水环境重金属检测微传感器及自动分析仪器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国社会经济发展迅速,但是随之而来的环境污染问题也不容小视。工业废水的大量排放和矿产资源的过度开发等人为因素加重了水环境的重金属污染。水体中溶解的重金属一般无色无味,通过视觉、嗅觉和味觉无法察觉,但是重金属对人体和动植物的危害却非常大,而且有累积效应,因此发展水环境重金属的快速现场检测技术意义重大。
     本文选择电化学溶出伏安法作为水环境重金属现场检测的有效手段,分析了溶出伏安检测的基本原理和定量方法,针对溶出伏安法重金属检测传感器新材料、微型化和集成化三个主要发展方向分别进行了研究,并在此基础上开发了海水重金属元素自动分析仪成功应用于渤海现场检测,最后初步设计研制了应用于太湖水质监测的水环境重金属无线监测仪器。本文研究工作得到了国家高技术研究发展计划(863计划)项目和国家重点基础研究发展计划(973计划)项目的资助。
     本文所做的主要工作如下:
     1.使用实验室自行研制的重金属分析仪,结合差分脉冲溶出伏安法,采用预镀汞膜法对水环境试样中的锌、镉、铅、铜等4种重金属离子进行了测定,并提出了纯水背景溶液和海水背景溶液不同的测试方法,对纯水背景溶液检测的准确度高,精密度达到5%左右,对海水背景溶液也进行了有效测定,精密度控制在15%以内,检出限达到0.1-0.31μg/L。
     2.针对传感器敏感膜新材料的发展方向,对同位镀铋膜法测定重金属离子进行了探索,确定了纯水背景溶液的测定条件,并探索了同位镀铋测定海水的方法,发展了环境友好型的重金属敏感物质。
     3.针对传感器微型化的发展方向,研制了带状微电极阵列,电极阵列由100个带状微电极组成,电极间距64μm,每个微电极宽6μm,厚1OOnm,长8mm,并对电极进行了尺寸和伏安特性表征,证明电极特性良好,不镀膜用于铅、铜混合标准溶液的检测效果良好。
     4.针对传感器集成化的发展方向,在同一个硅基底上将光寻址电位传感器和微电极阵列集成在一起,制作了光电复合微阵列传感器,在检测时可以根据需要充分发挥光寻址电位传感器和微电极阵列各自的优势,在复合检测时可以建立线性回归模型提高抗干扰能力。
     5.在传感器研究的基础上,将自动化技术和化学分析技术有效结合,研制了海水重金属元素自动分析仪,仪器各项指标均通过了第三方检测,并经历了多次现场海试,填补了国内海水重金属现场在线检测仪器的空缺。
     6.将传统的重金属检测技术与新兴的无线通讯技术结合,研制了水环境重金属无线监测仪器,应用优化的水路结构,大大提高了仪器的便携性,仪器初步测试功能良好,满足设计要求。
In recent years, the environmental pollution in China has become rather serious with the rapid development of economy. Emission of industrial wastewater and overexploitation of metallic minerals strengthens the heavy metal pollution in aqueous environment. For the dissolved heavy metal ions in water are generally colorless and tasteless, it is difficult to be discovered by senses of vision, smell and taste. Since heavy metals of cumulative effect in the body would do a lot of harm to humans, animals and plants, the technique of quick and in-situ heavy metal detection in aqueous environment is of great significance.
     In this thesis, electrochemical stripping voltammetry (SV) was selected as an effective method for the in-situ measurements of heavy metal ions in aqueous environment and its principle and quantitative skills are illustrated. We also did researches on the three main development trends which are creative sensing materials, micromation and integration for the sensors focusing on stripping voltammetric detection of heavy metals. Besides that, an automatic monitor and a wireless analysis instrument were developed respectively for the heavy metal detections in the Bohai Sea and the Taihu Lake. The researches were financed by the National High Technology Research Program (863Program) and the National Key Basic Research Program (973Program).
     The major contents of this thesis are as follows:
     1) Heavy metals including zinc, cadmium, lead and copper ions in aqueous sample were determined by the mercury-film electrode using differential pulse stripping voltammetry (DPSV) with the analysis instrument fabricated by our lab. Specific detection methods were applied depending on the backgrounds of the solutions. The accuracy of measuring pure water-background samples was good and the precision achieved5%while the precision of measuring seawater-background samples was about15%. The detection limits of all the four elements were in the range of0.1-0.3μg/L.
     2) For the trend of creative sensing materials in developing electrochemical sensors, in-situ coated bismuth electrode was tested for heavy metal detection and the method of detecting pure water-background samples was determined. The method of detecting heavy metal ions in seawater by bismuth electrode was also studied. Attractive characteristics of bismuth electrodes are mercury-free and environmentally friendly.
     3) For the trend of micromation in developing electrochemical electrodes, a microband electrode array consisted of100microelectrodes was developed. The microband electrodes with inter-electrode spacing of64μm were8mm long,6μm wide and100nm thick. The microband electrode array with excellent dimensional and voltammetric traits did good performance in the detection of mixed samples of lead and copper ions.
     4) For the trend of integration in developing electrochemical electrodes, a photoelectric integrated sensor combined light addressable potentiometric sensor (LAPS) and microelectrode array (MEA) on the same silicon chip was designed and fabricated. It was possible to take respective advantages of LAPS and MEA according to different conditions of the measurements. When LAPS and MEA were applied together to the detection, the linear regression model was built to improve the anti-interference ability.
     5) Based on the researches on sensors and combining the techniques of automation and chemical analysis, an automatic heavy metal monitor for seawater was developed. All the parameters of the monitor passed the third party test. The automatic heavy metal monitor experienced a number of sea trials and filled the vacancy of in-situ heavy metal monitor for seawater in China.
     6) By integrating techniques of traditional heavy metal detection and wireless communication, a wireless heavy metal analysis instrument was developed. The optimized water path greatly improved the portability. Preliminary test showed that the instrument functioned well and satisfied the requests of the design.
引文
1. Achterberg E. P., Braungardt C., Stripping voltammetry for the determination of trace metal speciation and in-situ measurements of trace metal distributions in marine waters, Analytica Chimica Acta,1999,400:381-397
    2. Arida H. A., Kloock J. P., Schoning M. J.,Novel organic membrane-based thin-film microsensors for the determination of heavy metal cations, Sensors 2006,6:435-444
    3. Arrigan D. W. M., Nanoelectrodes, nanoelectrode arrays and their applications, Analyst,2004,129:1157-1165
    4. Bard A. J., Faulkner L. R., Electrochemical Methods-Fundamentals and Applications, USA:JOHN WILEY & SONS, INC,2001
    5. Belmont C., Tercier M. L., Buffle J., Fiaccabrino G. C., Koudelka H. M., Mercury-plated iridium-based microelectrode arrays for trace metals detection by voltammetry:optimum conditions and reliability. Analytica Chimica Acta,1996, 329:203-214
    6. Berduque A., Lanyon Y. H., Beni V., Herzog G., Watson Y. E., Rodgers K., Stam F., Alderman J., Arrigan D. W. M., Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions, Talanta,2007,71:1022-1030
    7. Buehler M. G., Kuhlman G. M., Keymeulen D., Myung N. V., Planar REDOX and conductivity sensors for ISS water quality measurements, Aerospace Conference Proceedings,2005,2(2):535-550
    8. Chong C. Y., Kumar S. P., Sensor networks:evolution, opportunities, and challenges, Proc. of the IEEE,2003,91(8):1247-1256
    9. Chuanuwatanakul S., Dungchai W., Chailapakul O., Motomizu S., Determination of trace heavy metals by sequential injection-anodic stripping voltammetry using bismuth film screen-printed carbon electrode,2008,24:589-594
    10. Compton R. G., Wildgoose G. G., Rees N. V., Streeter I., Baron R., Design, fabrication, characterisation and application of nanoelectrode arrays, Chemical Physics Letters,2008,459:1-17
    11. Dragoe D., Spataru N., Kawasaki R., Manivannan A., Spataru T., Tryk D. A., Fujishima A., Detection of trace levels of Pb2+ in tap water at boron-doped diamond electrodes with anodic stripping voltammetry, Electrochimica Acta, 2006,51:2437-2441
    12. Ermolenko Y., Yoshinobu T., Mourzina Y., Levichev S., Furuichi K., Vlasov Y., Schoning M. J., Iwasaki H., Photocurable membranes for ion-selective light-addressable potentiometric sensor, Sensors and Actuators B:Chemical,2002, 85:79-85
    13. Gardner R. D., Zhou A., Zufelt N. A., Development of a microelectrode array sensing platform for combination electrochemical and spectrochemical aqueous ion testing, Sensors and Actuators B:Chemical,2009,136:177-185
    14. Grinciene G., Selskiene A., Verbickas R., Norkus E., Pauliukaite R., Peculiarities of electrochemical bismuth film formation in the presence of bromide and heavy metal ions, Electroanalysis,2009,21:1743-1749
    15. Gutierrez J. M., Mimendia A., Munoz R., Leija L., Hernandez P. R., Valle M. D., Monitoring of environmental systems using electronic tongues as sensor networks, 2011, Pan American Health Care Exchanges,72-76
    16. Hafeman D. G., Parce J. W., McConnell H. M., Light-addressable potentiometric sensor for biochemical system, Science,1988,240:1182-1185
    17. Hocevar S. B., Svancara I., Ogorevc B., Vytras K., Antimony film electrode for electrochemical stripping analysis, Analytical Chemistry,2007,79:8639-8643
    18. Huang X. J., O'Mahony A. M., Compton R. G., Microelectrode arrays for electrochemistry:approaches to fabrication, Small,2009,5:776-788
    19. Jovanovski V., Hocevar S. B., Ogorevc B., Ex situ prepared antimony film electrode for electrochemical stripping measurement of heavy metal ions, Electroanalysis,2009,21:2321-2324
    20. Kokkinos C., Economou A., Raptis I., Speliotis T., Disposable micro fabricated bismuth microelectrode arrays for trace metal analysis by stripping voltammetry, Procedia Engineering,2011,25:880-883
    21. Langeloth M., Chiku M., Einaga Y., Anodic stripping voltammetry of zinc at boron-doped diamond electrodes in ammonia buffer solution, Electrochimica Acta,2010,55:2824-2828
    22. Li D. Y., Jia J. B., Wang J. G., A study on the electroanalytical performance of a bismuth film-coated and Nafion-coated glassy carbon electrode in alkaline solutions, Microchim Acta,2010,169:221-225
    23. Lin M., Wu Y., Wassell I., Wireless sensor network:water distribution monitoring system, Radio and Wireless Symposium, Cambridge,2008,775-778
    24. Morton J., Havens N., Mugweru A., Wanekaya A. K., Detection of trace heavy metal ions using carbon nanotube-modified electrodes, Electroanalysis,2009, 21(14):1597-1603
    25. Mourzina. Y., Yoshinobu T., Schubert J., Luth H., Iwasaki H., Schoning M. J., Ion-selective light-addressable potentiometric sensor (LAPS) with chalcogenide thin film prepared by pulsed laser deposition,Sensors and Actuators B:Chemical. 2001,80:136-140
    26. O'Flyrm B., Martinez R., Cleary J., Slater C., Regan F., Diamond D., Murphy, H., SmartCoast:a wireless sensor network for water quality monitoring,32nd IEEE Conference on Local Computer Networks, Cork,2007,815-816
    27. Saban S., Darling R. B., Multi-element heavy metal ion sensors for aqueous solutions. Sensors and Actuators B:Chemical,1999,61:128-137
    28. Schoning M. J., Kloock J. P., About 20 years of silicon-based thin-film sensors with chalcogenide glass materials for heavy metal analysis:technological aspects of fabrication and miniaturization, Electroanalysis,2007,19(19-20):2029-2038
    29. Silva P. R. M., Khakani M. A. E., Chaker M., Champagne G. Y., Chevalet J., Gastonguay L., Lacasse R., Ladouceur M., Development of Hg-electroplated-iridium based microelectrode arrays for heavy metal traces analysis. Analytica Chimica Acta,1999,385:249-255
    30. Slavec M., Hocevar S. B., Baldrianova L., Tesarova E., Svancara I., Ogorevc B., Vytras K., Antimony film microelectrode for anodic stripping measurement of cadmium(Ⅱ), lead(Ⅱ) and copper(Ⅱ), Electroanalysis,2010,22:1617-1622
    31. Steinberg I. M., Steinberg M. D., Radio-frequency tag with optoelectronic interface for distributed wireless chemical and biological sensor applications, Sensors and Actuators B:Chemical,2009,138:120-125
    32. Svancara I., Prior C., Hocevar S. B., Wang J., A decade with bismuth-based electrodes in electroanalysis, Electroanalysis,2010,22(13):1405-1420
    33. Tall O. E., Nicole J. R., Monique S., Olivier V., Anodic stripping voltammetry of heavy metals at nanocrystalline boron-doped diamond electrode, Electroanalysis, 2007,19(11):1152-1159
    34. Urbanova V., Vytras K., Kuhn A., Macroporous antimony film electrodes for stripping analysis of trace heavy metals,Electrochemistry Communications,2010, 12:114-117
    35. Vassilev V. S., Boycheva S. V., Chemical sensors with chalcogenide glassy membranes, Talanta,2005,67:20-27
    36. Wagner T., Molina R., Yoshinobu T., Kloock J. P., Biselli M, Canzoneri M., Schnitzler T., Schoning M. J., Handheld multi-channel LAPS device as a transducer platform for possible biological and chemical multi-sensor applications, Electrochimica Acta,2007,53:305-311
    37. Wang J., Analytical electrochemistry,3rd edition, John Wiley & Sons, Inc.,2006
    38. Wang J., Lu J., Hocevar S. B., Farias P. A. M., Bismuth-coated carbon electrodes for anodic stripping voltammetry, Analytical Chemistry,2000,72:3218-3222
    39. Wang J., Stripping analysis at bismuth electrodes:a review, Electroanalysis,2005, 17(15-16):1341-1346
    40. Xie X., Stiiben D., Berner Z., Albers J., Hintsche R., Jantzen E., Development of an ultramicroelectrode arrays (UMEAs) sensor for trace heavy metal measurement in water. Sensors and Actuators B:Chemical,2004,97:168-173
    41. Yang X. P., Ong K. G., Dreschel W. R., Zeng K. F., Mungle C. S., Grimes C. A., Design of a wireless sensor network for long-term, in-situ monitoring of an aqueous environment, Sensors,2002,2:455-472
    42. Yun K. S., Gil J., Kim J., Kim H. J., Kim K., Park D., Kim M. S., Shin H., Lee K., Kwak J., Yoon E., A miniaturized low-power wireless remote environmental monitoring system based on electrochemical analysis, Sensors and Actuators B: Chemical,2004,102:27-34
    43. Zhang Z., Yu K., Bai D., Zhu Z. Q., Synthesis and electrochemical sensing toward heavy metals of bunch-like bismuth nanostructures, Nanoscale Res Lett, 2010,5:398-402
    44. Zhao H. X., Cai W., Ha D., Guo H. S., Wang P., The characterization of a double-side nanoband electrode array and its application to heavy metals detection,2011, Sensor Letters,9(2):801-806
    45. Zhao H., Jiang Y., Ma Y. R., Wu Z. J., Cao Q., He Y. J., Li X. J., Yuan Z. B., Poly(2-amino-4-thiazoleacetic acid)/multiwalled carbon nanotubes modified glassy carbon electrodes for the electrochemical detection of copper(Ⅱ), Electrochimica Acta,2010,55,2518-2521
    46. Zoski C. G., Ultramicroelectrodes:design, fabrication, and characterization, Electroanalysis,2002,14(15-16):1041-1051
    47. Zou Z. W., Jang A., MacKnight E., Wu P. M., Do J., Bishop P. L., Ahn C. H., Environmentally friendly disposable sensors with microfabricated on-chip planar bismuth electrode for in situ heavy metal ions measurement, Sensors and Actuators B,2008,134:18-24
    48.百度百科,MEMS, http://baike.baidu.com/view/37086.htm
    49.百度百科,PDMS, http://baike.baidu.com/view/1556729.htm
    50.百度百科,电感耦合等离子体质谱,http://baike.baidu.com/view/548437.htm
    51.百度百科,电化学分析法,http://baike.baidu.com/view/334206.htm
    52.百度百科,激光诱导击穿光谱仪,http://baike.baidu.com/view/1621144.htm
    53.百度百科,原子发射光谱法,http://ba ike.baidu.com/view/147121.htm
    54.百度百科,原子吸收光谱法,http://baike.baidu.com/view/242359.htm
    55.百度百科,原子荧光光谱法,http://baike.baidu.com/view/679361.htm
    56.百度百科,中子活化分析,http://baike.baidu.com/view/1633074.htm
    57.百度百科,重金属,http://baike.baidu.com/view/1208.htm
    58.百度百科,紫外-可见分光光度法,http://baike.baidu.com/view/67673.htm
    59.曹斌,何松洁,夏建新,重金属污染现状分析及其对策研究,中央民族大学学报(自然科学版),2009,18(1):29-33
    60.常晋娜,瞿建国,水体重金属污染的生态效应及生物监测,四川环境,2005,24(4):29-33
    61.但德忠,阮静纯,微分电位溶出法连续测定饮料中的铜铅隔锌,分析实验室,2000,19(2):27-30
    62.高鸿,张祖训,极谱电流理论,北京:科学出版社,1986
    63.高小明,水环境重金属检测仪器的硬件设计,浙江大学硕士学位论文,2010
    64.广州友善之臂计算机科技有限公司,http://www.arm9-net/mini2440-feature.asp
    65.郭红荪,基于光电复合传感器的重金属检测及无线通讯系统设计,浙江大学硕士学位论文,2011
    66.国家海洋局,2010年中国海洋环境状况公报,2011
    67.国家环境保护总局,GB 3097-1997,海水水质标准
    68.国家环境保护总局,GB 3838-2002,地表水环境质量标准
    69.国家卫生部,GB 5749-2006,生活饮用水卫生标准
    70.何刚,耿晨光,罗睿,重金属污染的治理及重金属对水生植物的影响,贵州农业科学,2008,36(3):147-150
    71.鞠烷先,电分析化学与生物传感技术,北京:科学出版社,2006
    72.李冬月,郏建波,王建国,化学修饰铋膜电极的制备和应用研究进展,分析化学评述与进展,2012,40(2):321-327
    73.李毅,微纳集成传感器及其在重金属检测中应用的研究,浙江大学硕士学位论文,2010
    74.李毅,张舟娜,蔡巍,高小明,王平,基于PVC薄膜的汞离子光寻址电位传感器研究,浙江大学学报(工学版),2010(6),1231-1236
    75.刘大龙,方防,韩清鹏,门洪,邹绍芳,王平,海水重金属元素现场分析仪器的硬件设计,仪器仪表与传感器,2004,8:5-8
    76.门洪,邹绍芳,王平,Andrey Legin,沈静琴,许祝安,脉冲激光沉积技术制备的薄膜传感器的研究,浙江大学学报(工学版),2005,39(4):600-604
    77.石宝祥,漆德瑶,溶出伏安法中玻碳镀汞电极表面的汞膜状态,化学学报, 1985,43:134-139
    78.司惠民,王项南,李超,李力平,船用海水自动采样系统的软件设计,海洋技术,2011,30(1):15-19
    79.孙琼,嵌入式Linux应用程序开发详解,2006,北京:人民邮电出版社
    80.唐建勋,水环境重金属污染对水生动物的生态效应,科技风,2009,21:219
    81.汪尔康,分析化学,北京:北京理工大学出版社,2002
    82.王国顺等译,电化学分析——溶出伏安法,北京:中国计量出版社,1988
    83.王海东,方凤满,谢宏芳,中国水体重金属污染研究现状与展望,广东微量元素科学,2010,1 7(1):14-18
    84.王宏镔,束文圣,蓝崇钰,重金属污染生态学研究现状与展望,生态学报,2005,25(3):596-605
    85.王平,刘清君,生物医学传感与检测,杭州:浙江大学出版社,2010
    86.王银瓶,海水重金属元素现场分析仪器的软件设计,浙江大学硕士学位论文,2006
    87.王银瓶,潘跃峰,李毅,邹绍芳,胡卫军,王平,海水痕量重金属元素现场自动识别技术,浙江大学学报(工学版),2007,41(2):230-235
    88.吴芯芯,应太林,茅宏明,漆德瑶,流动注射-示差脉冲阳极溶出伏安法中壁喷玻碳汞膜电极表面状态研究,分析化学,1993,21(4):480-483
    89.谢军,王平,李蓉,光寻址电位图象传感器的研究,仪器仪表学报,1998,19(1):50-55
    90.徐继刚,王雷,肖海洋,高明,李静,我国水环境重金属污染现状及检测技术进展,环境科学导刊,2010,29(5):104-108
    91.薛建强,徐曼,龚跃球,赵修建,硫系玻璃的制备特性及应用,光电子技术与信息,2003,16:28-31
    92.意大利IDRONAUT S.r.l公司,http://www.idronaut.it/cms/view
    93.张义贤,重金属对大麦毒性效应的研究,环境科学学报,1997,17(2):199-207
    94.张祖训,汪尔康,电化学原理和方法,北京:科学出版社,2000
    95.张祖训著.微电极动力学.北京:科学出版社,1998
    96.赵会欣,蔡巍,哈达,万浩,王平,用于水污染重金属检测的新型微电极阵 列传感器芯片研究,2011,武汉,中国生物医学工程联合学术年会(CBME'2011)
    97.周怀东,彭文启,水环境与水环境修复,北京:化学工业出版社,2005
    98.邹绍芳,门洪,李毅,王银瓶,叶学松,王平,海水重金属自动检测系统研究,浙江大学学报(工学版),2005,39(11):1708-1712
    99.邹绍芳,重金属电化学传感器及其在海水检测中应用的研究,浙江大学博士学位论文,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700