钢管混凝土框架—核心筒减震结构的抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土框架-核心筒结构是近年来我国高层建筑中广泛应用的结构体系,但钢管混凝土框架-核心筒结构体系的受力机理较为复杂,协同工作机理不明晰,抗震性能有待改善。针对这些不足,将具有良好耗能机制和滞回性能的减震装置设置于钢管混凝土框架-核心筒结构中,形成钢管混凝土框架-核心筒减震结构体系,使结构具有更优良的抗震性能和更加合理的协同工作机制,同时又增加了结构体系的抗震防线,因此本文对钢管混凝土框架-核心筒减震结构体系的抗震性能进行了相关研究,主要内容包括:
     1.设计制作了缩尺比例为1:4的钢管混凝土框架和钢管混凝土减震框架及钢管混凝土框架-剪力墙结构和钢管混凝土框架-剪力墙减震结构等四种结构模型,对其进行了低周反复荷载作用下的抗震性能试验。结合试验数据,分析研究了模型结构的滞回性能、骨架曲线、刚度、强度、耗能指标和应变等性能,研究结果表明:钢管混凝土减震框架和钢管混凝土框架-剪力墙减震结构因设置防屈曲支撑改变了结构的受力性能和破坏模式、延缓了塑性铰的开展;与普通的钢管混凝土框架和钢管混凝土框架-剪力墙结构相比,通过设置耗能减震构件,增加了结构的抗震防线,增强了结构的抗震能力,有效地改善了钢管混凝土框架和钢管混凝土框架-剪力墙结构的抗震性能。
     2.以上述低周反复荷载作用下的试验模型结构为对象,采用ABAQUS有限元分析软件进行了非线性数值仿真计算,分析了钢管混凝土减震框架和钢管混凝土框架-剪力墙减震结构的骨架曲线、钢管混凝土柱和剪力墙的应力、阻尼器的工作性能等方面,并对没有阻尼器的结构和减震结构进行了对比分析,研究了钢管混凝土减震框架和钢管混凝土框架-剪力墙减震结构的力学性能;通过改变阻尼器的初始刚度和屈服力,分析研究了耗能减震装置基本参数对钢管混凝土减震框架和钢管混凝土框架-剪力墙减震结构性能的影响。研究结果表明:设置防屈曲支撑,改善了钢管混凝土框架和钢管混凝土框架-剪力墙结构的受力性能;增大防屈曲支撑的初始刚度或屈服力,钢管混凝土减震框架和钢管混凝土框架-剪力墙减震结构的屈服荷载和极限荷载有所提高,防屈曲支撑的耗能总量、附加阻尼比也随之增大。
     3.以30层的典型钢管混凝土框架-核心筒结构为研究对象,在结构中不同位置以不同的连接方式分别设置了120个阻尼器,针对防屈曲支撑和黏滞阻尼器各形成了4种减震方案,采用Perform-3D对各种减震方案进行了EL-Centro波、KOBE波和NR波小震和大震作用下的动力弹塑性时程分析,从结构的层间位移角、层剪力、底部剪力、阻尼器耗能和结构耗能等方面分析阻尼器对钢管混凝土框架-核心筒减震结构体系整体抗震性能的影响;并通过与设置了相同数量阻尼器的40层钢管混凝土框架-核心筒减震结构计算结果的对比,研究高宽比对结构抗震性能的影响。研究结果表明:与没有阻尼器的结构相比,设置了黏滞阻尼器的钢管混凝土框架-核心筒减震结构的抗震性能指标均有所改善,设置防屈曲支撑的结构减震效果与阻尼器的设置位置和连接方式有关;设置了黏滞阻尼器的减震结构控制效果和抗震性能要优于设置防屈曲支撑的减震结构;将耗能减震构件沿高度均匀的布置于钢管混凝土框架与核心筒之间,减震效果较为明显。
     4.结合上述30层钢管混凝土框架-核心筒减震结构的动力弹塑性时程分析结果,以底层框架剪力分配比和结构构件弹塑性工作状态为依据,对钢管混凝土框架-核心筒减震结构的协同工作机理进行了初步分析,分析结果表明:在钢管混凝土框架-核心筒结构中设置防屈曲支撑和黏滞阻尼器,小震作用下,对钢管混凝土框架和核心筒之间的协同工作没有影响;大震作用下,与没有阻尼器的结构相比,减震结构的框架剪力分配比值有所减小,增强了框架和核心筒之间的协同工作能力,减缓了构件进入塑性工作的程度,达到材料极限应力的构件数量有所降低,将阻尼器沿高度均匀地设置于框架和核心筒之间时改善效应较明显。
     5.依托某钢管混凝土框架-核心筒减震结构实际工程,对设置了23个黏滞阻尼器的1:35缩尺模型进行了EL-Centro波、Taft波和人工波作用下的模拟地震振动台试验,通过66个试验工况对没有阻尼器和设置阻尼器的结构模型关键位置的加速度、位移和应变进行了对比分析,对试验结果的分析表明:在多遇地震、设防烈度地震和罕遇地震作用下,钢管混凝土框架-核心筒减震结构的相对位移、加速度、层间位移角、扭转角和应变均有所降低;设置于该混合结构的黏滞阻尼器工作性能良好,起到了一定的耗能减震作用。
     6.结合黏滞阻尼器和防屈曲耗能支撑的特点和规范中对钢管混凝土框架-核心筒结构层间位移角的限制要求,采用框架-剪力墙结构位移计算方法和反应谱理论,推导出了钢管混凝土框架-核心筒防屈曲支撑减震结构的支撑合理弹性刚度和钢管混凝土框架-核心筒黏滞阻尼器减震结构的合理阻尼系数计算公式,建立了该减震结构的简化设计方法,并采用该方法对典型平面布置的钢管混凝土框架-核心筒结构用ETABS分析软件进行了分析,验证了该种设计方法的可行性。
The concrete filled steel tubular (CFST) frame-core wall mixed structure has beenadopted widely in the high-rise buildings in China recently. However, the seismicperformance of CFST frame-core wall structure should be improved for itscomplicated force mechanism and fuzzy cooperative working mechanism. Accordingto these problems, the dampers can be set in the CFST frame-core wall structure, andthen the CFST frame-core wall structure with dissipation devices is established, whichhas excellent seismic performance and more reasonable cooperative workingmechanism, whilst the seismic fortification lines of this mixed structure have beenadded. The related researches on the CFST frame-core wall structure with dissipationdevices in this paper had been carried out as follow:
     1. The1:4reduced scale structure models of CFST frame, CFST frame withdampers, CFST frame-shear wall structure and CFST frame-shear wall structure withdampers were designed and made, and the comparison experiments under low cyclicloading for these models had been done. Combined with experimental data, theperformances of hysteresis curve, skeleton curve, stillness, strength, energydissipation and the strain of the structure model had been analyzed, and the resultsshow that: the mechanical behavior and the structural failure mode have been changedby installing the buckling-restrained brace (BRB) in the structure, whilst thedevelopment process of plastic hinge has been delayed. Compared with the CFSTframe and the CFST frame-shear wall structure, the seismic fortification lines ofstructure are added and the seismic capacity is enhanced because of dampers, whilstthe seismic performances of the CFST frame and the CFST frame-shear wall structurehave been improved effectively.
     2. The nonlinear finite element simulation analysis had been done for the aforesaidexperimental models using the software of ABAQUS, and the skeleton curves of thestructures with dampers, stress of the CFST column and shear wall and the workingperformance of the dampers had been analyzed, whilst the comparative performanceanalysis of the structure with and without dampers had been performed, so themechanical performances of the CFST frame with dissipation devices and CFST frame-shear wall structure with dissipation devices were studied. By changing the initialstiffness and the yield force of the dampers, the effects of the parameters of BRB onthe seismic performance of CFST frame with dissipation devices and CFST frame-shear wall structure with dissipation devices had been analyzed and studied inthe paper. The results show that: the mechanical behavior of the CFST frame andCFST frame-shear wall structure have been improved by setting the dampers instructure. With increasing the initial stiffness and the yield force of the BRB, the yieldload and ultimate load of the CFST frame with dissipation devices and CFSTframe-shear wall structure with dissipation devices have been increased certainly, andthe total dissipation energy of the BRB and the additional damping ratio have beenalso increased.
     3. Based on the30-storey typical CFST frame-core wall mixed structure,120dampers were set with different connection with structure and different location instructure. Four damping scheme were formed according to the BRB and viscousdampers, and the nonlinear dynamic time history analysis of each scheme under theEL-Centro、Kobe and NR waves action had been performed by using the software ofperform-3D. The influence of the dampers on the seismic performance of the CFSTframe-core wall structure with dissipation devices had been analyzed in the aspects ofthe story drift, story shear force, base shear force, dissipation energy of damper andstructure. The influence of the aspect ratios on the seismic performance of structurehad been studied based on the calculation results of a40-story CFST frame-core wallstructure with same dampers. The results show that: compared with the structurewithout damper, the seismic performance indexes of CFST frame-core wall structurehave been improved obviously by setting viscous damper in structure, and thedamping effect of structure with BRB is determined by the location and connectionmode of the dampers. The control effect and the seismic performance of structurewith viscous dampers are more excellent than that of structure with BRB. Dampingeffect of structure is more obviously when the dampers are set uniformly along thestructure height and between the CFST frame and the core wall.
     4. Based on the nonlinear dynamic time history analysis results of the30-storeyCFST frame-core wall structure, the cooperative working mechanism of the mixedstructure with dampers had been preliminary analyzed according to the shear forcedistribution ratio of the frame and the elastic-plastic working state of structuralmembers. The analysis results show that: for the CFST frame-core wall structure withBRB and viscous dampers, it is no influence on the cooperative working between theCFST frame and the core wall under the frequent earthquake action, however,compared with the structure without damper, the shear force distribution ratio of the frame under the rare earthquake action would be decreased, whilst the cooperativeworking ability of the CFST frame and the core wall is enhanced and the degree ofplastic working state of structure member has been delayed, and the number ofstructural members that the stress of member has reached the ultimate stress aredecreased. Improvement effect of structure in cooperative working ability is moreexcellent when the dampers are set uniformly along the structure height and betweenthe CFST frame and the core wall.
     5. The1:35reduced scale model of CFST frame-core wall structure with23viscousdampers had been tested on shaking table under EL-Centro wave, Taft wave andartificial wave action. The accelerations, displacements and strains of key points inthe structures with and without dampers had been analyzed according to the66testconditions. The test results show that: under frequent, design and rare earthquakeaction, the relative displacement, the acceleration, the story drift, the torsion angle andthe strain of the mixed structure with dampers had been decreased obviously. Theviscous dampers in the structure have excellent working performance and play goodrole in energy dissipation.
     6. Combined with the characteristics of the BRB and viscous damper and the storydrift limits of the CFST frame-core wall structure in code, the calculating formula ofelastic stiffness for BRB and viscous damping coefficient for viscous damper of theCFST frame-core wall structure with dampers had been derived based on thedisplacement calculation method of frame-shear wall structure and response spectrumtheory. The simplified design method of this structure has been established, and themethod was adopted to design the typical CFST frame-core wall structure withdampers using ETABS analysis software, so the feasibility of the method is verified.
引文
[1] http://buildingdb.ctbuh.org/index.php
    [2] J.W. Wallace and A. Wada. Hybrid wall systems: US-Japan research. Proceedings of12thWorld Conference on Earthquake Engineering, Auckland, New Zealand,2000, Paper No.2619.
    [3] S.C. Goel. United States-Japan cooperative earthquake engineering research program oncomposite and hybrid structures. Journal of Structural Engineering,2004,130(2):157-158.
    [4] E. Spacone and S. El-Tawil. Nonlinear analysis of steel-concrete composite structures: state ofthe art. Journal of Structural Engineer ing,2004,130(2):159-166.
    [5]钟善桐.钢管混凝土统一理论:研究与应用[M].清华大学出版社,2006
    [6]韩林海.钢管混凝土结构-理论与实践(第二版)[M].北京:科学出版社,2007
    [7] Lin-Hai Han, Wei-Hua Wang, Hong-Xia Yu. Experimental behaviour of reinforced concrete(RC) beam to concrete-filled steel tubular (CFST) column frames subjected to ISO-834standard fire [J]. Engineering Structures,2010,32:3130-3144
    [8]左志亮,蔡健,钱泉等.带约束拉杆T形钢管混凝土短柱轴压性能的试验研究[J].土木工程学报,2011,44(11):43-51
    [9]王新堂,周明,王万祯,仇心金.轻骨料钢管混凝土短柱受火后力学性能的试验研究[J],土木工程学报,2011,44(12):34-41
    [10] Wei Li, Lin-Hai Han. Seismic performance of CFST column to steel beam joints with RCslab: Analysis [J]. Journal of Constructional Steel Research,2011,67(1):127-139
    [11]刘晓刚,樊健生,陶慕轩,聂建国.钢管混凝土柱-钢梁节点核心区受剪承载力计算对比研究[J]建筑结构学报,2012,33(2):85-92
    [12] Lin-Hai Han, Wen-Da Wang, Zhong Tao. Performance of circular CFST column to steel beamframes under lateral cyclic loading [J]. Journal of Constructional Steel Research,2011,67(1):876-890
    [13] Hajjar JF,Gourley BC.Representation of concrete-filled steel tube cross-section strength[J].Journal of Structural Engineering,ASCE,1996,122(11):l327-1336.
    [14] Liu Dalin, Guo Weimin.Axial1oad behavior of high-strength rectangular concrete—filledsteel tubular stub columns[J].Thin-Walled Structures,2005,43(8):1131-1142
    [15] Kent D C, Park R.Flexural members with confined concrete [J].Journal of the structuraldivision, ASCE,1971,97(ST7):1969-1990
    [16] Hognestad E. Concrete stress distribution in ultimate strength design [J]. Journal of ACI,1955,52(10):455-479
    [17] Saenz L P.Discussion of equation for the stress-strain curve of concrete by Desayi andKrishnan [J]. Journal of ACI,1964,61(9):1229-1235
    [18] Rusch H. Research toward a general flexural theory for structural concrete [J]. Journal of ACI,1960,57(7):1-28
    [19] Mander J B,Priestley M J N,Park R.Observed stress-strain behavior of confined concrete [J].Journal of structural engineering, ASCE,1988,114(8):1827-1849
    [20]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003
    [21] Scott B D, Park R, Priestley M J N.Stress-strain behavior of concrete confined by overlappinghoops at low and high strain rates [J]. Journal of ACI,1982,79(1):13-27
    [22] Baris Binci. An Analytical Model for Stress-Strain Behavior of confined concrete [J].Engineering Structures,2005,27(7):1040-1051
    [23]蔡健,龙跃凌.带约束拉杆矩形钢管混凝土的本构关系[J].工程力学,2008,25(2):137-143
    [24]袁伟斌,金伟良钢管混凝土的等效本构关系研究[J].浙江大学学报(工学版),2004,38(8):984-988
    [25]姜绍飞,李明,卞忠保高温后方钢管混凝土钢材和混凝土的本构关系[J]辽宁工程技术大学学报:自然科学版,2005,24(5):677-679
    [26] C.S.Huang,Y.-K.Yeh,G.-Y.Liu. Axial load behavior of stiffened concrete-filled steel columns[J].Journal of structureal engineering,2002,9:1222-1230
    [27] Lin-hai Han,Wen-Da Wang,Xiao-Ling Zhao. Behaviour of Steel to Concrete-Filled SHSColumn Frames: Finite Element Model and Verifications [J]. Engineering Structures,2008,30(6):1647-1658
    [28]郑莲琼,陶忠,韩林海.钢管混凝土曲杆力学性能的研究[J].哈尔滨工业大学学报,2005,37:59-61
    [29]王文达,韩林海.钢管混凝土框架结构力学性能非线性有限元分析[J].建筑结构学报,2008.29(6):75-83
    [30]王文达,韩林海.钢管混凝土柱-钢梁平面框架的滞回关系[J].清华大学学报(自然科学版),2009,49(12):1934-1938
    [31] Qing Quan Liang,Sam Fragomeni. Nonlinear analysis of circular concrete-filled steel tubularshort columns under axial loading[J] Journal of Constructional Steel Research2009,65:2186-2196
    [32]屠永清,涂远星,张贵林.钢管混凝土框架-混凝土核心筒结构抗震性能分析[J].哈尔滨工业大学学报2007,39(2):554-557
    [33] Gregory G. Deierlein, Hiroshi Noguchi. Overview of U.S.–Japan Research on the SeismicDesign of Composite Reinforced Concrete and Steel Moment Frame Structures [J]JOURNAL OF STRUCTURAL ENGINEERING,2004.2:361-367
    [34] M. Ataur, Rahman, Sritharan. Performance-Based Seismic Evaluation of Two Five-StoryPrecast Concrete Hybrid Frame Buildings [J]. Journal of Structural Engineering,2007,133(11):1489-1500.
    [35] Na Kashima et al. Full-scale test of composite frame under large cyclic loading[J]. ASCEJournal of structural Engineering,2007,133(22):297-304
    [36]沈蒲生,孟焕陵.混合结构变形曲线及动力特性研究[J].重庆建筑大学学报,2006,28(6):47-50
    [37]张淑云,白国良,赵来顺.高层混合结构简体厚度优化设计[J].西安科技大学学报,2010,30(2):175-181.
    [38]白国良,楚留声,李晓文.高层钢-核心筒建筑抗震防线问题研究[J].西安建筑科技大学学报(自然科学版),2007,39(4):445-450
    [39] Huu-Tai Thai, Seung-Eock Kim. Nonlinear inelastic analysis of concrete-filled steel tubularframes.[J]Journal of Constructional Steel Research,2011,6(12):1797-1805
    [40]钟善桐,张文福,屠永清等.钢管混凝土结构抗震性能的研究.建筑钢结构进展,2002,4(2):3-15.
    [41] Lin-Hai Han, Wen-Da Wang, Zhong Tao. Performance of circular CFST column to steelbeam frames under lateral cyclic loading [J]. Journal of Constructional Steel Research,2011,67:876–890
    [42] LIU Jing bo and LIU Yang bing. Seismic Behavior Analysis of Steel-Concrete CompositeFrame Structure Systems. The14thWorld Conference on Earthquake Engineering Oct.2008,Beijing, China
    [43]李斌,高春艳填充墙对矩形钢管混凝土框架结构抗震性能的影响研究[J].工程力学,2010,27(6):127-131
    [44] Fei-Yu Liao, Lin-Hai Han, Zhong Tao. Seismic behaviour of circular CFST columns and RCshear wall mixed structures:experiments[J] Journal of Constructional Steel Research.2009,65:1582-1596
    [45]曹万林,王敏,王绍合,张建伟,曾彬.矩形钢管混凝土边框组合剪力墙及筒体结构抗震研究[J]工程力学,2008,25(6):58-70
    [46] Lin-Hai Han, Wei Li, You-Fu Yang. Seismic behaviour of concrete-filled steel tubular frameto RC shear wall high-rise mixed structures [J]. Journal of Constructional Steel Research.2009,65:1249-1260
    [47]吴迈,余建星,张忠秀.钢-混凝土组合结构体系抗震可靠性分析[J].地震工程与工程振动,2006,26(3):97-99
    [48]黄忠海,廖耘,李志山,王绍合.珠江新城J2-5地块框架-核心筒超高层结构的罕遇地震弹塑性时程分析[J]结构工程师,2009,25(2):91-97
    [49]田淑明,聂建国,尚志海,谭晋鹏,王立军.钢管混凝土框架-混凝土核心筒混合结构弹塑性分[J]建筑结构,2010,40(2):17-21
    [50]尧国皇,陈宜言,郭明,潘东辉.某超高层钢管混凝土框架-核心筒结构设计计算[J]工程抗震与加固改造,2011,33(4):66-72
    [51]周云.金属耗能减震结构设计[M].武汉:武汉理工大学出版社.2006
    [52]周云.摩擦耗能减震结构设计[M].武汉:武汉理工大学出版社.2006
    [53]周云.粘弹性阻尼减震结构设计[M].武汉:武汉理工大学出版社.2006
    [54]周云.粘滞阻尼减震结构设计[M].武汉:武汉理工大学出版社.2006
    [55]周云.防屈曲耗能支撑结构设计与应用[M].北京:中国建筑工业出版社,2007
    [56] Soong T T, Dargush G F. Passive Energy Dissipation Systems in Structural Engineering [J].State University of New York at Buffalo, USA,1997
    [57] Hanson R D, Soong T T. Seismic Design with Supplemental Energy Dissipation Devices.State University of New York at Buffalo and Multidisciplinary Center for EarthquakeEngineering Research[J]. Buffalo, New York. Earthquake Engineering Research Institute.MNO-8.2001
    [58] Constantinou M C, Dargush G F, Lee G C, et al. Analysis and Design of Buildings withAdded Energy Dissipation Systems[R]. MCEER,2002
    [59]欧进萍,吴斌,龙旭.耗能减震结构的抗震分析与设计方法[J].振动工程学报,1999,12(2):202-209
    [60]吴波,郭安薪,李惠.安装被动耗能装置的结构的抗震设计方法[J].世界地震工程,1998,14(4):41-48
    [61]吴波,郭安薪,李惠,王光远.耗能减震结构的受力分析与层间弹塑性变形简化计算方法[J].地震工程与工程振动,2002,22(2):101-107
    [62]周云,邓雪松,吴从晓.高层建筑减震新体系概念与实现[J].工程抗震与加固改造,2007,29(5):1-9
    [63]周云,邓雪松等.中国(大陆)耗能减震技术理论研究、应用的回顾与前瞻.工程抗震与加固改造.2006,Vol.28,No.6
    [64] KIM J K,Seo Y. Seismic design of low-rise steel frames with buckling-restrainedbraces[J].Engineer structure,2004,26(11):543-551
    [65] Lin Y Y,Tsai M M,Hwang J S, etal.Direct displacement-based design for building withpassive energy dissipation systems[J]. Engineering structure,2003,25(1):25-37
    [66] Kyung S L, James R,Richard S.Performance-based seismic design of steel MRFs withelastomeric dampers[J].Journal of Engineer structure.2009,135(5):489-498
    [66]吴从晓,周云,邓雪松等.高位转换耗能减震结构静力弹塑性分析[J].土木工程学报,2008,41(9):54-59
    [67]大住和正,西村胜尚,福本义之等.使用连接减震结构的超高层钢筋混凝土建筑的反应分析.第八届中日建筑结构技术交流会论文集.2008,10:601-610
    [68]徐培福,王翠坤,肖从真.中国高层建筑发展及展望[J]建筑结构,2009,39(9):28-32
    [69] C.P. Providakis. Pushover analysi of base-isolated steel-concrete composite structures undernear-fault excitations[J]. Soil Dynamics and Earthquake Engieering,2008,28(4):293-304
    [70] Jayesh K. Shinde and Michael D. Symans. Seismic Performance of Light-Framed WoodStructures with Toggle-Braced Fluid Dampers Structures Congress (ASCE),2010:856-867.
    [71]刘绍峰,叶志明.相邻建筑连接阻尼器的减震控制分析[J].结构工程师,2010,26(3):103-106
    [72]邓雪松,聂一恒,汤统壁某周期比超限偏心结构地震反应控制分析[J]地震工程与工程振动,2009,29(3):153-159
    [73]李春祥,徐双正,秦季标,张伏海.复杂形体超高层钢框架-混凝土核心筒混合结构减震的研究[J]振动与冲击,2011,30(9):184-190
    [74]缪志伟,叶列平,吴耀辉.框架-核心筒高层混合结构抗震性能评价及破坏模式分析[J].建筑结构,2009,39(04):1-6
    [75]吕西林,孟春光,田野.消能减震高层方钢管混凝土框架结构振动台试验研究和弹塑性时程分析[J].地震工程与工程振动,2006,26(4):231-238
    [76]孟春光,吕西林.柔度法纤维模型在方钢管混凝土柱滞回仿真中的应用[J].地震工程与工程振动.2009,29(4):62-69
    [77]吕西林,蒋欢军.复杂高层建筑抗震与消能减震研究进展[J]建筑结构学报,2010,31(6):52-61
    [78]孙霖.防屈曲支撑钢管混凝土柱组合框架抗震性能试验研究[D].[硕士学位论文].哈尔滨:哈尔滨工业大学.2011
    [79] Applied Technology Council. Seismic Evaluation and Retrofit of Concrete Buildings[R].Report No. ATC-40, Redwood City, California,1996
    [80] Building Seismic Safety Council. NEHRP Guidelines for the Seismic Rehabilitation ofBuildings, FEMA Report274[R]. Federal Emergency Management Agency(FEMA).Washington, D.C.,1997
    [81] Cenk Tort, Jerome F. Hajjar. A Performance-Based Design Approach for RectangularConcrete-Filled Steel Tube (RCFT) Frames under Seismic Loading[J] Structural EngineeringResearch Frontiers2007
    [82]周云,安宇,梁兴文.基于性态的抗震设计理念和方法的研究与发展[J].世界地震工程.2001,17(2):1-7
    [83]周云,汤统壁,邓雪松等.耗能减震结构基于性能简化抗震设计方法研究[J].土木工程学报.2008,41(6):14-21
    [84]周云,丁春花,邓雪松.基于性能的耗能减震加固设计理论框架[J].工程抗震与加固改造,2005,27(5):45-49
    [85]邓雪松,吴从晓,周云等.高位转换防屈曲支撑减震结构支撑简化设计方法研究.[J]振动与冲击,2011,30(2):248-251
    [86]胡宝琳,姚文娟,李国强.罕遇地震荷载作用下屈曲约束支撑框架结构弹塑性位移的简化计算方法[J].振动与冲击,2011,30(2):144-148
    [87] GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010
    [88] JGJ3—2010高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社2011
    [89] CECS28:90钢管混凝土结构设计和施工规程[S].北京:中国建筑工业出版社1990
    [90] J11395-2009钢管混凝土结构技术规程[S].兰州:甘肃省建设厅,2009
    [91]《建筑钢结构焊接技术规程》(JGJ81-2002)).北京:中国建筑工业出版社2002
    [92]《钢结构设计规范》(GB-50017-2003).北京:中国计划出版社
    [93]周云,钱洪涛,褚洪民,邹征敏.新型防屈曲耗能支撑设计原理与性能研究[J].土木工程学报,2009,42(4):64-71
    [94]邓雪松,邹征敏,周云.开槽式三重钢管防屈曲耗能支撑试验研究与有限元模拟[J].土木工程学报,2010,43(12):41-49
    [95]邹征敏.新型开槽式防屈曲耗能支撑性能研究[D].广州:广州大学硕士学位论文,2010
    [96] GB/T228-2002,金属材料室温拉伸试验方法,[S].北京:2002
    [97]姚振纲,刘祖华.《建筑结构试验》[M].上海:同济大学出版社,1996
    [98]朱伯龙.《结构抗震试验》[M].北京:地震出版社,1989
    [99] JGJ101-96建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1999
    [100]庄茁. ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005
    [101] GB50010-2010混凝土结构设计规范[S].北京:中国建筑工业出版社,2011
    [102]韩林海,陶忠,王文达.现代组合结构和混合结构-试验、理论和方法.[M]北京:科学出版社,2009
    [103]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1996
    [104] Orakcal K, Massone L M,Wallace J W.Analytical modeling of reinforced concrete walls forpredicting flexural and coupled-shear-flexural responses[R].Pacific earthquake engineeringresearch center,2006
    [105] Yassin M H M. Nonlinear analysis of prestressed concrete structures under monotonic andcyclic loads[D]. Dissertation. University of California. Berkeley, California,1994
    [106]张琦,过镇海.砼抗剪强度和剪切变形的研究[J].建筑结构学报,13(5),1992:17-24
    [107]陈滔,黄宗明.钢筋混凝土框架非弹性地震反应分析模型研究进展[J].世界地震工程,2002,18(1),91-97
    [108] Taucer F F,Spacone E,Filippou F C. A fiber beam-column element for seismic responseanalysis of reinforced concrete structures[R].EERC report91/17, Earthquake engineeringresearch center, University of California, Berkeley,1991
    [109]汪梦甫,沈蒲生.钢筋混凝土高层结构非线性地震反应分析现状[J].世界地震工程,1998,14(2),1-8
    [110]李国强,周向明,丁翔.钢筋混凝土剪力墙非线性动力分析模型[J].世界地震工程,2000,16(2),13-18
    [111]孙景江.钢筋混凝土剪力墙非线性分析模型综述分析J].世界地震工程,1994,10(2),43-46
    [112] Fajfar P, Fishinger M.Mathematical modeling of reinforced concrete structural walls fornonlinear seismic analysis [J]. Earthquake engineering and structural dynamics,1990,18(5):1-478
    [113] Yihai B,Sashi K K,Sherif E T, Lew H S.Macromodel-based simulation of progressivecollapse RC frame structures[J].Journal of structural engineering,2008,137(7):1079-1091
    [114] Alessandro B,Zdenek P,Bazant F etal.Microplane model m5f for multiaxial behavior andfracture of fiber-reinforced concrete[J].Journal of engineering mechanics, ASCE,2007,133(1):66-75
    [115] Clough R W,Benuska K L,Willson E L.Inelastic earthquake response of tall building,4thWCEE,1964,68-84
    [116]王建平.钢筋混凝土框架-剪力墙结构在强震作用下的非线性分析与控制[D].长沙:湖南大学,1994
    [117]卓幸福,蔡益燕.用墙板单元分析框架剪力墙结构[J].建筑结构学报,1992,13(3):29-42
    [118] Linda P, Bachmann H.Dynamic modeling and design of earthquake-resistant walls [J].Earthquake engineering and structural dynamic,1994,23:1331-1350
    [119] LI K N.Muti-spring model for3-dimensional analysis of RC members [J].Structuralengineering and mechanics,1339,(1):17-33
    [120]吕西林,卢文生.纤维杆元模型在框架结构非线性分析中的应用[J].力学季刊,2006,27(1):14-22
    [121] Y.Zhou,C X Wu, X S Deng, Y Wu.Research and Application of Lead ViscoelasticDamper[C].The14th world conference on earthquake engineering,2008,Beijin:NO.11-182
    [122]吕西林复杂高层建筑结构抗震理论与应用[M]北京:科学出版社,2007
    [123]郑久建.粘滞阻尼减震结构分析方法与设计理论研究[D].[博士学位论文].北京:中国建筑科学研究院,2003
    [124]日本隔震结构协会,蒋通译.被动减震结构设计·施工手册[M].北京:中国建筑工业出版社,2008
    [125] Lin Y.Y,Chang K C.An improved capacity spectrum method for ATC-40[J].Earthquakeengineering and structural dynamics,2003,32(10):2013-2025
    [126]方鄂华.多层及高层建筑结构设计[M].北京:地震出版社,1992
    [127]周云.高层建筑结构设计[M].武汉:武汉理工大学出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700