原壳小球藻番茄红素ε环化酶基因的克隆和分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶黄素(lutein)是含氧类胡萝卜素,即类叶黄素(xanthophylls)中的一种,是一种性能优异的抗氧化剂。由于富含叶黄素,小球藻(Chlorella)作为一种极具潜力的叶黄素源而备受关注。与其它叶黄素源相比,小球藻具有生长迅速、可进行异养培养、含游离叶黄素等优势。目前关于小球藻叶黄素的研究中,主要采用培养条件的优化来提高叶黄素产量,少见采用代谢途径改造的办法来实现这一目标。本论文把叶黄素代谢过程中关键分支点编码番茄红素ε环化酶(lycopene epsilon cyclase)的LCYE基因作为研究的对象,通过对原壳小球藻(Chlorella protothecoides CS-41)LCYE基因的克隆和特征分析,为进一步揭示番茄红素ε环化酶的特性和叶黄素合成的分子代谢机制奠定基础。研究工作
     主要从以下几个方面开展:
     1、通过cDNA末端快速扩增(RACE)和RT-PCR对C. protothecoides CS-41核基因组上的LCYE基因进行扩增,得到2107 bp的cDNA序列(GenBank登录号:FJ752528),序列分析显示,其开放阅读框(Open reading frame, ORF)的长度为1731 bp,编码576个氨基酸。
     2、通过LCYE基因对应的氨基酸序列的生物信息学分析,发现它与高等植物和其它藻类的LCYE有相似性,相似性最高的是莱茵衣藻(Chlamydomonas reinhardtii XM001696477.1),达到67%,其中,第48~459个氨基酸残基为一个典型的番茄红素环化酶蛋白(Lycopene cyclase protein)结构域(pfam05834),第261~284个氨基酸残基为一个典型的环化酶保守的模体,还发现其具有环化酶所特有的保守功能结构域,包括N端的双核苷酸结合位点、以及预测跨膜区域等。同时,进化树分析结果表明,藻类群中小球藻和衣藻的亲缘关系比较近。
     3、采用Taqman荧光定量PCR和高效液相色谱法(HPLC)的分别对不同培养条件下原壳小球藻的LCYE基因的表达水平和叶黄素产量进行定量分析。实验结果显示,在不同的培养条件下,LCYE基因的表达水平和叶黄素产量有一定的相关性。
Lutein is one of xanthophylls which are a group of compounds that are oxygenated derivatives of carotenoids. Natural lutein demonstrates high performance in anti-oxidation effect. Chlorella is noted for its high cellular lutein content, which makes it a potential resource for lutein production. Comparing to other lutein resources, Chlorella has many advantages such as the high specific growth rate and the ability of growing heterotrophically. Most researches focused on the optimization of cultivation conditions to improve lutein productivity; however, few researches used metabolic engineering technology to achieve this aim. The objective of this study is to clone the full-length cDNA of LCYE gene from Chlorella protothecoides CS-41 and to preliminarily understand the regulatory expression mechanism of LCYE at the molecular level by bioinformatics analysis. The following aspects were included in this study.
     1、A full-length cDNA (GenBank Accession No.FJ752528)of LCYE was cloned from Chlorella protothecoides CS-41 by RACE (rapid-amplification of cDNA ends) and RT-PCR, which is a 2107-bp sequence. It was found that there was a 1731-bp open reading frame by ORF finder, and that this gene encodes a putative LCYE from Chlorella protothecoides CS-41.
     2、Homology studies showed that the deduced amino acid sequence of LCYE gene had a significant similarity with the corresponding sequences of other green algae and higher plants. It shared the highest sequence similarity, up to 67%, with the LCYE of Chlamydomonas reinhardtii. It was predicted that one typical lycopene cyclase protein domain (Pfam05834) was located between the 48th -459th amino acid. Several typical motifs for all cyclases were found by the alignment analysis of the LCYE amino acid sequences: one Dinucleotide-binding site at the N-terminus, one Cyclase motif 1, and one Predicted TM helix at the C-terminus. The anaysis of phylogenetic tree showed the closest relationship between Chlorella protothecoides CS-41 and Chlamydomonas reinhardtii.
     3、Taqman real-time PCR and HPLC (high performance liquid chromatography) were respectively used to determine the expression level of LCYE gene and the lutein content of different cultures, and it was indicated that the expression of LCYE gene correlated with lutein content in different cultivation conditions.
引文
[1] Pfander H. Carotenoids: an overview[J]. Methods in enzymology, 1992, 2133-13.
    [2]王业勤,李勤生.天然类胡萝卜素一研究进展、生产、应用[J].中国医药科技出版社, 1997,北京4-100.
    [3]惠伯棣主编.类胡萝卜素化学及生物化学[J].中国轻工业出版社, 2005, 5-181.
    [4]许秀兰,赵国华,阚建全等.叶黄素研究进展[J].粮食与油脂, 2004, (010):3-7.
    [5] Yeum KJ, Taylor A, Tang G, et al. Measurement of carotenoids, retinoids, and tocopherols in human lenses[J]. Investigative Ophthalmology & Visual Science, 1995, 36(13):2756-2761.
    [6]沈降,孙慧敏.年龄相关性黄斑变性的发病机制及治疗的研究[J].中国实用眼科杂志, 2006, 24(003):236-239.
    [7] Bone RA, Landrum JT, Fernandez L, et al. Analysis of the macular pigment by HPLC: retinal distribution and age study[J]. Invest Ophthalmol Vis Sci, 1988, 29(6):843-849.
    [8] Bone RA, Landrum JT, Hime GW, et al. Stereochemistry of the human macular carotenoids[J]. Investigative Ophthalmology & Visual Science, 1993, 34(6):2033-2040.
    [9] Elizabeth J. Johnson. The Role of Carotenoids in Human Health[J]. Nutrition in Clinical Care, 2002, 5(2):56-65.
    [10]李长龄,毕森序,朱志刚.类胡萝卜素的新功能与临床评估[J].上海预防医学杂志, 2006, 6(18).
    [11] Lu Q-Y, Hung J-C, Heber D, et al. Inverse Associations between Plasma Lycopene and Other Carotenoids and Prostate Cancer[J]. Cancer Epidemiol, Biomarkers & Prevention, 2001, 10(7):749-756.
    [12] Trosko JE. The role of stem cells and gap junctional intercellular communication in carcinogenesis[J]. Joural of Biochemical and Molecular Biology,2003, 36(1):43-48.
    [13]孟祥河,毛忠贵,潘秋月, et al.叶黄素的保健功能[J].中国食品添加剂, 2003, 1(1):17-20.
    [14] Paiva SA, Russell RM. Beta-carotene and other carotenoids as antioxidants[J]. Journal of the American College of Nutrition, 1999, 18(5):426-433.
    [15] Schafer FQ, Wang HP, Kelley EE, et al. Comparing beta-carotene, vitamin E and nitric oxide as membrane antioxidants[J]. Biological Chemistry, 2002, 383(3-4):671-681.
    [16] Cunningham FX, Gantt E. Genes and enzymes of carotenoid biosynthesis in plants[J]. Annual Review in Plant Physiology and Plant Molecular Biology, 1998, 49557-583.
    [17] Lohr M, Im CS, Grossman AR. Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii[J]. Plant Physiology, 2005, 138(1):490-515.
    [18] Cunningham FX Jr., Pogson B, Sun Z, et al. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation[J]. Plant Cell, 1996, 8(9):1613-1626.
    [19] Grossman AR, Lohr M, Im CS. Chlamydomonas reinhardtii in the landscape of pigments[J]. Annual Review Genetics, 2004, (38):119-173.
    [20] Botella-Pavia P, Besumbes O, Phillips MA, et al. Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors[J]. The Plant Journal, 2004, 40(2):188-199.
    [21] Armstrong GA, Alberti M, Leach F, et al. Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus[J]. Molecular Genomics and Genetics, 1989, 216(2-3): 254-268.
    [22] Misawa N, Nakagawa M, Kobayashi K, et al. Elucidation of the Erwinia uredovoracarotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli[J]. Journal of Bacteriology, 1990, 172(12):6704-6712.
    [23] Kajiwara S, Fraser PD, Kondo K, et al. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli[J]. Biochemistry Journal, 1997, 324 ( Pt 2)421-426.
    [24] Kuntz M, Romer S, Suire C, et al. Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Capsicum annuum: correlative increase in enzyme activity and transcript level during fruit ripening[J]. The Plant Journal, 1992, 2(1):25-34.
    [25] Scott RJ, Draper J. Transformation of carrot tissues derived from proembryogenic suspension cells: A useful model system for gene expression studies in plants[J]. Plant Molecular Biology, 1987, 8(3):265-274.
    [26] Neudert U, Martnez-Ferez I, Fraser PD, et al. Expression of an active phytoene synthase from Erwinia uredovora and biochemical properties of the enzyme[J]. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1998, 1392(1):51-58.
    [27] Ray J, Bird C, Maunders M, et al. Sequence of pTOM5, a ripening related cDNA from tomato[J]. Nucleic Acids Research, 1987, 15(24):10587.
    [28] Bartley GE, Scolnik PA. cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene encoding phytoene synthase[J]. Journal of Biological Chemistry, 1993, 268(34):25718-25721.
    [29] Grunewald K, Eckert M, Hirschberg J, et al. Phytoene desaturase is localized exclusively in the chloroplast and up-regulated at the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis (Volvocales, chlorophyceae)[J]. Plant Physiology, 2000, 122(4):1261-1268.
    [30] Chamovitz D, Pecker I, Hirschberg J. The molecular basis of resistance to the herbicide norflurazon[J]. Plant Molecular Biology, 1991, 16(6):967-974.
    [31] Sandmann G, Mitchell G. In vitro inhibition studies of phytoene desaturase by bleaching ketomorpholine derivatives[J]. Journal of Agricultural and Food Chemistry, 2001, 49(1):138-141.
    [32] Scolnik PA, Bartley GE. Nucleotide sequence of an Arabidopsis cDNA for phytoene synthase[J]. Plant Physiol, 1994, 104(4):1471-1472.
    [33] Albrecht M, Klein A, Hugueney P, et al. Molecular cloning and functional expression in E. coli of a novel plant enzyme mediating-carotene desaturation[J]. FEBS Letters, 1995, 372(2-3):199-202.
    [34] Rodrigo MJ, Marcos JF, Zacarias L. Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development and maturation[J]. Journal of Agricultural Food Chemistry, 2004, 52(22):6724-6731.
    [35] Pecker I, Gabbay R, Cunningham FX, Jr., et al. Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening[J]. Plant Molecular Biology, 1996, 30(4):807-819.
    [36] Kato M, Ikoma Y, Matsumoto H, et al. Accumulation of Carotenoids and Expression of Carotenoid Biosynthetic Genes during Maturation in Citrus Fruit[J]. Plant Physiology, 2004, 134(2):824-837.
    [37] Michael Vishnevetsky MO, Hanan Itzhaki, Maggie Levy, Yael Libal-Weksler, Zach Adam, Alexander Vainstein,. Molecular cloning of a carotenoid-associated protein from Cucumis sativus corollas: homologous genes involved in carotenoid sequestration in chromoplasts[J]. The Plant Journal, 1996, 10(6):1111-1118.
    [38] Shimada H, Kondo K, Fraser P, et al. Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway[J]. Applied and Environmental Microbiology, 1998, 64(7):2676-2680.
    [39] Yamano S, Ishii T, Nakagawa M, et al. Metabolic engineering for production ofβ-carotene and lycopene in Saccharomyces cerevisiae[J].Bioscience, Biotechnology,and Biochemistry, 1994, 58(6):1112-1114.
    [40] Lagarde D, Beuf L, Vermaas W. Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803[J]. Applied Environment Microbiolgy, 2000, 66(1):64-72.
    [41] Fray R, Wallace A, Fraser P, et al. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway[J]. The Plant Journal, 1995, 8(5):693-701.
    [42] Shewmaker C, Sheehy J, Daley M, et al. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects[J]. The Plant Journal, 1999, 20(4):401-412.
    [43] Burkhardt P, Beyer P, Wunn J, et al. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis[J]. Plant Journal, 1997, 11(5):1071.
    [44] Ye X, Beyer P. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm[J]. Science, 2000, 287(5451):303-305.
    [45] Bramley P, Teulieres C, Blain I, et al. Biochemical characterization of transgenic tomato plants in which carotenoid synthesis has been inhibited through the expression of antisense RNA to pTOM5[J]. The Plant Journal, 1992, 2(3):343-349.
    [46] Romer S, Fraser P, Kiano J, et al. Elevation of the provitamin A content of transgenic tomato plants[J]. Nature biotechnology, 2000, 18,666-669.
    [47]陈峰,姜悦.微藻生物技术[M].中国轻工业出版社北京, 1999.
    [48] Bold HC , Wynne MJ. Introduction to the algae (2nd ed), 1985, Prentice-Hall Inc.
    [49]施春雷,史贤明.原壳小球藻中叶绿素无光合成相关基因的克隆与特征分析[D].上海交通大学博士学位论文, 2006.
    [50] Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes and fermenters[J]. Journal of Biotechnology, 1999, 70(1-3):313-321.
    [51]吴正云.小球藻异养的动力学分析与优化[D].上海交通大学博士学位论文, 2007.
    [52] Tsuji N, Hirooka T, Nagase H, et al. Photosynthesis-dependent removal of 2,4-dichlorophenol by Chlorella fusca var. vacuolata[J]. Biotechnology Letters, 2003, 25(3):241-244.
    [53] Akiba, Noutoshi Y, Maki S, et al. Molecular characterization of Chlorella chromosomes: screening of bent DNAs[J]. Nucleic Acids Symposium Series, 1995, (34):73-74.
    [54] Higashiyama T, Maki S, Yamada T. Molecular organization of Chlorella vulgaris chromosome I: presence of telomeric repeats that are conserved in higher plants[J]. Molecular Gennomics and Genetics, 1995, 246(1):29-36.
    [55] Wakasugi T, Nagai T, Kapoor M, et al. Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division[J]. The Proceeding of the National Academy of Sciences of the United States of American, 1997, 94(11):5967-5972.
    [56] H?rtensteiner S, Chinner J, Matile P, et al. Chlorophyll breakdown in Chlorella protothecoides: characterization of degreening and cloning of degreening-related genes[J]. Plant Molecular Biology, 2000, 42(3):439-450.
    [57] Cock JM, Kim KD, Miller PW, et al. A nuclear gene with many introns encoding ammonium-inducible chloroplastic NADP-specific glutamate dehydrogenase(s) in Chlorella sorokiniana[J]. Plant Molecular Biology, 1991, 17(5):1023-1044.
    [58] Dawson HN, Pendleton LC, Solomonson LP, et al. Cloning and characterization of the nitrate reductase-encoding gene from Chlorella vulgaris: structure and identification of transcription start points and initiator sequences[J]. Gene, 1996, 171(2):139-145.
    [59] Honjoh K-i, Matsumoto H, Shimizu H, et al. Cryoprotective Activities of Group 3 Late Embryogenesis Abundant Proteins from Chlorella vulgaris C-27[J].Bioscience, Biotechnology, and Biochemistry, 2000, 64(8):1656-1663.
    [60] Thomas Caspari IR, Jagen Stolz, Widmar Tanner. Purification of the Chlorella HUP1 hexose;proton symporter to homogeneity and its reconstitution in vitro[J]. The Plant Journal, 1996, 10(6):1045-1053.
    [61] Watanabe KI, Ehara M, Inagaki Y, et al. Distinctive origins of group I introns found in the COXI genes of three green algae[J]. Gene, 1998, 213(1-2):1-7.
    [62] Huang J-C, Wang Y, Sandmann G, et al. Isolation and characterization of a carotenoid oxygenase gene from Chlorella zofingiensis (Chlorophyta)[J]. Applied Microbiology and Biotechnology, 2006, 71(4):473-479.
    [63] Jarvis EE, Brown LM. Transient expression of firefly luciferase in protoplasts of the green alga Chlorella ellipsoidea[J]. Current Genetics, 1991, 19(4):317-321.
    [64] Maruyama M, HorákováI, Honda H, et al. Introduction of foreign DNA into Chlorella saccharophila by electroporation[J]. Biotechnology Techniques, 1994, 8(11):821-826.
    [65] Dawson HN, Burlingame R, Cannons AC. Stable Transformation of Chlorella : Rescue of Nitrate Reductase-Deficient Mutants with the Nitrate Reductase Gene[J]. Current Microbiology, 1997, 35(6):356-362.
    [66] Hawkins RL, Nakamura M. Expression of Human Growth Hormone by the Eukaryotic Alga, Chlorella[J]. Current Microbiology, 1999, 38(6):335-341.
    [67] Chen Y, Wang Y, Sun Y, et al. Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells[J]. Current Genetics, 2001, 39(5):365-370.
    [68] Piccaglia R, Marotti M, Grandi S. Lutein and lutein ester content in different types of Tagetes patula and T. erecta[J]. Industrial Crops and Products, 1998, 8(1):45-51.
    [69]刘龙军,魏东,梁晓芸, et al.利用微藻生产特种天然类胡萝卜素的研究进展[J].海洋科学, 2006, (09).
    [70] Zhang XW, Shi XM, Chen F. A kinetic model for lutein production by the greenmicroalga Chlorella protothecoides in heterotrophic culture[J]. Journal of Industrial Microbiology & Biotechnology, 1999, 23(6):503-507.
    [71] Chen F. High cell density culture of microalgae in heterotrophic growth[J]. Trends in Biotechnology, 1996, 14(11):421-426.
    [72] Shi XM, Chen F. High yield production of lutein by heterotrophic Chlorella protothecoides in fed-batch systems[J]. Algae and Their Biotechnological Potential, 2001, 107-119.
    [73] Shi X-M, Chen F, Yuan J-P, et al. Heterotrophic production of lutein by selected Chlorella strains[J]. Journal of Applied Phycology, 1997, 9(5):445-450.
    [74] Shi XM, Zhang XW, Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources[J]. Enzyme and Microbial Technology, 2000, 27(3-5):312-318.
    [75] Shi X, Wu Z, F Chen. Kinetic modeling of lutein production by heterotrophic Chlorella at various pH and temperatures[J]. Molecular Nutrition & Food Research, 2006, 50(8):763-768.
    [76] Dharmapuri S, Rosati C, Pallara P, et al. Metabolic engineering of xanthophyll content in tomato fruits[J]. FEBS Letters, 2002, 519(1-3):30-34.
    [77] Cunningham Jr F, Pogson B, Sun Z, et al. Functional Analysis of the beta and epsilon Lycopene Cyclase Enzymes of Arabidopsis Reveals a Mechanism for Control of Cyclic Carotenoid Formation[J]. The Plant Cell Online, 1996, 8(9):1613-1626.
    [78]陶俊.柑橘果实类胡萝卜素形成及调控的生理机制研究[D].浙江大学博士学位论文, 2002.
    [79] Huang J, Wang Y, Sandmann G, et al. Isolation and characterization of a carotenoid oxygenase gene from Chlorella zofingiensis (Chlorophyta)[J]. Applied Microbiology and Biotechnology, 2006, 71(4):473-479.
    [80] PredictProtein. http://www.predictprotein.org/
    [81] HMMs. http://pfam.sanger.ac.uk/search
    [82] Hugueney P, Badillo A, Chen H, et al. Metabolism of cyclic carotenoids: a model for the alteration of this biosynthetic pathway in Capsicum annuum chromoplasts[J]. The Plant Journal, 1995, 8(3):417-424.
    [83] Lee PC, Schmidt D. Metabolic engineering towards biotechnological production of carotenoids in microorganisms[J]. Applied Microbiology Biotechnology, 2002, (60):1-11.
    [84] Phillip DM, Young AJ. Preferential inhibition of the lycopene epsilon-cyclase by the substituted triethylamine compound MPTA in higher plants[J]. Journal of Plant Physiology, 2006, 163(4):383-391.
    [85] Diretto G, Tavazza R, Welsch R, et al. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase[J]. BMC Plant Biology, 2006, 6:13.
    [86] Cunningham FX, Jr., Gantt E. One ring or two? Determination of ring number in carotenoids by lycopene epsilon-cyclases[J]. The Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(5):2905-2910.
    [87] Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling[J]. Bioinformatics, 2006, 22(2):195-201.
    [88] Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling[J]. Electrophoresis, 1997, 18(15):2714-2723.
    [89] Kim J, DellaPenna D. Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3[J]. The Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(9):3474-3479.
    [90] Yu B, Lydiate DJ, Young LW, et al. Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase[J]. Transgenic Research,2008, 17(4):573-585.
    [91] Gouveia L, Veloso V, Reis A, et al. Evolution of pigment composition in Chlorella vulgaris[J]. Bioresource technology, 1996, 57(2):157-163.
    [92]桂林,史贤明,李琳等.高效液相色谱法测定蛋白核小球藻中的叶黄素[J].食品与发酵工业, 2005, 31(11):95-97.
    [93]宋志军,宋长绪,杨增岐等.猪生殖与呼吸综合征病毒TaqMan荧光定量RT-PCR检测方法的建立[J].中国兽医科学, 2006, 36(2):98-102Song.
    [94] Shi XM, Chen F. Effects of temperature and glucose concentration on the heterotrophic production of lutein by Chlorella protothecoides[J]. Phycologia, 1997, 36(4):102-102. ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700