原发性甲状旁腺功能亢进症的临床资料分析及相应的分子生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     原发性甲状旁腺功能亢进(primary hyperparathyroidism, PHPT)是由于甲状旁腺病变使甲状旁腺激素(parathyroid hormone, PTH)合成和分泌过多,造成血清PTH升高和钙磷代谢紊乱。随着医学的发展和筛查的推广,目前本病的发现率呈明显上升的趋势,尤其是被诊断为无症状PHPT病人也越来越多。但由于本病临床表现复杂多样,加上广大医务人员对本病的认识相对缺乏,致使对本病的发现率较低,误诊率偏高,一方面使患者遭受长期的病痛折磨,甚至最终使部分患者致残;另一方面也因长期就医,给患者造成很大的经济负担和医疗资源浪费。甲状旁腺癌是引起PHPT的重要原因之一,大多数甲状旁腺癌可引起严重的临床症状。然而,甲状旁腺癌的术前诊断非常困难,即使组织病理学手段也经常很难鉴别甲状旁腺癌与良性肿瘤,由此也给后期治疗带来很大困难和挑战。另外区别认识甲状旁腺癌术后容易局部复发和转移的恶性生物学行为仍然是治疗本病的一个关键,但是目前关于PHPT尤其是甲状旁腺癌的研究不多。本研究结合我院大量的病例和临床病理学及随访资料,在全面分析的基础上进行PHPT基因表达谱的分子生物学研究,争取通过本研究寻找用于可能有助于甲状旁腺癌诊断和鉴别诊断以及判断复发预后的相关基因。
     目的:
     1.分析北京协和医院外科诊治PHPT的临床病理资料,揭示不同年代和不同年龄段的PHPT病人之间临床病理的变化情况,并探讨不同病理类型PHPT之间的差异。
     2.通过基因表达谱筛选不同病理类型PHPT之间的差异基因,对差异基因进行分子生物学验证研究,寻找用于甲状旁腺癌临床诊断和鉴别诊断的相关基因。
     3.研究候选差异基因与甲状旁腺癌病人临床病理特点及复发预后之间的关系,为甲状旁腺癌的复发预后判断和寻找治疗靶点提供理论基础和依据。
     方法
     1.回顾性分析了1975年1月到2013年6月之间在中国医学科学院北京协和医院进行外科诊治的临床资料完整的490例PHPT病人,统计分析该疾病的人口性别特征、临床生化特点、诊断及外科治疗方面的情况,从这些方面对比不同年代和不同年龄段病例临床病理特点的变化情况;并进一步将不同病理分类的PHPT的病人做比较,分析有关临床生化指标的差异情况及原因。
     2.将组织标本分为正常甲状旁腺组,甲状旁腺增生组,甲状旁腺腺瘤组,不典型腺瘤组和甲状旁腺癌组,在此基础上进行基因表达谱筛查研究,进一步从基因功能和信号通路方面利用Go-analysis和Pathway-analysis进行分析,筛选出甲状旁腺良恶性肿瘤的差异基因,构建目标差异基因(参与显著性GO和显著性Pathway的基因)的信号转导网络图(Signal-Net),最后筛选出关键候选差异基因。将组织标本分为甲状旁腺癌组织和甲状旁腺良性肿瘤(由甲状旁腺腺瘤、增生和不典型腺瘤组成)两组,首先利用qRT-PCR方法验证已筛选出的候选差异基因的表达情况。再对甲状旁腺癌和甲状旁腺良性肿瘤组织切片进行候选差异基因免疫组化染色,利用免疫组化对候选基因进行验证。最后收集甲状旁腺癌和甲状旁腺良性肿瘤病人标本,提取组织标本蛋白,对候选差异基因进行Western-blot验证。
     3.选取甲状旁腺癌组织切片;利用免疫组化分析甲状旁腺癌标本中的候选差异基因表达变化。将候选差异基因的表达改变与甲状旁腺癌病人的临床病理学特征及随访情况进行统计学相关分析,确定候选基因表达改变与甲状旁腺癌的哪些临床和病理指标相关,进一步研究这些基因的表达与甲状旁腺癌复发及预后之间的意义。
     结果
     1.第一部分结果:
     (1)PHPT病例随着时间推移明显增加,尤其是从2010年后明显增多。
     (2)病例以女性为主,男女之比约为1:2.40。将>50岁和≤50岁的病例相比,两组的性别之间存在显著差异,>50岁女性病例数明显增加。
     (3)将2010年以前和以后两组病例的病程相比,2010年以后病程明显缩短。
     (4)将2010年以前和以后两组病例的临床表现相比,混合型的比例明显下降,肾型和无症状型的比例明显上升,各组间均有显著性差异。
     (5)入院时PTH水平与入院时血钙、ALP、肌酐及肿瘤最大直径呈明显正相关:血钙与ALP、血肌酐、肿瘤最大直径及术后血钙呈明显正相关。
     (6)将不同病理类型组之间的临床生化指标进行比较,结果显示癌组和其他组相比,年龄偏小,病程相对较长。在术前和术后血PTH、术前和术后血钙、血肌酐、肿瘤最大直径及肿瘤体积方面,各组之间存在显著性差异。癌组和其他组相比,血PTH、血钙,肿瘤大小和血肌酐的均值明显升高。
     2.第二部分结果:
     (1)通过对PHPT组织标本进行基因表达谱分析,Go analysis和Pathway-analysis,然后绘制了差异基因的Signal-net网络图,选取出4个核心差异基因,分别为CD24, HMOX1, VCAM1和KCNA3基因。
     (2) RT-PCR验证结果显示:CD24在甲状旁腺癌和甲状旁腺腺瘤组织中的表达水平高于其他组织,尤其是在甲状旁腺癌组织中更高。HMOX1在甲状旁腺癌和不典型甲状旁腺腺瘤组织中的表达水平高于其他组织,在甲状旁腺癌组表达水平更高。VCAM1在甲状旁腺癌和不典型甲状旁腺腺瘤中的表达水平高于其他组织,但在不典型甲状旁腺腺瘤中的表达水平更高。KCNA3在甲状旁腺癌组织的表达水平明显高于其他组织。
     (3)免疫组化验证结果显示:CD24在甲状旁腺癌中的表达明显高于其他组织,主要表达于细胞核,部分胞浆可见阳性染色。HMOX1在甲状旁腺癌中的表达较其他组织高,主要表达于细胞浆,胞核也有部分表达。VCAM1在甲状旁腺癌和增生组织中的表达均明显强于腺瘤和不典型腺瘤组织,主要表达于细胞浆,部分胞核可见阳性染色。KCNA3在甲状旁腺癌和不典型腺瘤组组织中的表达强于其他组织,主要表达于细胞核。
     (4) Western-blotting结果显示:CD24在不同组织中均有表达,在甲状旁腺癌和腺瘤组织中的表达水平明显高于其他组织。HMOX1在所有组织中表达均较弱,在甲状旁腺不典型腺瘤中的表达较其他组织稍强。VCAM1在甲状旁腺癌和增生组织中表达明显强于其他组织,而在癌组织中的表达更为显著。KCNA3在甲状旁腺增生,不典型腺瘤和癌组织中表达高于其他组织,而在不典型腺瘤组织中的表达相对更明显。
     3.第三部分结果:
     (1)在甲状旁腺癌组织中,CD24的蛋白表达与术后首次复发时间相关(P=0.043);VCAM1的蛋白表达水平与复发次数明显相关(P=0.006); HMOX1的蛋白表达不仅与术后首次复发时间(P=0.015)和复发次数(P=0.038)明显相关,而且与肿瘤直径大小也明显相关(P=0.002);但KCNA3的蛋白表达与临床病理特点无明显相关性。
     (2)通过生存分析也发现,HMOX1的表达与患者的总生存期和无病生存期均明显相关(P=0.026和P=0.022)。VCAM1的表达与患者的总生存期也明显相关(P=0.047),而VCAM1表达与患者无病生存时间无明显相关(P=0.243)。
     结论
     1.我国的PHPT的发病率和发现率明显上升,以女性为主,为本病高发人群年龄大于50岁。2010年以前和以后两组病例相比,2010年以后病程明显缩短,混合型的比例明显下降,肾型和无症状型的比例明显上升。癌组和良性肿瘤组相比,趋向于年轻化,在血PTH、血钙、血肌酐、肿瘤最大直径及肿瘤体积指标方面存在显著性差异。
     2.首次通过基因表达谱技术对中国人群PHPT进行研究,筛选出CD24, HMOX-1, VCAM-1和KCNA3候选差异基因。CD24, HMOX-1, VCAM-1和KCNA3在甲状旁腺癌组织中表达较其他组织高,可能对甲状旁腺癌的诊断及甲状旁腺良恶性肿瘤的鉴别诊断具有重要作用。
     3. CD24, HMOX-1和VCAM-1可作为判断甲状旁腺癌术后复发的生物学指标,HMOX-1和VCAM-1与甲状旁腺癌的预后有一定关系,有望发展为甲状旁腺癌个体化治疗的潜在靶点。
Background
     primary hyperparathyroidism (PHPT) is characterized by an increased secretion of parathyroid hormone (PTH) together with hypercalcemia caused by the increase of functional parathyroid tissue due to tumor or hyperplasia. With the medical development, this disease was increasing. Most patients in the developed world are now diagnosed on routine screening at an asymptomatic stage. Because of the clinical manifestation diversity and lack of understanding, the misdiagnostic condition of this disease often occurs, which resulted in patients suffering and high medical costs. Parathyroid cancer can cause the severe clinical symptoms and is an important cause of death in the group of patients with PHPT. However, parathyroid tumors are heterogeneous and the diagnosis of parathyroid tumor subtypes remains challenging. The histopathological diagnosis of parathyroid carcinoma can be a problem. Differentiation of parathyroid carcinoma from parathyroid adenoma especially atypical adenoma is very difficult in some cases Once diagnosed, parathyroid carcinoma is usually related with a high incidence of local recurrence and distant metastasis. On the basis of our hospital patients, we performed the gene expression profiles and molecular biology study of PHPT.
     Objective:
     1.To analyze the clinical characteristics of PHPT patients diagnosed in Peking Union Medical College Hospital from1975to2013. To investigate the change of PHPT clinical manifestation in different periods, age and pathological classification.
     2. To screen the differential genes between benign and malignant parathyroid tumor by gene expression profiles and validate these genes through modern molecular biology techniques. Then to find the genes used for the diagnosis of parathyroid cancer.
     3. To study the relevance between candidate genes and the clinicopathological features of patients in parathyroid cancer and provide the theoretical supports for the recurrence and prognosis of this disease.
     Methods:
     1. We conducted a retrospective study in Peking Union Medical College Hospital in China.490patients who were diagnosed with PHPT between January1975and June2010were enrolled in this study. All patients underwent operations and possessed complete medical datas. Medical records of patients were systematically reviewed, including demographic information, clinical and biological data, surgical and postsurgical data. The changes in different period, age and pathological classification were analyzed.
     2.We performed gene expression profiles study between normal parathyroid and parathyroid tumors including parathyroid hyperplasia, adenoma, atypical adenoma and cancer. Then the differential genes were analyzed through Go-analysis and Pathway-analysis. The candidate genes including CD24, HMOX1, VCAM1and KCNA3were selected through the constructed signal-net. Firstly mRNA level of these genes were examined by RT-PCR technique to evaluate the expression of CD24, HMOX1, VCAM1and KCNA3in normal parathyroid and parathyroid tumors tissue. Then immunohistochemical staining and western blotting were applied to evaluate these genes.
     3. Expression of CD24, HMOX1, VCAM1and KCNA3in parathyroid cancer tissues was investigated by immunohistochemistry staining; the association between CD24, HMOX1, VCAM1, KCNA3and clinical characteristics of parathyroid cancer was analyzed; the relationship between these genes and prognosis of parathyroid cancer was studied by statistical software.
     Result
     1. The results of first part
     (1) PHPT patents with surgical therapy was increasing and especially obviously after2010.
     (2) On the whole most patients are female (2.40:1). Compared patients over50years with that below50years, it is mostly seen in people over50years.
     (3) Compared patients before2010with that after2010, the time from onset of symptoms to diagnosis was obviously shorter.
     (4) Compared clinical manifestation before2010with that after2010, patients with mixed type was significantly decreasing, patients with renal and asymptomatic type were increasing.
     (5) Preoperative PTH level was positively correlated to preoperative serum calcium, ALP, serum creatinine and tumor size of patients, but was negatively correlated to postoperative serum calcium. Serum calcium was positively associated with ALP, serum creatinine, tumor size and postoperative serum calcium.
     (6) Compared with different pathological tumors, the results showed that PTH, serum calcium, serum creatinine and tumor size of patients in cancer group were higher than those in others groups although the age of patients in cancer group was more young.
     2. The results of second part
     (1) CD24, HMOX1, VCAM1and KCNA3genes were indentified according to gene expression profiles, go-analysis, pathway-analysis and signal-net.
     (2) RT-PCR experiment showed the following results. mRNA level of CD24was higher in parathyroid cancer and adenoma tissue than other tissue and especially higher in parathyroid cancer tissue. mRNA level of HMOX1and VCAM1were both higher in parathyroid cancer and atypical adenoma tissue than other tissue and HMOXlwas especially higher in parathyroid cancer tissue but VCAM1was higher in atypical adenoma. mRNA level of KCNA3was higher in parathyroid cancer tissue than other tissue.
     (3) Immunohistochemical staining confirmed the following results. CD24positive expression was located in nucleus and partly cytoplasm; CD24expression was.higher in parathyroid cancer tissue than other tissue. HMOX1positive expression was located in cytoplasm and partly nucleus; HMOX1expression was also.higher in parathyroid cancer tissue than other tissue. VCAM1positive expression was located in cytoplasm and partly nucleus; VCAM1expression was higher not only.in parathyroid cancer tissue but also in parathyroid hyperplasia tissue. KCNA3positive expression was located in nucleus; KCNA3expression was both higher.in parathyroid cancer and atypical adenoma.
     (3) Western blotting confirmed the following results. CD24expression was.significantly higher in parathyroid cancer tissue than other tissue. HMOX1expression was. higher in parathyroid atypical adenoma tissue than other tissue. VCAM1expression was both higher.in parathyroid cancer tissue and hyperplasia tissue, especially higher in parathyroid cancer tissue. KCNA3expression was higher.in parathyroid cancer tissue, atypical adenoma and hyperplasia tissue, but higher in atypical adenoma tissue.
     3. The results of third part
     (1) There was a relationship between high expression of CD24and the primary recurrence time after surgical operation. High expression of VCAM1was the recurrence times. High expression of HMOX1was associated not only with the primary recurrence time and recurrence times, but also with tumor size. But there was no relationship between high expression of KCNA3and clinicalpathological factors.
     (2) Kaplan-Meier analysis showed that expression of HMOX1was significantly associated with the overall and disease-free survival time of patients. It was also showed that expression of VCAM1was only related to the overall survival time of patients.
     Conclusion
     1. PHPT patents with surgical therapy was obviously increasing. On the whole most patients are female. It is mostly seen in people over50years.Compared patients before2010with that after2010, the time from onset of symptoms to diagnosis was obviously shorter, patients with mixed type was significantly decreasing and patients with renal and asymptomatic type were increasing. Compared with different pathological tumors, the results showed that PTH, serum calcium, serum creatinine and tumor size of patients in cancer group were higher than those in others groups although the age of patients in cancer group was more young.
     2. CD24, HMOX1, VCAM1and KCNA3genes were selected by gene expression profiles. Expression of CD24, HMOX1, VCAM1and KCNA3was higher in parathyroid cancer tissue than that in other parathyroid tissue. These genes might be useful for the diagnosis of parathyroid cancer and the differentiated diagnosis of parathyroid tumors.
     3. CD24, HMOX1, VCAM1and KCNA3can provide the theoretical basis for the recurrence and prognosis of parathyroid cancer. CD24, HMOX1, VCAM1and KCNA3may become a promising tool for early monitoring and therapy of parathyroid cancer.
引文
1. Wermers RA, Khosla S, Atkinson EJ et al. Incidence of primary hyperparathyroidism in Rochester, Minnesota,1993-2001:an update on the changing epidemiology of the disease. J Bone Miner Res 2006; 21: 171-177.
    2. Pallan S, Rahman MO, Khan AA. Diagnosis and management of primary hyperparathyroidism. BMJ 2012; 344:e1013.
    3. Khan A, Bilezikian J. Primary hyperparathyroidism:pathophysiology and impact on bone. CMAJ 2000; 163:184-187.
    4. Phitayakorn R, McHenry CR. Incidence and location of ectopic abnormal parathyroid glands. Am J Surg 2006; 191:418-423.
    5. Consensus Development Task Force on D, Management of Asymptomatic Primary H. Asymptomatic primary hyperparathyroidism:standards and guidelines for diagnosis and management in Canada: Consensus Development Task Force on Diagnosis and Management of Asymptomatic Primary Hyperparathyroidism position paper. Endocr Pract 2003; 9:400-405.
    6. Gasser RW. Clinical aspects of primary hyperparathyroidism:clinical manifestations, diagnosis, and therapy. Wien Med Wochenschr 2013; 163:397-402.
    7. Marcocci C, Cetani F. Clinical practice. Primary hyperparathyroidism. N Engl J Med 2011; 365: 2389-2397.
    8. Cusano NE, Silverberg SJ, Bilezikian JP. Normocalcemic primary hyperparathyroidism. J Clin Densitom 2013; 16:33-39.
    9. Eastell R, Arnold A, Brandi ML et al. Diagnosis of asymptomatic primary hyperparathyroidism: proceedings of the third international workshop. J Clin Endocrinol Metab 2009; 94:340-350.
    10. Al-Azem H, Khan A. Primary hyperparathyroidism. CMAJ 2011; 183:E685-689.
    11. Suh JM, Cronan JJ, Monchik JM. Primary hyperparathyroidism:is there an increased prevalence of renal stone disease? AJR Am J Roentgenol 2008; 191:908-911.
    12. Cheung K, Wang TS, Farrokhyar F et al. A meta-analysis of preoperative localization techniques for patients with primary hyperparathyroidism. Ann Surg Oncol 2012; 19:577-583.
    13. Kelly HR, Hamberg LM, Hunter GJ.4D-CT for Preoperative Localization of Abnormal Parathyroid Glands in Patients with Hyperparathyroidism:Accuracy and Ability to Stratify Patients by Unilateral vs Bilateral Disease in Surgery-Naive and Re-exploration Patients. AJNR Am J Neuroradiol 2013.
    14. Locchi F, Cavalli T, Giudici F et al. Intraoperative PTH monitoring:a new approach based on the identification of the "true" time origin of the decay curve. Endocr J 2013.
    15. Bilezikian JP, Khan AA, Potts JT, Jr., Third International Workshop on the Management of Asymptomatic Primary H. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the third international workshop. J Clin Endocrinol Metab 2009; 94:335-339.
    16. Ambrogini E, Cetani F, Cianferotti L et al. Surgery or surveillance for mild asymptomatic primary hyperparathyroidism:a prospective, randomized clinical trial. J Clin Endocrinol Metab 2007; 92: 3114-3121.
    17. Bollerslev J, Jansson S, Mollerup CL et al. Medical observation, compared with parathyroidectomy, for asymptomatic primary hyperparathyroidism:a prospective, randomized trial. J Clin Endocrinol Metab 2007; 92:1687-1692.
    18. Agrawal S, Kuvshinoff BW, Khoury T et al. CD24 expression is an independent prognostic marker in cholangiocarcinoma. J Gastrointest Surg 2007; 11:445-451.
    19. Hou R, Manwaring LP, Moley JF, Whelan A. A novel missense mutation in the MEN1 gene in a patient with multiple endocrine neoplasia type 1. Endocr Pract 2011; 17:e63-67.
    20. Davenport C, Agha A. The role of menin in parathyroid tumorigenesis. Adv Exp Med Biol 2009; 668:
    21. Yu D, Nagamura Y, Shimazu S et al. Caspase 8 and menin expressions are not correlated in human parathyroid tumors. Endocr J 2010; 57:825-832.
    22. Buchwald PC, Akerstrom G, Westin G. Reduced p18INK4c, p21CIP1/WAF1 and p27KIP1 mRNA levels in tumours of primary and secondary hyperparathyroidism. Clin Endocrinol (Oxf) 2004; 60: 389-393.
    23. Nagamura Y, Yamazaki M, Shimazu S et al. A novel splice site mutation of the MEN1 gene identified in a patient with primary hyperparathyroidism. Endocr J 2012; 59:523-530.
    24. Motokura T, Bloom T, Kim HG et al. A novel cyclin encoded by a bell-linked candidate oncogene. Nature 1991; 350:512-515.
    25. Erickson LA, Jalal SM, Harwood A et al. Analysis of parathyroid neoplasms by interphase fluorescence in situ hybridization. Am J Surg Pathol 2004; 28:578-584.
    26. Westin G, Bjorklund P, Akerstrom G. Molecular genetics of parathyroid disease. World J Surg 2009; 33:2224-2233.
    27. Cetani F, Pardi E, Viacava P et al. A reappraisal of the Rbl gene abnormalities in the diagnosis of parathyroid cancer. Clin Endocrinol (Oxf) 2004; 60:99-106.
    28. Imanishi Y, Hosokawa Y, Yoshimoto K et al. Primary hyperparathyroidism caused by parathyroid-targeted overexpression of cyclin D1 in transgenic mice. J Clin Invest 2001; 107:1093-1102.
    29. Carpten JD, Robbins CM, Villablanca A et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 2002; 32:676-680.
    30. Carman R, Jr., Snyder J, Levin R. Parathyroid carcinoma:a rare case report. J Clin Oncol 2011; 29: e754-755.
    31. Rozenblatt-Rosen O, Hughes CM, Nannepaga SJ et al. The parafibromin tumor suppressor protein is part of a human Pafl complex. Mol Cell Biol 2005; 25:612-620.
    32. Panicker LM, Zhang JH, Dagur PK et al. Defective nucleolar localization and dominant interfering properties of a parafibromin L95P missense mutant causing the hyperparathyroidism-jaw tumor syndrome. Endocr Relat Cancer 2010; 17:513-524.
    33. Lim S, Elston MS, Gill AJ et al. Metastatic parathyroid carcinoma initially misdiagnosed as parathyroid adenoma:the role of parafibromin in increasing diagnostic accuracy. Intern Med J 2011; 41: 695-699.
    34. Juhlin CC, Haglund F, Obara T et al. Absence of nucleolar parafibromin immunoreactivity in subsets of parathyroid malignant tumours. Virchows Arch 2011; 459:47-53.
    35. Juhlin CC, Villablanca A, Sandelin K et al. Parafibromin immunoreactivity:its use as an additional diagnostic marker for parathyroid tumor classification. Endocr Relat Cancer 2007; 14:501-512.
    36. Howell VM, Gill A, Clarkson A et al. Accuracy of combined protein gene product 9.5 and parafibromin markers for immunohistochemical diagnosis of parathyroid carcinoma. J Clin Endocrinol Metab 2009; 94:434-441.
    37. Mallya SM, Gallagher JJ, Wild YK et al. Abnormal parathyroid cell proliferation precedes biochemical abnormalities in a mouse model of primary hyperparathyroidism. Mol Endocrinol 2005; 19: 2603-2609.
    38. Ward BK, Magno AL, Walsh JP, Ratajczak T. The role of the calcium-sensing receptor in human disease. Clin Biochem 2012; 45:943-953.
    39. Cozzolino M, Mazzaferro S, Messa P. New insights into the role of calcium-sensing receptor activation. J Nephrol 2011; 24 Suppl 18:S38-41.
    40. Falchetti A, Gozzini A, Terranegra A et al. A novel germline inactivating mutation in the CASR gene in an Italian kindred affected by familial hypocalciuric hypercalcemia. Eur J Endocrinol 2012; 166: 933-940.
    41. Canaff L, Zhou X, Mosesova I et al. Glial cells missing-2 (GCM2) transactivates the calcium-sensing receptor gene:effect of a dominant-negative GCM2 mutant associated with autosomal dominant hypoparathyroidism. Hum Mutat 2009; 30:85-92.
    42. DeLellis RA. Parathyroid carcinoma:an overview. Adv Anat Pathol 2005; 12:53-61.
    43. Fernandez-Ranvier GG, Khanafshar E, Tacha D et al. Defining a molecular phenotype for benign and malignant parathyroid tumors. Cancer 2009; 115:334-344.
    44. Chen CH, Chuang SM, Yang MF et al. A novel function of YWHAZ/beta-catenin axis in promoting epithelial-mesenchymal transition and lung cancer metastasis. Mol Cancer Res 2012; 10:1319-1331.
    45. Bayrhuber M, Meins T, Habeck M et al. Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci U S A 2008; 105:15370-15375.
    46. Giusti L, Cetani F, Ciregia F et al. A proteomic approach to study parathyroid glands. Mol Biosyst 2011; 7:687-699.
    47. Baumann P, Cremers N, Kroese F et al. CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 2005; 65:10783-10793.
    48. Suzuki T, Kiyokawa N, Taguchi T et al. CD24 induces apoptosis in human B cells via the glycolipid-enriched membrane domains/rafts-mediated signaling system. J Immunol 2001; 166: 5567-5577.
    49. Miyake M, Ishii M, Kawashima K et al. siRNA-mediated knockdown of the heme synthesis and degradation pathways:modulation of treatment effect of 5-aminolevulinic acid-based photodynamic therapy in urothelial cancer cell lines. Photochem Photobiol 2009; 85:1020-1027.
    50. Kirkby KA, Adin CA. Products of heme oxygenase and their potential therapeutic applications. Am J Physiol Renal Physiol 2006; 290:F563-571.
    51. Fang J, Akaike T, Maeda H. Antiapoptotic role of heme oxygenase (HO) and the potential of HO as a target in anticancer treatment. Apoptosis 2004; 9:27-35.
    52. Luo SF, Fang RY, Hsieh HL et al. Involvement of MAPKs and NF-kappaB in tumor necrosis factor alpha-induced vascular cell adhesion molecule 1 expression in human rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 2010; 62:105-116.
    53. Heidemann J, Maaser C, Lugering A et al. Expression of vascular cell adhesion molecule-1 (CD 106) in normal and neoplastic human esophageal squamous epithelium. Int J Oncol 2006; 28:77-85.
    54. Bockenhauer D. Ion channels in disease. Curr Opin Pediatr 2001; 13:142-149.
    55. Kiss R. Ion channels and cancers. Curr Med Chem 2012; 19:625-626.
    56. Abdul M, Hoosein N. Reduced Kvl.3 potassium channel expression in human prostate cancer. J Membr Biol 2006; 214:99-102.
    57. Schulte KM, Gill AJ, Barczynski M et al. Classification of parathyroid cancer. Ann Surg Oncol 2012; 19:2620-2628.
    58. Kristiansen G, Sammar M, Altevogt P. Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 2004; 35:255-262.
    59. Sano A, Kato H, Sakurai S et al. CD24 expression is a novel prognostic factor in esophageal squamous cell carcinoma. Ann Surg Oncol 2009; 16:506-514.
    60. Kim K, Min HS, Chie EK et al. CD24 expression predicts distant metastasis in extrahepatic bile duct cancer. World J Gastroenterol 2013; 19:1438-1443.
    61. Takahashi M, Nakajima M, Ogata H et al. CD24 expression is associated with progression of gastric cancer. Hepatogastroenterology 2013; 60:653-658.
    62. Choi YL, Kim SH, Shin YK et al. Cytoplasmic CD24 expression in advanced ovarian serous borderline tumors. Gynecol Oncol 2005; 97:379-386.
    63. Dymicka-Piekarska V, Guzinska-Ustymowicz K, Kuklinski A, Kemona H. Prognostic significance of adhesion molecules (sICAM-1, sVCAM-1) and VEGF in colorectal cancer patients. Thromb Res 2012; 129:
    64. Horn L, Dahlberg SE, Sandler AB et al. Phase II study of cisplatin plus etoposide and bevacizumab for previously untreated, extensive-stage small-cell lung cancer:Eastern Cooperative Oncology Group Study E3501. J Clin Oncol 2009; 27:6006-6011.
    65. Coskun U, Sancak B, Sen I et al. Serum P-selectin, soluble vascular cell adhesion molecule-I (s-VCAM-I) and soluble intercellular adhesion molecule-I (s-ICAM-I) levels in bladder carcinoma patients with different stages. Int Immunopharmacol 2006; 6:672-677.
    66. Huang J, Zhang J, Li H et al. VCAM1 expression correlated with tumorigenesis and poor prognosis in high grade serous ovarian cancer. Am J Transl Res 2013; 5:336-346.
    67. Alexiou D, Karayiannakis AJ, Syrigos KN et al. Clinical significance of serum levels of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in gastric cancer patients. Am J Gastroenterol 2003; 98:478-485.
    68. Wu TC. The role of vascular cell adhesion molecule-1 in tumor immune evasion. Cancer Res 2007; 67:6003-6006.
    69. Byrne GJ, Ghellal A, Iddon J et al. Serum soluble vascular cell adhesion molecule-1:role as a surrogate marker of angiogenesis. J Natl Cancer Inst 2000; 92:1329-1336.
    70. Carvalho PG, Branco LG, Panissi CR. Involvement of the heme oxygenase-carbon monoxide-cGMP pathway in the nociception induced by acute painful stimulus in rats. Brain Res 2011; 1385:107-113.
    71. Deramaudt BM, Braunstein S, Remy P, Abraham NG. Gene transfer of human heme oxygenase into coronary endothelial cells potentially promotes angiogenesis. J Cell Biochem 1998; 68:121-127.
    72. Yim MS, Ha YS, Kim IY et al. HMOX1 is an important prognostic indicator of nonmuscle invasive bladder cancer recurrence and progression. J Urol 2011; 185:701-705.
    73. Berberat PO, Dambrauskas Z, Gulbinas A et al. Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res 2005; 11:3790-3798.
    74. Leanza L, Biasutto L, Manago A et al. Intracellular ion channels and cancer. Front Physiol 2013; 4:
    75. Felipe A, Vicente R, Villalonga N et al. Potassium channels:new targets in cancer therapy. Cancer Detect Prev 2006; 30:375-385.
    76. Pardo LA, Contreras-Jurado C, Zientkowska M et al. Role of voltage-gated potassium channels in cancer. J Membr Biol 2005; 205:115-124.
    77. Pardo LA. Voltage-gated potassium channels in cell proliferation. Physiology (Bethesda) 2004; 19: 285-292.
    78. Conti M. Targeting K+channels for cancer therapy. J Exp Ther Oncol 2004; 4:161-166.
    79. Jang SH, Kang KS, Ryu PD, Lee SY. Kvl.3 voltage-gated K(+) channel subunit as a potential diagnostic marker and therapeutic target for breast cancer. BMB Rep 2009; 42:535-539.
    80. Brevet M, Fucks D, Chatelain D et al. Deregulation of 2 potassium channels in pancreas adenocarcinomas:implication of KV1.3 gene promoter methylation. Pancreas 2009; 38:649-654.
    81. Lan M, Shi Y, Han Z et al. Expression of delayed rectifier potassium channels and their possible roles in proliferation of human gastric cancer cells. Cancer Biol Ther 2005; 4:1342-1347.
    82. Harari A, Waring A, Fernandez-Ranvier G et al. Parathyroid carcinoma:a 43-year outcome and survival analysis. J Clin Endocrinol Metab 2011; 96:3679-3686.
    1 Marx SJ:Hyperparathyroid and hypoparathyroid disorders. N Engl J Med 2000;343:1863-1875.
    2 Hou R, Manwaring LP, Moley JF, Whelan A:A novel missense mutation in the men1 gene in a patient with multiple endocrine neoplasia type 1. Endocr Pract 2011;17:e63-e67.
    3 Lemos MC, Thakker RV:Multiple endocrine neoplasia type 1 (men1):analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 2008;29:22-32.
    4 Dreijerink KM, Hoppener JW, Timmers HM, Lips CJ:Mechanisms of disease:multiple endocrine neoplasia type 1-relation to chromatin modifications and transcription regulation. Nat Clin Pract Endocrinol Metab 2006;2:562-570.
    5 Hou R, Manwaring LP, Moley JF, Whelan A:A novel missense mutation in the men1 gene in a patient with multiple endocrine neoplasia type 1. Endocr Pract 2011;17:e63-e67.
    6 Davenport C, Agha A:The role of menin in parathyroid tumorigenesis. Adv Exp Med Biol 2009;668:79-86.
    7 Yu D, Nagamura Y, Shimazu S, Naito J, Kaji H, Wada S, Honda M, Xue L, Tsukada T:Caspase 8 and menin expressions are not correlated in human parathyroid tumors. Endocr J 2010;57:825-832.
    8 Buchwald PC, Akerstrom G, Westin G:Reduced pl8ink4c, p21cip1/waf1 and p27kip1 mrna levels in tumours of primary and secondary hyperparathyroidism. Clin Endocrinol (Oxf) 2004;60:389-393.
    9 Nagamura Y, Yamazaki M, Shimazu S, Sano K, Tsukada T, Sakurai A:A novel splice site mutation of the menl gene identified in a patient with primary hyperparathyroidism. Endocr J 2012;59:523-530.
    10 Busygina V, Kottemann MC, Scott KL, Plon SE, Bale AE:Multiple endocrine neoplasia type 1 interacts with forkhead transcription factor chesl in dna damage response. Cancer Res 2006;66:8397-8403.
    11 Schnepp RW, Hou Z, Wang H, Petersen C, Silva A, Masai H, Hua X:Functional interaction between tumor suppressor menin and activator of s-phase kinase. Cancer Res 2004;64:6791-6796.
    12 Carpten JD, Robbins CM, Villablanca A, Forsberg L, Presciuttini S, Bailey-Wilson J, Simonds WF, Gillanders EM, Kennedy AM, Chen JD, Agarwal SK, Sood R, Jones MP, Moses TY, Haven C, Petillo D, Leotlela PD, Harding B, Cameron D, Pannett AA, Hoog A, Heath HR, James-Newton LA, Robinson B, Zarbo RJ, Cavaco BM, Wassif W, Perrier ND, Rosen IB, Kristoffersson U, Turnpenny PD, Farnebo LO, Besser GM, Jackson CE, Morreau H, Trent JM, Thakker RV, Marx SJ, Teh BT, Larsson C, Hobbs MR:Hrpt2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 2002;32:676-680.
    13 Rodgers SE, Perrier ND:Parathyroid carcinoma. Curr Opin Oncol 2006;18:16-22.
    14 Lin L, Zhang JH, Panicker LM, Simonds WF:The parafibromin tumor suppressor protein inhibits cell proliferation by repression of the c-myc proto-oncogene. Proc Natl Acad Sci U S A 2008;105:17420-17425.
    15 Lin L, Czapiga M, Nini L, Zhang JH, Simonds WF:Nuclear localization of the parafibromin tumor suppressor protein implicated in the hyperparathyroidism-jaw tumor syndrome enhances its proapoptotic function. Mol Cancer Res 2007;5:183-193.
    16 Rozenblatt-Rosen O, Hughes CM, Nannepaga SJ, Shanmugam KS, Copeland TD, Guszczynski T, Resau JH, Meyerson M:The parafibromin tumor suppressor protein is part of a human pafl complex. Mol Cell Biol 2005;25:612-620.
    17 Westin G, Bjorklund P, Akerstrom G:Molecular genetics of parathyroid disease. World J Surg 2009;33:2224-2233.
    18 Panicker LM, Zhang JH, Dagur PK, Gastinger MJ, Simonds WF:Defective nucleolar localization and dominant interfering properties of a parafibromin 195p missense mutant causing the hyperparathyroidism-jaw tumor syndrome. Endocr Relat Cancer 2010;17:513-524.
    19 Lim S, Elston MS, Gill AJ, Marsh DJ, Conaglen JV:Metastatic parathyroid carcinoma initially misdiagnosed as parathyroid adenoma:the role of parafibromin in increasing diagnostic accuracy. Intern Med J 2011;41:695-699.
    20 Juhlin CC, Haglund F, Obara T, Arnold A, Larsson C, Hoog A:Absence of nucleolar parafibromin immunoreactivity in subsets of parathyroid malignant tumours. Virchows Arch 2011;459:47-53.
    21 Juhlin:Parafibromin immunoreactivity:its use as an additional diagnostic marker for parathyroid tumor classification.,2007,14, pp 501-512.
    22 Howell:Accuracy of combined protein gene product 9.5 and parafibromin markers for immunohistochemical diagnosis of parathyroid carcinoma,2009,94, pp 434-441.
    23 Farnebo F, Enberg U, Grimelius L, Backdahl M, Schalling M, Larsson C, Farnebo LO: Tumor-specific decreased expression of calcium sensing receptor messenger ribonucleic acid in sporadic primary hyperparathyroidism. J Clin Endocrinol Metab 1997;82:3481-3486.
    24 Mallya SM, Gallagher JJ, Wild YK, Kifor O, Costa-Guda J, Saucier K, Brown EM, Arnold A: Abnormal parathyroid cell proliferation precedes biochemical abnormalities in a mouse model of primary hyperparathyroidism. Mol Endocrinol 2005;19:2603-2609.
    25 Ward BK, Magno AL, Walsh JP, Ratajczak T:The role of the calcium-sensing receptor in human disease. Clin Biochem 2012;45:943-953.
    26 Cozzolino M, Mazzaferro S, Messa P:New insights into the role of calcium-sensing receptor activation. J Nephrol 2011;24 Suppl 18:S38-S41.
    27 Falchetti A, Gozzini A, Terranegra A, Soldati L, Vezzoli G, Leoncini G, Giusti F, Franceschelli F, Masi L, Tanini A, Cavalli L, Brandi ML:A novel germline inactivating mutation in the casr gene in an italian kindred affected by familial hypocalciuric hypercalcemia. Eur J Endocrinol 2012;166:933-940.
    28 Canaff L, Zhou X, Mosesova I, Cole DE, Hendy GN:Glial cells missing-2 (gcm2) transactivates the calcium-sensing receptor gene:effect of a dominant-negative gcm2 mutant associated with autosomal dominant hypoparathyroidism. Hum Mutat 2009;30:85-92.
    29 Motokura T, Bloom T, Kim HG, Juppner H, Ruderman JV, Kronenberg HM, Arnold A:A novel cyclin encoded by a bell-linked candidate oncogene. Nature 1991;350:512-515.
    30 Erickson LA, Jalal SM, Harwood A, Shearer B, Jin L, Lloyd RV:Analysis of parathyroid neoplasms by interphase fluorescence in situ hybridization. Am J Surg Pathol 2004;28:578-584.
    31 Yi Y, Nowak NJ, Pacchia AL, Morrison C:Chromosome 11 genomic changes in parathyroid adenoma and hyperplasia:array cgh, fish, and tissue microarrays. Genes Chromosomes Cancer 2008;47:639-648.
    32 Westin G, Bjorklund P, Akerstrom G:Molecular genetics of parathyroid disease. World J Surg 2009;33:2224-2233.
    33 Cetani F, Pardi E, Viacava P, Pollina GD, Fanelli G, Picone A, Borsari S, Gazzerro E, Miccoli P, Berti P, Pinchera A, Marcocci C:A reappraisal of the rbl gene abnormalities in the diagnosis of parathyroid cancer. Clin Endocrinol (Oxf) 2004;60:99-106.
    34 Imanishi Y, Hosokawa Y, Yoshimoto K, Schipani E, Mallya S, Papanikolaou A, Kifor O, Tokura T, Sablosky M, Ledgard F, Gronowicz G, Wang TC, Schmidt EV, Hall C, Brown EM, Bronson R, Arnold A:Primary hyperparathyroidism caused by parathyroid-targeted overexpression of cyclin dl in transgenic mice. J Clin Invest 2001;107:1093-1102.
    35 Erickson LA, Jin L, Wollan PC, Thompson GB, van Heerden J, Lloyd RV:Expression of p27kip1 and ki-67 in benign and malignant thyroid tumors. Mod Pathol 1998;11:169-174.
    36 DeLellis RA:Parathyroid carcinoma:an overview. Adv Anat Pathol 2005;12:53-61.
    37 Fernandez-Ranvier GG, Khanafshar E, Tacha D, Wong M, Kebebew E, Duh QY, Clark OH: Defining a molecular phenotype for benign and malignant parathyroid tumors. Cancer 2009;115:334-344.
    38 Chen CH, Chuang SM, Yang MF, Liao JW, Yu SL, Chen JJ:A novel function of ywhaz/beta-catenin axis in promoting epithelial-mesenchymal transition and lung cancer metastasis. Mol Cancer Res 2012
    39 Morrison DK:The 14-3-3 proteins:integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol 2009; 19:16-23.
    40 Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, Zeth K:Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci U S A 2008;105:15370-15375.
    41 Giusti L, Cetani F, Ciregia F, Da VY, Donadio E, Giannaccini G, Banti C, Pardi E, Saponaro F, Basolo F, Berti P, Miccoli P, Pinchera A, Marcocci C, Lucacchini A:A proteomic approach to study parathyroid glands. Mol Biosyst 2011;7:687-699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700