenxing Kuang and Yi Chen, Selective oxidation of toluene over the ultrafine composite Molybdenum-Cerium oxide particles. Chem. Lett., 1997, 231
    [69] J.L.Carter, J.A.Cusumano, and J.H.Sinfelt, Catalysis over supported metals. V The effect of crystallite size on the catalytic activity of nickel. J. Phy.Chem., 1966,70: 2257.
    [70] 李先国,钟炳,王琴,铁基超细粒子催化剂的F—T反应性能研究Ⅱ.制备参数的影响.燃料化学学报,1994,22(1):16
    
    
    [71]李先国,钟炳,王琴,铁基超细粒子催化剂的F—T反应性能研究Ⅲ.反应条件的影响、稳定性及硫中毒.燃料化学学报,1994,22(1):22
    [72]F. Zidan, G.Pajonk, J.E.German, et al, Kinetic studies and mechanism of the reaction of propylene with nitric oxide for acrylonitrile synthesis in the presence of nickel oxide on Aluminium catalysis. J. Catal., 1978,52(1):133.
    [73]S.Abouarnadasse, G.M.Pajonk, and S.J.Teichner, Supported effects in the catalytic nitroxidation of toluene into benzonitrile on nickel oxide based catalysts. Appl. Catal.,1985,16(2):237
    [74]Vorkapic Danijela, Matsoukas Themis. Effect of temperature and alcohols in the preparation of titania nanoparticles from alkoxides. J. Am. Ceram. Soc., 1998, 81(11): 2815.
    [75]Chen Jinyuan, Gao Lian, Huang Junhua, etal., Preparation of nanosized titania powder via the controlled hydrolysis of titanium alkoxide. J. Mater Sci., 1996, 31: 3497.
    [76]Bacsa Revathi R, Gratzel Micheal., Ruffle formation in hydrothermally crystallized nanosized titania. J. Am. Ceram. Soc., 1996,79(8):2185.
    [77]Park Hong Kyu, Kim Do Kyung, Kim Chong Hee., Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl_4. J. Am. Ceram. Soc., 1997, 80(3):742.
    [78]施利毅,陈爱平,朱以华,李春忠,房鼎业,掺铝对气相合成TiO_2超细粒子形态的影响.化学反应工程与工艺,1999,2:213-217.
    [79]施利毅,钱建芳,张剑平,气相氧化法制备超细TiO_2粒子的研究进展.材料导报,1998,6:23-26.
    [80]曹亚安,丁兰,马颖,管自生,谢腾峰,张听彤 等,TiO_2纳米粒子膜的表面态性质对光催化活性的影响.高等学校化学学报,1999,11:1787-1798.
    [81]S.J.Tauster, S.C.Fung, and R.L.Garten. Strong Metal-Support Interactions. Group8 Noble Metals Supported on TiO_2. J. Am. Chem. Soc.,1987,1001: 170-175.
    [82]崔小明 新型化工材料—超微细二氧化钛.化学工程师,1996,5:39-41.
    [83]朱永法,张利,高翀,姚文清,曹立礼,TiCl_4溶胶凝胶法制备TiO_2纳米粉体.物理化学学报,1999,9:784-788.
    [84]朱永法,等用TiCl_4醇解法制备TiO_2纳米粉体的方法.中国专利:126511A,1999,08-25.
    
    
    [85]张敬畅,曹维良,于定新,石锦华,窦正仓,超临界流体干燥法制备纳米TiO_2的研究.无机材料学报,1999,1:29-35.
    [86]董国利,高荫本,陈诵英,纳米级TiO_2的制备研究IPH值的影响.燃料化学学报,1998,263:225-229.
    [87]董国利,高荫本,陈诵英,纳米级TiO_2的制备研究Ⅱ絮凝剂及其浓度的影响.无机材料学报,1998,143:327-332.
    [88]董国利,高荫本,陈诵英,纳米级TiO_2的制备研究Ⅲ成胶温度、钛盐溶液、浓度、老化时间的影响.分子催化,1998,126:471-474.
    [89]李青莲PTC陶瓷用二氧化钛超细粉料制备条件的研究.陕西化工,1998,4:7-10.
    [90]Okuyama K. etal. Production of Ultra fine Metal Oxide Aerosol Particles by Thermal Decomposition of Metal Alkoxide Vapors. AICHE Journal, 1986, 3212: 2010-2019.
    [91]1977, 176:1697-1698.
    [92]祖庸,李晓娥,卫志贤,超细TiO_2的合成研究—溶胶-凝胶法.西北大学学报自然科学版,1998,1:51-56.
    [93]李晓娥,祖庸,超细TiO_2的合成研究.化工时刊,1997,3:3-6.
    [94]李大成,周大利,陈朝珍,胡鸿飞,钛乙醇盐合成及其水解制备TiO_2微粉的研究.功能材料,1995,263:278-282.
    [95]王浚,高濂,宋哲,纳米TiO_2的光学特性及烧结行为.无机材料学报,1999,141:170-174.
    [96]赵文宽,方佑龄.董庆华,用高温热水解法制备高活性TiO_2纳米微晶光催化剂.物理化学学报,1998,145:424-428.
    [97]Williaml. Olson, Williaml E. Liss, Production of Monodisperse Titania by Titanium Alkoxide Hydrolysis. USP: 4732750, 1988-03-22.
    [98]西井重一,等酸化微粒子制造方法.公开特许公报,平1-133939平成1年1989-5-26.
    [99]Rice. Gary W., Laser-driven Pyrolysis: synthesis of TiO_2 from Titanium Isopropoxide.J. Am. Ceram.Soci., 1987, 705: C117-120.
    [100]杨隽,许定刊,张启超,等溶胶-凝胶法制备TiO_2微粉体.中国粉体技术,1999,55:28-30.
    
    
    [101]赵敬哲,王子忱,王莉玮,薛丽晶,等超细多孔TiO_2的制备及机理研究.高等学校化学学报,1999,201:115-118.
    [102]昝菱;钟家柽,罗其荣,黄玲:纳米TiO_2制备过程中的若干影响因素.无机材料报,1999,142:264-270.
    [103]任莉,祖庸,均匀沉淀法制备纳米TiO_2,96中国材料研究会论文集,北京:化学工业出版社,1997.
    [104]陈代荣,孟祥建,李博,孙思修,偏钛酸作前驱体水热合成TiO_2微粉.无机材料学报,1997,121:110-114.
    [105]高荣杰,王之昌,TiO_2超微粒子的制备及相转位动力学.无机材料学报,1997,124:599-603.
    [106]陈士仁,崔雄,颜琦,TiCl_3氧化烧结制备纳米材料。中国有色金属学报,1998,82:250-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700