在机检测中曲面拓扑特征重建和检测点分布关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加工质量信息的获取、表达、传递和利用是数字化制造技术的重要内容。在机检测系统的使用能够有效的提高高档数控装备的使用效率,降低生产成本。本文围绕在机检测中曲面拓扑特征重建和检测点分布的关键技术展开了深入研究,并构建了复杂空间型面在机检测系统。
     对三角面片进行拓扑重建和曲面划分是解决在机检测系统中零件模型表面特征识别的前提条件之一。本文在建立点-边拓扑关系的基础上,提出了基于关联-散列结构三角网格拓扑重建方法,在滤除冗余数据的同时完成拓扑关系的建立,并对STL(stereo lithographic)模型的基本拓扑关系进行拓展,提出了一种基于无向图结构关系模型的曲面划分方法。通过计算实例验证了上述算法的高效性和有效性。
     根据工件的几何特征及其参数确定采样策略,并进行采样点的选择和布局是在机检测系统中重要的环节之一。本文根据三角面片法向量在高斯球面的映射图像判定自然二次曲面几何特征,将快速聚类法和Gauss-Newton法相结合,提出了一种针对STL模型数据文件格式特点的自然二次曲面特征参数提取方法。对于一般随机采样方法的局限性,分析了CVT(Centroidal Voronoi Tessellations)结构采样法和可展曲面的特点,提出了基于CVT结构的可展曲面采样策略。
     针对曲面采样点布局算法对于离散数据环境下的复杂曲面测点布局的局限性,通过引入局部网格曲率特性参数,构建了基于三角面片微分几何特性的网格简化方法,提出了基于三角形折叠的复杂曲面离散数据检测点布局策略;并构造了连续LOD(Level Of Detail)模型,建立了不同层次网格之间距离值相对于简化三角形数量的拟合曲线方程,验证了曲率权值优化方法在离散数据环境下对提高复杂曲面采样点布局精度的有效性。
     最后,在对在机检测系统进行功能需求分析的基础上,搭建了在机检测系统的原型实验平台,提出了复杂空间型面在机检测系统的层次化结构功能模型,并采用计算机建模和仿真技术开发了在机检测过程仿真模块,结合规范化报告输出技术,建立了以上述方法为核心的复杂空间型面在机检测系统。
Access to quality information processing, expression, transfer and use is an important part of the digital manufacturing technology. The On Machine Verification (OMV) system can enhance the availability factor of the high-grade NC equipment in effect and reduce the cost of production. The investigation on the key technology of the topological feature reconstruction and sampling point distribution in OMV system was carried out. The OMV system for complex curved surfaces was developed.
     The topological reconstruction and surface division for the triangular faces is one of the preconditions for the feature recognition for some surfaces of the part model in the OMV system. On the base of the topological relation between vectors and edges, a new algorithm of topological reconstruction for triangular mesh based on Correlation-Hashing was proposed. The redundant data were filtered in the algorithm, meanwhile, the topological relations were built. A new method based on the relation model of undirected graph for surface division, which is on the base of the basic topological relations expansion in STL(stereo lithographic) models, was proposed.
     The calculation examples demonstrated that the algorithms were efficient and stable. A determination of sampling strategy trajectory planning of measurement according to the geometric features and their parameters of work pieces is one of the important steps in OMV system. According to the mapping images of the triangular faces’normal vectors on the Gauss sphere, the geometric features of natural quadric surfaces were judged. The characteristic parameters were calculated by fast clustering algorithm method and Gauss-Newton. A new method for the characteristic parameter extraction, which is suitable for the STL format, was given. The characteristics of the sampling strategy based on CVT(Centroidal Voronoi Tessellations) and the distinguishing features of developable surfaces are analyzed and the sampling strategy based on the CVT for developable surfaces were proposed aiming at the limitation of common random sampling strategy.
     Aiming at the limitation of sampling point distribution algorithms for that of complex curved surfaces in dispersed data environment, the curvature characteristic parameters of local grid were introduced to construct the method of mesh simplication based on the differential geometric properties of triangles. On the basis of this, the sampling distribution strategy of complex curved surfaces based on triangle collapse was proposed. The LOD(Level Of Detail) model was constructed. The Fitting curve equations were established according to the relationship of the distance between the different levels of meshes to the amount of simplification triangles. The effectivity of curvature weights optimization in improving precision of the sampling point distribution strategy based on triangle simplification in dispersed data environment was verified.
     At last, on the basis of requirement analysis for the OMV system, the prototype experiment environment was constructed. The hierarchically functionalmodeling of the OMV system for complex curved surfaces was proposed. The OMV process simulation module was developed using computer modeling and simulation technology. Combining technology of standardized report outputting, the OMV system for complex curved surfaces whose key technology was composed of that methods was developed.
引文
[1]叶声华,秦树人.现代测试计量技术及仪器的发展.中国测试, 2009, 35(2): 1~6.
    [2]甘永立.形状和位置误差检测.北京:国防工业出版社, 1995: 55~108.
    [3]张国雄.三坐标测量机.天津:天津大学出版社, 1998:1~17.
    [4]张国雄.三坐标测量机的发展趋势.中国机械工程, 2000, 11(2): 222~226.
    [5]吴耀金,张治民,于建民等.先进制造过程的测试技术及其发展趋势.锻压装备与制造技术, 2006, 6:27~30.
    [6]杨叔子,吴波.先进制造技术及其发展趋势.机械工程学报, 2003, 39(10): 74~78.
    [7]殷国富,杨杰斌,赵雪峰等.面向现代制造的新近测试技术及其发展趋势.中国测试, 2010, 36(1):1~8.
    [8]丁汉,朱利民,熊振华.复杂曲面快速测量、建模及基于测量点云的RP和NC加工.机械工程学报, 2003, 39(11): 28~37.
    [9] Gordon M. Brown, Frank Chen. Optical methods for shape measurement. Optical Engineering. 2000, 39(1):8~9.
    [10] F. Blais. A review of 20 years of range sensor development. Journal of Elect. Imaging, 2004, 13(1): 231~243.
    [11]何海涛.复杂面形的光学三维测量相关技术研究[博士学位论文].上海:上海大学, 2005.
    [12] Heinrich Schwenke, Ulrich Neuschaefer-Rube, Tilo Pfeifer, Horst Kunzmann. Optical Methods for Dimensional Metrology in Production Engineering. Annals of the CIRP, Manufacturing Technology, 2002, 51(2): 685~699.
    [13] A. Weckenmann, T. Estler, G. Peggs, D. McMurtry. Probing Systems in Dimensional Metrology. Annals of the CIRP, Manufacturing Technology, 2004, 53(2): 657~684.
    [14] E. Savio, L. De Chiffre, R. Schmitt. Metrology of freeform shaped parts. Annals of the CIRP, Manufacturing Technology, 2007, 56(2): 810~835.
    [15] Gleason Corporation. http://www.gleason.com. Cited 27 July 2006
    [16] KAPP GmbH Werkzeugmaschinenfabrik. http://www.kapp-coburg.de. Cited 27 July 2006
    [17] Delcam Plc. http://www.delcam.com.cn. Cited 2009-2-26. 105
    [18] Blum-Novotest GmbH. http://www.blum-novotest.com/. Cited 2009-2-26.
    [19] Szilvási-Nagy M , Mátyási G. Analysis of STL files. Mathematical and Computer Modeling, 2003, 38 (7):945~960.
    [20] Stroud J, Xirouchakis P C. STL and Extensions. Advance in Engineering Software, 2000, 31(2):83~95.
    [21]邱元庆,周惠群,朱姗姗,杨义虎.利用散列对STL文件进行拓扑重建和修复.机械科学与技术, 2009, 28(6):795~798.
    [22]安涛,戴宁,廖文和,袁天然.基于红黑树的STL数据快速拓扑重建算法.机械科学与技术, 2008, 27(8):1031~1034.
    [23] Hayong S, Park J C, Choi B K, et al. Efficient topology construction from triangle soup. Proceedings of the Geometric Modeling and Processing, Beijing, 2004: 359~364.
    [24]张必强,邢渊,阮雪榆.面向网格简化的STL拓扑信息快速重建算法.上海交通大学学报, 2004, 38(1): 39~42.
    [25]黄常标,林俊义,江开勇.快速成形中STL文件拓扑信息的快速建立.现代制造工程, 2004(8): 16~18.
    [26]赵歆波,张定华,熊光彩,毛海鹏.基于散列的STL拓扑信息重建方法.机械科学与技术, 2002, 21(5):827~832.
    [27]王坚,周来水,张维中.基于三角片拼合的STL网格模型重建算法.计算机辅助设计与图形学学报, 2006, 18(11):1758~ 1764.
    [28]杨晟院,舒适.基于数据相关性的STL曲面网格快速重建算法.计算机辅助设计与图形学报, 2009, 21(1):67~71.
    [29]周雄辉,彭颖红,等.现代模具设计制造理论与技术.上海:上海交通大学出版社, 2001.
    [30] Kyprianou L. Shape classification in computer aided design[Ph.D.Thesis]. Cambridge: University of Cambridge, 1980.
    [31] R Jakubowski. Syntactic characterization of machine parts shapes. International Journal of Cybernetics and Systems, 1982, 3 (1):1~24.
    [32] B Choi, M Barash, D Anderson. Automatic recognition of machined surfaces from a 3D solid model. Computer Aided Design, 1984, 16(2):81~86.
    [33]王波,宋长新,程敬之.自动特征识别的新方法.西安交通大学学报, 2002, 36 (8): 806~809.
    [34] C Zhang, K W Chan, Y H Chen. A method for recognizing feature interactions and feature components within the interactions. International Journal of AdvanceManufacture Technology, 1997(13):713~722.
    [35] Jung Hyun Han, Aristides AG Requicha. Integration of feature based design and feature recognition. Computer-aided Design, 1997, 29(5):393~403.
    [36]陶品,张钹,叶榛.三维模型特征识别中的神经网络方法.计算机集成制造系统, 2002, 8(11): 912~ 918.
    [37]柯映林,李岸.基于主方向高斯映射的旋转面特征提取.浙江大学学报, 2006, 40(6): 942~946.
    [38]单东日,柯映林.反求工程中点云数据的二次曲面特征提取技术.计算机辅助设计与图形学学报, 2003, 15(12):1497~1501.
    [39] Ainsworth I, Ristic M, Brujic D. CAD-based measurement path planning for free-form shapes using contact probes. Advanced Manufacturing Technology. 2000, 16(1): 23~31.
    [40]方开泰.均匀试验设计的理论、方法和应用——历史回顾.数理统计与管理. 2004, 23(3): 69~80.
    [41] Woo T C, Liang R. Dimensional measurement of surfaces and their sampling. Computer Aided Design, 1993, 25(4): 233~239.
    [42] Woo T C, Liang R, Hsieh C C, et a1. Efficient sampling for surface measurements. Journal of Manufacturing Sysmms, 1995, l4(5): 345~354.
    [43] V J Romero, J S Burkardt, M D Gunzburger, et al. Initial Evaluation of Centroidal Voronoi Tessellation Method for Statistical Sampling and Function Integration//IEEE Computer Society. The 4th International Symposium on Uncertainty Modeling and Analysis (ISUMA’03). Washington, DC, USA: IEEE Computer Society, 2003: 174~191.
    [44] V J Romero, J S Burkardt, M D Gunzburger, et al. Initial Application and Evaluation of a Promising New Sampling Method for Response Surface Generation: Centroidal Voronoi Tessellation// AIAA/ASME/ASCE/AHS/ASC. The 44th Structures, Structural Dynamics, and Materials Conference (5th AIAA Non-Deterministic Approaches Forum). VA, USA: American Inst. Aeronautics and Astronautics Inc., 2003: 5527~5542.
    [45]董玉德,汪玉玺,刘达新等.三角平面Halton点采样策略及其性能分析.计算机辅助设计与图形学学报, 2007, 19(8): 1065~1068.
    [46]陈浪,秦大同,谢勇.基于坐标测量机的曲面自适应采样和网格生成.重庆大学学报, 2002, 24(4): 22~25.
    [47]来新民,黄田,陈关龙等.自由曲面数字化的自适应规划.上海交通大学学报. 1999, 33(7): 837~841.
    [48]刘丽冰.加工中心在线检测及误差补偿关键技术研究[博士学位论文].天津:天津大学, 1998.
    [49]邓三鹏.基于热误差补偿的加工中心在线检测软件的开发[硕士学位论文].天津:天津大学, 2004.
    [50]张志飞.数控机床在机测量软件包的开发[硕士学位论文].天津:天津大学, 1998.
    [51]陈明娟.加工中心在线检测关键技术研究及软件开发[硕士学位论文].天津:天津大学, 2000.
    [52] Dave Shreiner, Mason Woo, Jackie Neider et al.OpenGL编程指南(第四版).北京:人民邮电出版社, 2005:65~104.
    [53] Haines Eric. Point in polygon strategies. In: Paul S. Heckbert, editor, Graphics Gems IV, Academic Press, San Diego, 1994:24~46
    [54] Moller Tomas, Ben Trumbore. Fast, minimum storage ray-triangle intersection. Journal of Graphics Tools, 1997, 2(1):21~28.
    [55] Philip J Schneider, David H Eberly.计算机图形学几何工具算法详解.北京:电子工业出版社, 2005:302~352.
    [56]徐雪松. STL模型表面点快速拾取技术.工程图学学报, 2005,3:18~22.
    [57]严蔚敏,吴伟民.数据结构.北京:清华大学出版社, 1997:251~262.
    [58]孙玉文,刘健,刘伟军.快速成型中STL数据模型的B-Rep实体精确重建.计算机辅助设计与图形学学报, 2004, 16(7): 944~949.
    [59] GyarerAR. A Computer Link between Design and Manufacture, [Ph.D.Thesis], Cambridge: University of Cambridge, 1976.
    [60] M. Pratt, P. R. Wilson, Requirements for support of form features in a solid modeling system. Technology Report. CAM-I, R-85-ASPP- 01, 1985, June.
    [61] Shah J J. Assessment of Features Technology. Computer Aided Design, 1991, 23(5):331~343.
    [62] Tamas Vorady, Ralph R Martin, Jordan Coxt. Reverse engineering of geometric models-an introducetion. Computer Aided Design, 1997, 29(4):255~268.
    [63] Jianbing Huang. Geometric Feature Extraction and model reconstruction from unorganized points for reverse engineering of mechanical parts with arbitrary topology, [Ph.D.Thesis]. Columbus: The Ohio State University, 2001.
    [64]孙世为,王耕耘,李志刚.基于特征生长的点云拟合技术.计算机辅助工程, 2001, 4:39~43.
    [65] Besl P J, Jain RC. Segmentation through variable order surface fitting. IEEE Transanctions on Pattern Analysis and Machine Intelligence, 1988, 10(2): 167~192.
    [66] Zhang Chun-jie, Zhou Xiong-hui, Li Cong-xin, Automatic recognition of intersecting features of freeform sheet metal parts. Journal of Zhejiang University Science A, 2009, 10(10):1439~1449.
    [67] V B Sunil, S S Pande. Automatic recognition of features from freeform surface CAD models, Computer-Aided Design, 2008, 40(4):502~517.
    [68]何荣,李际军.逆向工程中特征曲面的识别方法.计算机应用, 2007, 27(8): 2018~2020.
    [69] Berthold K, P. Horn. Extended Gaussian image. Proceeding of The IEEE, 1984, 72(12): 1671~1686.
    [70]向东进等.实用多元统计分析.武汉:中国地质大学出版社, 2005:100~130.
    [71] N Chernov, C Lesort. Least Squares Fitting of Circles. Journal of Mathematical Imaging and Vision, 2005, 23:239~252.
    [72] Sung Joon Ahn, Wolfgang Rauh, Hans-Jurgen Warnecke. Least-squares orthogonal distances fitting of circle, aphere, ellipse, hyperbola, and parabola, Pattern Recognition, 2001, 34:2283~2303.
    [73] Lukacs G,Martin R R, Marshall A D. Faithful least-squares fitting of spheres, cylinders, cones and tori for reliable segmentation, Proceedings of the 5th European Conference on Computer Vision, Freiburg, Germany, 1998, 671~686.
    [74] Fitzgibbon A, Pilu M, Fisher R B. Direct least square fitting of ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5):476~480.
    [75] Gander W, Golub G H, Strebel R. Least-squares Fitting of Circles and Ellipses. BIT Numerical Mathematics , 1994, 34:558~578.
    [76]刘元朋,张定华,桂元坤等.用带约束的最小二乘法拟合平面圆曲线.计算机辅助设计与图形学学报, 2004, 16(10):1382~1385.
    [77]何章毅,智能化三坐标测量机软件关键技术研究[硕士学位论文].哈尔滨:哈尔滨工业大学, 2006.
    [78] Kuang-Chao Fan, Ming C Leu. Intelligent Planning of CAD-directed Inspection for Coordinate Measuring Machines. Computer Integrated Manufacuring Systems, 1998, 11(1-2):43~51.
    [79]何改云.形位误差的逼近原理及算法研究[博士学位论文].天津:天津大学,2006.
    [80] Woo T C, Liang R, Hsieh C C. Accuracy and Time in Surface Measurement Part 1: Mathematical Foundations. Journal of Manufacturing Science and Engineering, 1998, 120(1):141~149.
    [81] Woo T C, Liang R, Hsieh C C. Accuracy and Time in Surface Measurement Part 2: Optimal Sampling Sequence . Journal of Manufacturing Science and Engineering, 1998, 120(1):150~155.
    [82] Lee G, J Mou, Y Shen. Sampling Strategy Design For Dimensional Measurement of Geometric Features Using Coordinate Measuring Machine, International Journal of Machine Tools Manufacture, 1997, 37(7):917~934.
    [83] Du Qiang, M Gunzburger, Lili Ju. Meshfree, Probabilistic Determination of Point Sets and Support Regions for Meshless Computing. Computer Methods in Applied Mechanics Engineering, 2002, 191(13-14):1349~1366.
    [84] Du Qiang, Vance Faber, M Gunzburger. Centroidal Voronoi Tessellation: Applications and Algorithms. SIAM Review, 1999, 41(4):637~676.
    [85] Lili Ju. Probabilistic and Parallel Algorithms for Centroidal Voronoi Tessellations with Application to Meshless Computing and Numerical Analysis[Ph.D.Thesis]. Iowa: Iowa State University, 2002.
    [86] Hugues Hoppe, Tony DeRose, Tom Duchamp, et al. Mesh Optimization. Computer Aided Geometric Design, 1994, 11(2):179~214.
    [87] William J Schroeder, Jonathan A Zarge, William E Lorensen. Decimation of Triangle Meshes. Computer Graphics, 1992, 26(2):65~70.
    [88] Bernd Hamann. A data Reduction Scheme for Triangulated Surfaces. Computer Aided Graphics Design, 1994, 11(2):197~214.
    [89]李现民,李桂清,张小玲.基于子分规则的边折叠简化方法.计算机辅助设计与图形学学报, 2002, 14(1):8~13
    [90] Michael Garland, Paul S Heckbert. Surface Simplification Using Quadric Error Metric. In Proceeding of the SIGGRAPH’97.USA, Los Angeles, 1997.
    [91] Andre Gueziec. Surface simplification inside a tolerance Volume. IBM Research Division T.J. Watson Research Center Research Report, RC 20440 (90191), 1997.
    [92] Alan D Kalvin, Russell H Taylor. Surface: Polygonal mesh simplificaition with bounded error. Computer Graphics and Application, 1996, 16(3):64~77.
    [93] Jonathan Cohen, Amitabh Varshney, Dinesh Manocha, et al. Simplification envelopes. Computer Graphics(SIGGRAH’96 Proceedings), Annual ConferenceSeries 1996, 30:119~128.
    [94]张明敏,周昆,潘志庚.基于超包络的三角形网格简化算法.软件学报, 1999, 10(6):584~588.
    [95] Tran S Gieng, Bernd Hamann, Keneth I Joy, et al. Smooth Hierarchical Surface Triangulations. Proceedings of the 8th conference on Visualization '97, Phoenix, Arizona, United States. p379 ~p386.
    [96]陶志良,潘志庚,石教英.基于能量评估的网格简化算法及其应用.软件学报, 1997, 8(12):881~888.
    [97] Remi Ronfard, Jarek Rossignac. Full-range approximation of triangulated polyhedra. Computer Graphics Forum. 1996, 15(3):67~76.
    [98] Tran S Gieng, Bernd Hamann, Kenneth I Joy, et al. Constructing Hierarchies for Triangle Meshes. IEEE Transactions on Visualization and Computer Graphics, 1998, 4(2): 145~161.
    [99] M de Berg, M van Kreveld, M Overmars, et al. Computational Geometry: Algorithms and Applications. Berlin: Springer-Verlag, 1997.
    [100]刘胜兰.逆向工程中自由曲面与规则曲面重建关键技术研究[博士学位论文].南京:南京航天航空大学, 2004.
    [101]方惠兰.网格曲面上离散曲率计算方法的比较与研究[硕士学位论文].浙江:浙江大学, 2005
    [102] Gabriel Taubin. Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proceedings of the Fifth International Conference on Computer Vision (ICCV’95), Cambridge, MA , 1995: 902~907
    [103] Huang J, Menq C H. Combinatorial manifold mesh reconstruction and optimization from unorganized points with arbitrary topology. Computer Aided Design, 2002, 34(2): 149~165.
    [104] Mark Meyer, Mathieu Desbrun, Peter Schroder, et al. Discrete differential- geometry operators for triangulated 2-manifolds. In:VisMath'02, Berlin, Germany, 2002: 35~70.
    [105] Mathieu Desbrun, Mark Meyer, Peter Schroder, et al. Discrete Differential- Geometry Operators in nD. Caltech, USC Report, July 22, 2000.
    [106] Hamann B. Curvature approximation for triangulated surfaces. In: G. Farin et al. , editor, Geometric Modelling, Springer Verlag, 1993:139~153.
    [107] Nira Dyn, Kai Hormann, Sun-Jeong Kim, et al. Optimizing 3d triangulations using discrete curvature analysis. In: T. Lyche and L.L. Shumaker, Editors,Mathematical Methods for Curves and Surfaces, Vanderbild University. 2001: 135~146.
    [108] Pavel Krsek, Tomas Pajdla, Vaclav Hlavac. Estimation of differential parameters on triangulated surface. In 21st Workshop of the Austrian Association for Pattern Recognition, May 1997.
    [109] Welch W, Witkin A. Free-form shape design using triangulated surfaces. In: SIGGRAPH 94 Conference Proceedings, Orlando Florida, 1994:247~256.
    [110] Evgeni Magid, Octavian Soldea, Ehud Rivlin. A comparison of Gaussian and mean curvature estimation methods on triangular meshes of range image data. Computer Vision and Image Understanding, 2007, 107(3): 139~159.
    [111] Alboul, L. and R. van Damme, Polyhedral metrics in surface reconstruction. In: G. Mullineux (ed.), The Mathematics of Surfaces VI, Clarendon Press, Oxford, 1996: 171~200.
    [112] Alboul, L. and R. van Damme, Polyhedral metrics in surface reconstruction: tight triangulations. In: T. Goodman and R. Martin (eds.), The Mathematics of Surfaces VII, Clarendon Press, Oxford, 1997:309~336.
    [113] Desbrun, M., M. Meyer, P. Schroder, and A. H. Barr, Implicit fairing of irregular meshes using diffusion and curvature flow. Computer Graphics (SIGGRAPH’99 Proceedings), 1999, 33: 317~324.
    [114] P Krsek, C Lukacs, R R Martin. Algorithms for computing curvatures from range data. In: R Cripps et al. (Eds.), The Mathematics of Surfaces VIII, Information Geometers, Winchester, UK, 1998:1~16.
    [115] P T Sanders, S W Zucker. Inferring surface trace and differential structure from 3d images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(9):833~854.
    [116] E M Stokely, S Y Wu, Surface parameterization and curvature measurement of arbitrary 3d-objects: five practical methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(8):833~840.
    [117] James H. Clark. Hierarchical geometric models for visible surface algorithms. Communications of ACM, 1976, 19(10):547~554.
    [118] Hugues Hoppe. Progressive Meshes. Computer Graphics, 1996, 30(1):99~108.
    [119] Hugues Hoppe. View-dependent Progressive Meshes. Computer Graphics (SIGGRAPH’97 Proceedings), 1997, 31:189~198.
    [120]翟庆光.基于示教的加工中心在线检测技术研究[硕士学位论文].天津:河北工业大学, 2003.
    [121]王金路.在机检测系统中型面再生及误差评定算法研究[硕士学位论文].天津:天津大学, 2008.
    [122]刘健.在机检测系统中若干关键技术的研究[硕士学位论文].天津:天津大学, 2009.
    [123]李勇,李伟光.机械设备数控技术.北京:国防工业出版社,2007:5~37.
    [124]罗珺.虚拟加工中心系统及四轴联动切削运动学研究[硕士学位论文].天津:天津大学, 2006.
    [125]李鹏.虚拟制造中加工中心切削过程仿真系统的研究与开发[硕士学位论文].天津:天津大学, 2004.
    [126]王晓斌.基于三维实体的数控加工仿真系统的研究[硕士学位论文].天津:天津大学, 2003.
    [127] Mary Kirtland.基于组件的应用程序设计.北京:北京大学出版社, 1999: 13~45.
    [128]潘爱民. COM原理与应用.北京:清华大学出版社,1999: 1~46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700