相干介质中自发辐射及光学双稳态的量子调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子相干和干涉效应能够使介质的光学特性发生显著的改变,可以用来调控光的吸收、色散、自发辐射以及非线性效应,在激光物理、量子光学、非线性光学、量子信息等诸多领域有着重要的应用。本论文研究了量子相干介质中自发辐射的相干调控和光学双稳态的实现,主要工作包括以下几个方面:
     1、研究了单带各向同性的光子晶体中五能级原子系统的自发辐射性质。讨论了光子带隙、Rabi频率、外场失谐量以及原子初态布居对自发辐射的影响。结果表明:自发辐射谱非常敏感地依赖于跃迁频率与光子晶体带隙的相对位置,同时自发辐射可以通过适当地调节外部泵浦场和控制场来有效控制。在自发辐射谱中能够观察到一些有趣的现象诸如谱线变窄、谱线增强、谱线抑制以及暗线的出现和多峰结构。这为我们在光子晶体中控制原子的自发辐射提供了一些有利的指导。
     2、研究了位于各项异性的光子晶体中的四能级原子系统的自发辐射行为。讨论了自由空间和光子带隙库中原子跃迁频率与能带边缘的相对位置、微波场的Rabi频率和失谐量对原子自发辐射性质的影响。
     3、研究了自由空间中用一个椭圆偏振控制光和一个外磁场控制的双三脚架型五能级冷原子系统的自发辐射性质。利用波函数方法推导出自发辐射谱的分析表达式,结果表明通过调整合适的参数如椭圆极化控制场的左旋和右旋极化部分的相位差、外磁场强度和椭圆极化控制场的Rabi频率,我们可以有效地控制原子的自发辐射特性。这些研究为原子自发辐射的调控提供了更多的自由度。
     4、利用一个不同程度极化的椭圆偏振光来耦合金刚石氮空位中心,从而研究其在光控制下的零声子线自发辐射特性。研究表明谱线增强、谱线变窄、谱线抑制和零声子线的自发辐射猝灭可以通过调节极化依赖的相位、塞曼移动(外磁场强度)及控制场强度来实现。并在控制场的缀饰态绘景中定性地分析了产生这些结果的物理机制。
     5、理论上研究了在单向环形腔中被一个椭圆极化控制光和线性极化探测光驱动的三脚架型四能级原子系统的光学双稳态行为。我们讨论了探测场的失谐量、控制场的强度、控制场两极化部分之间的相差以及原子合作参数对光学双稳态的影响。
     6、研究了在充有金刚石氮空位中心的光学环型腔中实现激光极化依赖和磁场控制的光学双稳态。光学双稳态的曲线能够通过新的物理参量即外磁场的强度和控制场的极化来有效的调控,这与先前的研究有所不同。同时详细讨论了控制场的强度、频率失谐量和合作参数对光学双稳态的影响。研究结果对实现全光双稳转换或编码有一定的参考价值。
     总之,本论文的研究加深了人们对相干介质中自发辐射的量子调控的认识和理解,也为实验上研究光学双稳态提供了一定的理论依据。这些研究对光学通讯、新型光电子器件的制作,以及全光开光和量子编码也有一定的参考价值。
Quantum coherence and interference can change optical properties of the me-dia greatly, and can be used to manipulate and control absorption, dispersion, spon-taneous emission and nonlinear optical effect efficiently, as well as have manyapplications in laser physics, quantum optics, nonlinear optics and quantum infor-mation. In this thesis, we study mainly the quantum manipulation of spontaneousemission and the realization of optical bistability (OB) in coherent media. Themain content is as follows:
     1. we have theoretically investigated the spontaneous emission spectra of afive-level atom embedded in the photonic crystals (PCs). The influence of the rel-ative position between the transition frequency and the photonic-band-gap (PBG)edge, the detunings and Rabi frequencies of two external driving fields and initialstates of the atomic system on the spontaneous emission spectra are discussed. Itis shown that the spontaneous emission spectra are sensitively dependent on therelative position of the transition frequency to the PBG, and the spontaneous emis-sion can be controlled effectively by appropriately adjusting the external pump andcontrol fields. A few interesting phenomena can be observed in the spontaneousemission spectra, such as spectral-line narrowing, spectral-line enhancement andspectra-line suppression, as well as the appearance of dark lines and multi-peakstructures under certain conditions. This gives us a helpful clue to control thespontaneous emission of an atom in PCs.
     2. The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band PCs are investigated. The influ-ences of the band-edge positions, Rabi frequency and detuning of the microwavefield on the emission spectrum are discussed.
     3. We have theoretically investigated the spontaneous emission spectra ofa cold double tripod-type five-level atom controlled by an elliptically polarizedfield and an external magnetic field in free space. A wave function approach isused to derive explicit and analytical expressions of atomic spontaneous emissionspectra. The results clearly show that, by choosing appropriate parameters of thecoupled system, such as the intensity of external magnetic field, Rabi frequencyof elliptically polarized control field and the initial probability amplitudes, we canmanipulate the spontaneous emission effectively. These investigations may providemore degrees of freedom to manipulate the atomic spontaneous emission.
     4. We investigate spontaneous emission properties and control of the zerophonon line (ZPL) from a diamond nitrogen-vacancy (NV) center coherentlydriven by a single elliptically polarized control field. The numerical results showthat a few interesting phenomena such as enhancement, narrowing, suppression,and quenching of the ZPL spontaneous emission can be realized by modulatingthe polarization-dependent phase, the Zeeman shift and the intensity of the controlfield in our system. In the dressed-state picture of the control field, we qualitativelyexplain these results from viewpoint of physics
     5. We have theoretically investigated the OB behaviors in a tripod-type four-level atomic system driven by an elliptically polarized control field and a linearlypolarized probe field inside the unidirectional ring cavity. We discuss the effectsof the frequency detuning of the probe field, the control field intensity, the relativephase between two electric field components of the control field and the coopera-tion parameter on the behavior of OB.
     6. We explore laser-polarization-dependent and magnetically controlled OBin an optical ring cavity filled with diamond nitrogen-vacancy (NV) defect centersunder optical excitation. The shape of the OB curve can be significantly modifiedin a new operating regime from the previously studied OB case, i.e., by adjusting the intensity of the external magnetic field and the polarization of the control beam.The influences of the intensity of the control beam, the frequency detuning, andthe cooperation parameter on the OB behavior are also discussed in details. Theseresults are useful in real experiments for realizing an all-optical bistate switchingor coding element.
     In conclusion, this thesis not only deepens our awareness and understandingof spontaneous emission in quantum coherent media, but also provides thetheoretical foundation for investigating OB in experiment. These investigationsmay have some reference value for optical communications and the fabrication ofnovel optoelectronic devices, as well as all-optical switching and quantum coding.
引文
[1] Bykov V P. Spontaneous emission from a medium with a band spectrum. Sov. J.Quantum Electron.,1975,4(7):861–871
    [2] Kleppner D. Inhibited spontaneous emission. Phys. Rev. Lett.,1981,47(4):233–236
    [3] Goy P, Raimond J M, Gross M et al. Observation of cavity enhanced single atomspontaneousemission. Phys. Rev. Lett.,1983,50(24):1903–1906
    [4] Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Elec-tronics. Phys. Rev. Lett.,1987,58(20):2059–2062
    [5] Narducci L M, Scully M O, Oppo G L et al. Spontaneous emission properties of adriven three-level system. Phys. Rev. A,1990,42(3):1630–1649
    [6] Gauthier D J, Zhu Y,Mossberg T W. Observation of linewidth narrowing due tocoherent stabilization of quantum fluctuations. Phys. Rev. Lett.,1991,66(19):2460–2463
    [7] Martorell J, Lawandy N M. Observation of inhibited spontaneous emission in a pe-riodic dielectric structure. Phys. Rev. Lett.,1990,65(15):1877–1880
    [8] Zhu S Y, Scully M O. Spectral Line Elimination and Spontaneous Emission Cancel-lation via Quantum Interference. Phys. Rev. Lett.,1996,76(3):388–391
    [9] Zhou P, Swain S, Quantum interference in resonance fluorescence for a driven Vatom. Phys. Rev. A,1997,56(4):3011–3021
    [10] Arimondo E. Coherent Population Trapping in Laser Spectroscopy. Prog. Opt.,1996,35:257–354
    [11] Agarwal G S. Quantum Optics (Springer-Verlag, Berlin,1974), p.68
    [12] Paspalakis E, Knight P L. Phase Control of Spontaneous Emission. Phys. Rev. Lett.,1998,81(2):293–296
    [13] Anto′n M A, Caldero′n O G, Carren o F. Spontaneously generated coherence effectsin a laser-driven four-level atomic system. Phys. Rev. A,2005,72(2):023809/1-12
    [14] Wu J H, Li A J, Ding Y et al. Control of spontaneous emission from a coherentlydriven four-level atom. Phys. Rev. A,2005,72(2):023802/1-5
    [15] Li J H, Liu J B, Chen A X et al. Spontaneous emission spectra and simulating multi-ple spontaneous generation coherence in a five-level atomic medium. Phys. Rev. A,2006,74(3):033816/1-8
    [16]万仁刚.驻波场感应原子相干效应的研究[博士学位论文],长春:吉林大学,2011
    [17] Peng J S, Li G X, Zhou P et al. Cavity-induced modifications to the resonance fluo-rescence and probe absorption of a laser-dressed V-type atom. Phys. Rev. A,2000,61(6):063807/1-11
    [18] Kien F L, Hakuta K. Cavity-enhanced channeling of emission from an atom into ananofiber. Phys. Rev. A,2009,80(5):053826/1-15
    [19] Haroche S, Raimond J M. Radiative Properties of Rydberg States in Resonant Cav-ities. Adv. At. Mol. Phys.,1985,20:347–411
    [20] Frerichs V, Meschede D, Schenzle A. Radiation in waveguides and cavities: fun-damental aspects of three-level system damping. Opt. Commun.,1995,117(3-4):325–343
    [21] Li G X, Evers J, Keitel C H. Spontaneous emission interference in negative-refractive-index waveguides. Phys. Rev. B,2009,80(4):045102/1-7
    [22] Quang T, Woldeyohannes M, John S et al. Coherent Control of Spontaneous Emis-sion near a Photonic Band Edge: A Single-Atom Optical Memory Device. Phys.Rev. Lett.,1997,79(26):5238–5241
    [23] Angelakis D G, Paspalakis E, Knight P L. Coherent phenomena in photonic crystals.Phys. Rev. A,2001,64(1):013801/1-6
    [24] Yang Y P, Zhu S Y. Spontaneous emission from a two-level atom in a three-dimensional photonic crystal. Phys. Rev. A,2000,62(1):013805/1-11
    [25] Yang Y P, Fleischhauer M, Zhu S Y. Spontaneous emission from a two-level atomin two-band anisotropic photonic crystals. Phys. Rev. A,2003,68(4):043805/1-21
    [26] John S, Quang T. Spontaneous emission near the edge of a photonic band gap. Phys.Rev. A,1994,50(2):1764–1769
    [27] Gardiner C W. Inhibition of Atomic Phase Decays by Squeezed Light: A DirectEffect of Squeezing. Phys. Rev. Lett.,1986,56(18):1917–1920
    [28] Palma G M, Knight P L. Phase-sensitive population decay: The two-atom Dickemodel in a broadband squeezed vacuum. Phys. Rev. A,1989,39(4):1962–1969
    [29] Harris S E. EleetromagneticallyindueedtransParency. Phys. Today,1997,50(7):36–42
    [30] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced trans-parency: Optics incoherent media. Rev. Mod. Phys.200577(2):633–673
    [31] Boller K J, Imamoglu A, Harris S E. Observation of electromagnetically inducedtransparency. Phys. Rev.Lett.,1991,66(20):2593–2596
    [32] Field J E, Hahn K H, Harris S E et al. Observation of electromagnetically inducedtransparency in collisionally broadened lead vapour. Phys. Rev. Lett.,1991,67(22):3062–3065
    [33] Gea-Banacloche J, Li Y Q, Jin S Z et al. Electromagnetically induced transparencyin ladder-type inhomogeneously broadened media: Theory and experiment. Phys.Rev. A,1995,51(1):576–584
    [34] Fulton D J, Shepherd S, Moseley R R et al. Continuous-wave electromagneticallyinduced transparency: A comparison of V, Λ, and cascade systems. Phys. Rev. A,199552(3):2302–2311
    [35] Zhao Y, Wu C K, Ham B S et al. Microwave induced transparency in ruby. Phys.Rev. Lett.,1997,79(4):641–644
    [36] Ham B S, Hemmer P R, Shahriar M S. Efficient electromagnetically induced trans-parency in a rare-earth doped crystal. Opt. Commun.1997,144(4-6):227–230
    [37] Ham B S, Shahriar M S, Kim M K et al. Frequency-selective time-domain opti-cal storage by electromagnetically induced transparency in a rare-earth-doped solid.Opt. Lett.,1997,22(24):1849–1851
    [38] Zhang G, Bo F, Dong R et al. Phase-coupling-induced ultraslow light propagationin solids at room temperature. Phys. Rev. Lett.2004,93(13):133903/1-4
    [39] Phillips M, Wang H. Spin coherence and electromagnetically indueed transparencyvia exciton correlations. Phys. Rev. Lett.,2002,89(18):186401/1-4
    [40] Phillips M, Wang H. Spin coherence and electromagnetically indueed transparencydue to intervalence band coherence in a GaAs quantum well. Opt. Lett.,2003,28(10):831–833
    [41]郝向英.半导体量子阱中量子相干效应及其应用的理论研究[博士学位论文],武汉:华中科技大学,2010
    [42] Ma S M, Xu H, Ham B S. Electromagnetically-induced transparency and slow lightin GaAs/AlGaAs multiple quantum wells in a transient regime. Opt. Express,2009,17(17):148902–148908
    [43] Szo¨ke A, Daneu V, Goldhar et al. Bistable optical element and its applications. Appl.Phys. Lett.,1969,15(11):376–379
    [44] Gibbs H M, McCall S L, Venkatesan T N C. Differential Gain and Bistability Usinga Sodium-Filled Fabry-Perot Interferometer. Phys. Rev. Lett.,1976,36(19):1135–1138
    [45] Agarwal G P, Flytzanis C. Two-Photon Double-Beam Optical Bistability, Phys. Rev.Lett.,1980,44(16):1058–1061
    [46] Rosenberger A T, Orozco L A, Kimble H J. Observation of absorptive bistabilitywith two-level atoms in a ring cavity. Phys. Rev. A,1983,28(4):2569–2572
    [47] Xiao M, Jin S Z. Bistable behavior in a system of an optical parametric oscillatorcoupling with N two-level atoms, Phys. Rev. A,1992,45(1):483–488
    [48] Harshawardhan W, Agarwal G S. Controlling optical bistability using electromag-netic field induced transparency and quantum interferences, Phys. Rev. A,1996,53(3):1812–1817
    [49] Gong S, Du S, Xu Z et al. Optical bistability via a phase fluctuation effect of thecontrol field. Phys. Lett. A,1996,222(4):237–240
    [50] Hu X M, Xu Z Z. Phase control of amplitude-fluctuation-induced bistability. J. Opt.B,2001,3(2):35–38
    [51]李家华.量子相干介质的非线性性质及其相关现象的研究[博士学位论文],武汉:华中科技大学,2007
    [52] Singh S, Rai J, Bowden C M et al. Intrinsic optical bistability with squeezed vacuum.Phys. Rev. A,1992,45(7):5160–5165
    [53] Chen Z Y, Du C G, Gong S Q et al. Optical bistability via squeezed vacuum input.Phys. Lett. A,1999,259(1):15–19
    [54] Liu C P, Gong S Q, Fan X J et al. Phase control of spontaneously generated coher-ence induced bistability. Opt. Commun.,2004,239(4-6):383–388
    [55] Joshi A, Yang W and Xiao M. Effect of quantum interference on optical bistabilityin the three-lever V-type atomic system. Phys. Rev. A,2003,68(1):015806/1-4
    [56] Joshi A, Brown A, Wang H et al. Controlling optical bistability in a three-levelatomic system. Phys. Rev. A,2003,67(4):041801/1-4
    [57] Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Elec-tronics. Phys. Rev. Lett.,1987,58(20):2059–2062
    [58] John S. Strong localization of photons in certain disordered dielectric superlattices.Phys. Rev. Lett.,1987,58(23):2486–2489
    [59] Quang T, Woldeyohannes M, John S et al. Coherent Control of Spontaneous Emis-sion near a Photonic Band Edge: A Single-Atom Optical Memory Device. Phys.Rev. Lett.,1997,79(26):5238–5241
    [60] Yang Y P, Zhu S Y. Spontaneous emission from a two-level atom in a three-dimensional photonic crystal. Phys. Rev. A,2000,62(1):013805/1-11
    [61] Yang Y P, Fleischhauer M, Zhu S Y. Spontaneous emission from a two-level atomin two-band anisotropic photonic crystals. Phys. Rev. A,2003,68(4):043805/1-21
    [62] John S, Quang T. Spontaneous emission near the edge of a photonic band gap. Phys.Rev. A,1994,50(2):1764–1769
    [63] Zhu S Y, Yang Y P, Chen H et al. Spontaneous Radiation and Lamb Shift in Three-Dimensional Photonic Crystals. Phys. Rev. Lett.,2000,84(10):2136–2139
    [64] Paspalakis E, Angelakis D G, Knight P L. The influence of density of modes on darklines in spontaneous emission. Opt. Commun.,1999,172(1-6):229–240
    [65] Sun X D, Jiang X Q. Influence of detuning on the spontaneous emission of a drivenfour-level atom embedded in photonic crystals. Opt. Lett.,2008,33(2):110–112
    [66] Jiang X Q, Zhang B, Sun X D. Control of spontaneous emission from a laser-drivenfour-level atom in photonic crystals. J. Phys. B: At. Mol. Opt. Phys.,2008,41(6):065508/1-6
    [67] Singh M R. Transparency and spontaneous emission in a densely doped photonicband gap material. J. Phys. B: At. Mol. Opt. Phys.,2006,39(24):5131–5141
    [68] Singh M R. Controlling spontaneous emission in photonic-band-gap materials dopedwith nanoparticles. Phys. Rev. A,2007,75(3):033810/1-13
    [69] Singh M R. Switching mechanism due to the spontaneous emission cancellation inphotonic band gap materials doped with nano-particles. Phys. Lett. A,2007,363(3):177–181
    [70] Cheng S C, Wu J N, Yang T J et al. Effect of atomic position on the spontaneousemission of a three-level atom in a coherent photonic-band-gap reservoir. Phys. Rev.A,2009,79(1):013801/1-9
    [71] Zhang H Z, Tang S H, Dong P et al. Quantum interference in spontaneous emissionof an atom embedded in a double-band photonic crystal. Phys. Rev. A,2002,65(6):063802/1-8
    [72] Ding C L, Li J H, Zheng A S, Yang X X. Spontaneous emission properties of afive-level nanoparticle embedded in photonic crystals with defect modes. Physica E,2011,43(8):1494–1501
    [73]丁春玲.量子相干介质中自发辐射及相关特性的理论研究[博士学位论文],武汉:华中科技大学,2012
    [74] Scully M O, Zubairy M S. Quantum Optics.1997,(Cambridge University Press,Cambridge, England)
    [75] Liu N H, Xu J P, Zhu S Y. Non-Markovian dynamic evolution of spontaneous emis-sion decay of a two-level atom embedded in one-dimensional photonic crystals.Phys. Rev. B,2006,74(7):075314/1-9
    [76] Zhu S Y, Chan R C F, Lee C P. Spontaneous emission from a three-level atom. Phys.Rev. A,1995,52(1):710–716
    [77] Lee H, Polynkin P, Scully M O et al. Quenching of spontaneous emission via quan-tum interference. Phys. Rev. A,1997,55(6):4454–4465
    [78] Meschede D. Radiating atoms in confined space: From spontaneous emission tomicromasers. Phys. Rep.1992,211(5):201–250
    [79] Wu J N, Huang C H, Cheng S C et al. Spontaneous emission from a two-level atomin anisotropic one-band photonic crystals: A fractional calculus approach. Phys.Rev. A,2010,81(2):023827/1-9
    [80] Paspalakis E, Kylstra N J, Knight P L. Transparency near a photonic band edge.Phys. Rev. A,1999,60(1): R33–R36
    [81] Huang X S, Yang Y P. Dynamic and radiative properties of a Λ-type driven atom inanisotropic photonic crystals. J. Opt. Soc. Am. B,2007,24(3):699–706
    [82] Martinez M A G, Herczfeld P R. Quantum interference effects in spontaneousatomic emission: Dependence of the resonance fluorescence spectrum on the phaseof the driving field. Phys. Rev. A,1997,55(6):4483–4491
    [83] John S, Quang T. Localization of superradiance near a photonic band gap. Phys.Rev. Lett.,1995,74(17):3419–3422
    [84] Singh M R. The study of nonlinear two-photon phenomenon in photonic crystalsdoped with nanoparticles. J. Phys. B: At. Mol. Opt. Phys.,2007,40(4):675–688
    [85] Mazurenko D A, Kerst R, Dijkhuis J I. Ultrafast Optical switching in three-dimensional photonic crystals. Phys. Rev. Lett.,2003,91(21):213903/1-4
    [86] Singh M R. Photon transparency in metallic photonic crystals doped with an ensem-ble of nanoparticles. Phys. Rev. A,2009,79(1):013826/1-9
    [87] Petrosyan D, Kurizki G. Photon-photon correlations and entanglement in doped pho-tonic crystals. Phys. Rev. A,2001,64(2):023810/1-6
    [88] Entezar S R, Tajalli H. Quantum interference in absorption and dispersion of a four-level atom in a double-band photonic crystal. Phys. Rev. A,2007,75(2):023816/1-7
    [89] Yang Y, Zhu S Y. Spontaneous-emission enhancement and population oscillation inphotonic crystals via quantum interference. Phys. Rev. A,2000,61(4):043809/1-16
    [90] Zhu S Y, Chen H, Huang H. Quantum interference effects in spontaneous emissionfrom an atom embedded in a photonic band gap structure. Phys. Rev. Lett.,1997,79(2):205–208
    [91] Hatef A, Singh M. Decay of a quantum dot in two-dimensional metallic photoniccrystals. Opt. Commun.,2011,284(9):2363–2369
    [92] Kofman A G, Kurizki G, Sherman B. Spontaneous and induced atomic decay inphotonic band structures. J. Mod. Opt.,1994,41(2):353–384
    [93] Yang Y, Lin Z X, Zhu S Y et al. Spontaneous spectrum of a V-type atomic systemnear a photonic band edge. Phys. Lett. A,2000,270(1-2):41–46
    [94] Jiang X Q, Jiang Y Y, Wang Y L et al. Non-Markovian decay of a three-level Λ-typeatom in a photonic-band-gap reservoir. Phys. Rev. A,2006,73(3):033802/1-6
    [95] Xu X W, Liu N H. Transparency induced by the quantum interference of a six-levelatom in photonic crystals with defect modes. Opt. Commun.,2010,283(6):1032–1038
    [96] Huang H, Zhu S Y, Zubairy M S. Nondecaying state in a three-level system drivenby a single field:mEffect of relaxations. Phys. Rev. A,1997,55(1):744–750
    [97] Jiang X Q, Zhang B, Lu Z W. Control of spontaneous emission from a microwave-field-coupled three-levelΛ-type atom in photonic crystals, Phys. Rev. A,2011,83(5):053823/1-6
    [98] Song C X, Huang J H, Liu N H. Spontaneous emission spectra of a four-level atomin photonic crystals driven by two coherent fields. Opt. Commun.,2011,284(6):1598–1602
    [99] Wu Y, Saldana J, Zhu Y. Large enhancement of four-wave mixing by suppressionof photon absorption from electromagnetically induced transparency. Phys. Rev. A,2003,67(1):013811/1-5
    [100] Wu Y, Yang X. Highly efficient four-wave mixing in double-Λ system in ultraslowpropagation regime. Phys. Rev. A,2004,70(5):053818/1-5
    [101] Wu Y, Yang X. Four-wave mixing in molecular magnets via electromagneticallyinduced transparency. Phys. Rev. B,2007,76(5):054425/1-6
    [102] Barnett S M, Radmore P M. Methods in Theoretical Quantum Optics.1997,(Ox-ford University Press, Oxford)
    [103] Wang B, Han Y X, Xiao J T. Preparation and determination of spin-polarized statesin multi-Zeeman-sublevel atoms. Phys. Rev. A,2007,75(5):051801(R)/1-4
    [104] Zibrov A S, Lukin M D, Nikonov D E et al. Experimental Demonstration of LaserOscillation without Population Inversion via Quantum Interference in Rb. Phys. Rev.Lett.,1995,75(8):1499–1502
    [105] Gao J Y, Guo C, Guo X Z et al. Observation of light amplification without popula-tion inversion in sodium. Opt. Commun.,1992,93(5-6):323–327
    [106] Harris S E. Lasers without inversion: Interference of lifetime-broadened reso-nances. Phys. Rev. Lett.,1989,62(9):1033–1036
    [107] Hong T, Cramer C, Nagourney W. Optical Clocks Based on Ultranarrow Three-Photon Resonances in Alkaline Earth Atoms. Phys. Rev. Lett.,2005,94(5):050801/1-4
    [108] Akulshin A M, Barreiro S, Lezama A. Electromagnetically induced absorption andtransparency due to resonant two-field excitation of quasidegenerate levels in Rbvapor. Phys. Rev. A,1998,57(4):2996–3002
    [109] Bennett C H, DiVincenzo D P. Quantum information and computation. Nature,2000,404(6775):247–255
    [110] Petrosyan D, Malakyan Y P. Magneto-optical rotation and cross-phase modulationvia coherently driven four-level atoms in a tripod configuration. Phys. Rev. A,2004,70(2):023822/1-9
    [111] Yablonovitch E, Gmitter T J, Leung K M. Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett.,1991,67(17):2295–2298
    [112] Joannopoulos J D, Meade R D, Winn J N. Photonic Crystals Molding the Flow ofLight. Princeton University Press, Princeton,1995, pp.62–96
    [113] Lewenstein M,Rzazewski K. Quantum anti-Zeno effect. Phys. Rev. A,2000,61(2):022105/1-5
    [114] Kono pka M. Stimulated emission from an atom in a photonic crystal. Phys. Rev.A,1999,60(5):4183–4186
    [115] Yang D, Wang J, Zhang H Z et al. Spontaneous emission spectrum of a four-levelatom coupled by three kinds of reservoirs. J. Phys. B: At. Mol. Opt. Phys.,2007,40(10):1719–1728
    [116] Li A J, Gao J Y, Wu J H et al. Simulating spontaneously generated coherence in afour-level atomic system. J. Phys. B: At. Mol. Opt. Phys.,2005,38(21):3815–3823
    [117] Ding C, Li J, Yang X. Control of spontaneous emission from an RF-driven five-level atom in an anisotropic double-band photonic-band-gap reservoir. Appl. Phys.B,2011,103(3):669-679
    [118] Wu Y, Yang X. Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A,2005,71(5):053806/1-7
    [119] Woldeyohannes M, John S. Coherent control of spontaneous emission near a pho-tonic band edge: A qubit for quantum computation. Phys. Rev. A,1999,60(6):5046–5068
    [120] Steck D,87Rb D line data, available online at http://steck.us/alkalidata
    [121] Agarwal G S. Quantum Statistical Theories of Spontaneous Emission and TheirRelation to Other Approaches, Springer-Verlag (Berlin,1974)
    [122] Kiffner M, Macovei M, Evers J et al. in Progress in Optics, edited by Wolf E(North-Holland, Amsterdam,2010), Vol.55, p.85.
    [123] Zhou P, Swain S. Absorption spectrum and gain without inversion of a driven two-level atom with arbitrary probe intensity in a squeezed vacuum. Phys. Rev. A,1997,55(1):772–780
    [124] Keital C H, Knight P L, Narducci L M et al. Resonance fluorescence in a tailoredvacuum. Opt. Commun.,1995,118(1-2):143–153
    [125] Arimondo E, Progress in Optics, Elsevier, edited by Wolf E (msterdam,1996), p.257.
    [126] Macovei M, Evers J, Keitel C H. Phase Control of Collective Quantum Dynamics.Phys. Rev. Lett.,2003,91(23):233601/1-4
    [127] Agarwal G S. Inhibition of spontaneous emission noise in lasers without inversion.Phys. Rev. Lett.,1991,67(8):980–982
    [128] Wu J H, Gao J Y. Phase control of light amplification without inversion in a Λ sys-tem with spontaneously generated coherence. Phys. Rev. A,2002,65(6):063807/1-5
    [129] Koganov G A, Shif B, Shuker R. Field-driven super/subradiant lasing without in-version in three-level ladder scheme. Opt. Lett.,2011,36(15):2779–2781
    [130] Scully M O, Fleischhauer M. High-sensitivity magnetometer based on index-enhanced media. Phys. Rev. Lett.,1992,69(9):1360–1363
    [131] Fleischhauer M, Matsko A B, Scully M O. Quantum limit of optical magnetometryin the presence of ac Stark shifts. Phys. Rev. A,2000,62(1):013808/1-10
    [132] Postavaru O, Harman Z, Keitel C H. High-precision metrology of highlycharged ions via relativistic resonance fluorescence. Phys. Rev. Lett.2011,106(3):033001/1-4
    [133] Zibrov A S, Lukin M D, Hollberg L et al. Experimental demonstration of enhancedindex of refraction via quantum coherence in Rb. Phys. Rev. Lett.1996,76(21):3935–3938
    [134] Scully M O. Enhancement of the index of refraction via quantum coherence. Phys.Rev. Lett.,1991,67(14):1855–1858
    [135] Fleischhauer M, Keitel C H, Scully M O et al. Resonantly enhanced refractiveindex without absorption via atomic coherence. Phys. Rev. A,1992,46(3):1468–1487
    [136] Qi J B. Electromagnetically induced transparency in an inverted Y-type four-levelsystem. Phys. Scr.2010,81(1):015402/1-8
    [137] Wan R G, Kou J, Jiang L et al. Two-dimensional atom localization via controlledspontaneous emission from a driven tripod system. J. Opt. Soc. Am. B,2011,28(1):10–17
    [138] Ding C L, Li J H, Zhan Z M et al. Two-dimensional atom localization via sponta-neous emission in a coherently driven five-level M-type atomic system. Phys. Rev.A,2011,83(6):063834/1-9
    [139] Paternostro M, Kim M S, Knight P L. Vibrational coherent quantum computation.Phys. Rev. A,2005,71(2):022311/1-12
    [140] Paspalakis E, Keitel C H, Knight P L. Fluorescence control through multiple inter-ference mechanisms. Phys. Rev. A,1998,58(6):4868–4877
    [141] Joshi A, Yang W G, Xiao M. Effect of spontaneously generated coherence on thedynamics of multi-level atomic systems. Phys. Lett. A,2004,325(1):30–36
    [142] Kapale K T, Scully M O, Zhu S Y et al. Quenching of spontaneous emissionthrough interference of incoherent pump processes. Phys. Rev. A,2003,67(2):023804/1-12
    [143] Ghafoor F, Zhu S Y, Zubairy M S. Amplitude and phase control of spontaneousemission. Phys. Rev. A,2000,62(1):013811/1-7
    [144] Li A J, Song X L, Wei X G et al. Effects of spontaneously generated coherence in amicrowave-driven four-level atomic system. Phys. Rev. A,2008,77(5):053806/1-8
    [145] Qi J B. Control of spontaneous emission of an inverted Y-type atomic system cou-pled by three coherent fields. Phys. Rev. A,2009,80(4):043827/1-8
    [146] Khadka U, Zhang Y P, Xiao M. Control of multitransparency windows via dark-state phase manipulation. Phys. Rev. A,2010,81(2):023830/1-6
    [147] Wu Y, Wen L L, Zhu Y F. Efficient hyper-Raman scattering in resonant coherentmedia. Opt. Lett.,2003,28(8):631–633
    [148] Cohen-Tannoudji C, Reynaud S. in Multiphoton Processes, edited by Eberly J,Lambropoulos P,(Wiley, New York,1978), p.103.
    [149] Jelezkoet F, Gaebel T, Popa I et al. Observation of coherent oscillation of a singlenuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev.Lett.,2004,93(13):130501/1-4
    [150] Epstein R J, Mendoza F M, Kato Y K et al. Anisotropic interactions of a singlespin and dark-spin spectroscopy in diamond. Nat. Phys.,2005,1:94–98
    [151] Gaebel T, Domhan M, Popa I et al. Room-temperature coherent coupling of singlespins in diamond. Nat. Phys.,2006,2:408–413
    [152] Dutt M V G, Childress L, Jiang L et al. Quantum register based on individualelectronic and nuclear spin qubits in diamond. Science,2007,316(5829):1312–1316
    [153] Hanson R, Dobrovitski V V, Feiguin A E et al. Coherent dynamics of a single spininteracting with an adjustable spin bath. Science,2008,320(5874):352–355
    [154] Park Y S, Cook A K, Wang H L. Cavity QED with diamond nanocrystals and silicamicrospheres. Nano Lett.,2006,6(9):2075–2079
    [155] Larsson M, Dinyari K N, Wang H. Composite optical microcavity of diamondnanopillar and silica microsphere. Nano Lett.,2009,9(4):1447–1450
    [156] van der Sar T, Wang Z H, Blok M S et al. Decoherence-protected quantum gatesfor a hybrid solid-state spin register. Nature,2012,484:82–86
    [157] de Lange G, Wang Z H, Riste`D et al. Universal dynamical decoupling of a singlesolid-state spin from a spin bath. Science,2010,330(6000):60–63
    [158] Fuchs G D, Falk A L, Dobrovitski V V et al. Spin coherence during optical excita-tion of a single nitrogen-vacancy center in diamond. Phys. Rev. Lett.,2012,108(15):157602/1-5
    [159] Togan E, Chu Y, Trifonov A S et al. Quantum entanglement between an opticalphoton and a solid-state spin qubit. Nature.2010,466(7307):730–734.
    [160] Yang W L, Yin Z Q, Chen Z X et al. Quantum simulation of an artificial Abeliangauge field using nitrogen-vacancy-center ensembles coupled to superconductingresonators. Phys. Rev. A,2012,86(1):012307/1-9
    [161] Yang W L, Yin Z Q, Xu Z Y, et al. One-step implementation of multiqubit condi-tional phase gating with nitrogen-vacancy centers coupled to a high-Q silica micro-sphere cavity. Appl. Phys. Lett.,2010,96(24):241113/1-3
    [162] Santori C, Barclay P E, Fu K M C et al. Nanophotonics for quantum optics usingnitrogen-vacancy centers in diamond. Nanotechnology,2010,21(27):274008/1-11
    [163] Santori C, Tamarat P, Neumann P, et al. Coherent pupulation trapping of singlespins in diamond uner optical excitation. Phys. Rev. Lett.,2006,97(24):247401–247404
    [164] Yang W L, Yin Z Q, Xu Z Y et al. Quantum dynamics and quantum state trans-ferbetween separated nitrogen-vacancy centers embedded in photonic crystal cavities.Phys. Rev. A,2011,84(4):043849/1-10
    [165] Wolters J, Schell A W, Kewes G et al. Enhancement of the zero phonon line emis-sion from a single nitrogen vacancy center in a nanodiamond via coupling to a pho-tonic crystal cavity. Appl. Phys. Lett.,2010,97(14):141108/1-3
    [166] Manson N B, Harrison J P, Sellars M J. Nitrogen-vacancy center in diamond:Model of the electronic structure and associated dynamics. Phys. Rev. B,2006,74(10):104303/1-11
    [167] Singh M R, Controlling photon absorption in photonic nanowires viadipole–dipole interaction. Opt. Lett.,2009,34(19):2909-2911
    [168] Petrosyan D, Kurizki G. Photon-photon correlations and entanglement in dopedphotonic crystals. Phys. Rev. A,2001,64(2):023810/1-6
    [169] Singh M R, Lipson R H. Optical switching in nonlinear photonic crystals lightlydoped with nanostructures. J. Phys. B: At. Mol. Opt. Phys.,2008,41:015401/1-7
    [170] Batalov A, Jacques V, Kaiser F et al. Low Temperature Studies of the Excited-State Structure of Negatively Charged Nitrogen-Vacancy Color Centers in Diamond.Phys. Rev. Lett.,2009,102(19):195506/1-4
    [171] Tamaratet P, Manson N B, Harrison J P et al. Spin-flip and spin-conserving opti-cal transitions of the nitrogen-vacancy centre in diamond. New J. Phys.,2008,10:045004/1-9
    [172] Neumannet P, Kolesov R, Jacques V et al. Excited-state spectroscopy of single NVdefects in diamond using optically detected magnetic resonance. New J. Phys.,2009,11:013017/1-10
    [173] Santori C, Fattal D, Spillane S M et al. Coherent population trapping in diamondN-V centers at zero magnetic field. Opt. Express,200614:7986–7993
    [174] Mazeet J R, Gali A, Togan E et al. Properties of nitrogen-vacancy centers in dia-mond: the group theoretic approach. New J. Phys.,2011,13:025025/1-24
    [175] Aharonovich I, Castelletto S, Simpson D A et al. Diamond-based single-photonemitters. Rep. Prog. Phys.,2011,74(7):076501/1-26
    [176] Fuchset G D, Dobrovitski V V, Hanson R et al. Excited-state spectroscopy usingsingle spin manipulation in diamond. Phys. Rev. Lett.,2008,101(11):117601/1-4
    [177] Ofori-Okaiet B K, Pezzagna S, Chang K et al. Spin properties of very shallownitrogen vacancy defects in diamond. Phys. Rev. B,2012,86(8):081406(R)/1-5
    [178] Scully M O, Zhu S Y, Gavrielides A. Degenerate quantum-beat laser: lasing with-out inversion and inversion without lasing. Phys. Rev. Lett.,1989,62(24):2813–2816
    [179] Wang H, Goorskey D J, Xiao M. Bistability and instability of three-level atomsinside an optical cavity. Phys. Rev. A,2001,65(1):011801(R)/1-4
    [180] Zhu Y F, Rubiera A I, Xiao M. Inversionless lasing and photon statistics in a V-typeatomic system. Phys. Rev. A,1996,53(2):1065–1071
    [181] Niu Y P, Gong S Q. Enhancing Kerr nonlinearity via spontaneously generated co-herence. Phys. Rev. A,2006,73(5):053811/1-6
    [182] Zhang Y, Khadka U, Anderson1B et al. Temporal and spatial interference betweenfour-wave mixing and six-wave mixing channels. Phys. Rev. Lett.,2009,102(1):013601/1-4
    [183] Wu Y, Deng L. Ultraslow optical solitons in a cold four-state medium. Phys. Rev.Lett.,2004,93(14):143904/1-4
    [184] Joshi A, Xiao M. Optical multistability in three-level atoms inside an optical ringcavity Phys. Rev. Lett.,2003,91(14):143904/1-4
    [185] Joshi A, Brown A, Wang H et al. Controlling optical bistability in a three-levelatomic system. Phys. Rev. A,2003,67(4):041801(R)/1-4
    [186] Li J H. Controllable optical bistability in a four-subband semiconductor quantumwell system. Phys. Rev. B,2007,75(15):155329/1-6
    [187] Wu J, Lu¨ X Y, Zheng L L. Controllable optical bistability and multistability ina double two-level atomic system. J. Phys. B: At. Mol. Opt. Phys.,2010,43(16):161003/1-5
    [188] Wang Z P. Optical bistability via coherent and incoherent fields in an Er3+-dopedyttrium-aluminum-garnet crystal. Opt. Commun.,2010,283(17):3291–3295
    [189] Anto′n M A, Caldero′n O G, Melle S et al. All-optical switching and storage in afour-level tripod-type atomic system. Opt. Commun.,2006,268(1):146–154
    [190] Anto′n M A, Carren o F. Optical light storage in an ensemble of V-type atoms me-diated by vacuum induced coherence. Opt. Commun.,2009,282(19):3964–3976
    [191] Galatola P, Lugiato L A. Optical switching by variation of the squeezing phase.Opt. Commun.,1991,81(3-4):175–178
    [192] Cheng D C, Liu C P, Gong S Q. Optical bistability and multistability via the effectof spontaneously generated coherence in a three-level ladder-type atomic system.Phys. Lett. A,2004,332(3-4):244–249
    [193] Lu¨ X Y, Li J H, Liu J B et al. Optical bistability via quantum interference in afour-level atomic medium. J. Phys. B: At. Mol. Opt. Phys.,2006,39:5161–5171
    [194] Li J H, Lu¨ X Y, Luo J M et al. Optical bistability and multistability via atomiccoherence in an N-type atomic medium. Phys. Rev. A,2006,74(3):035801/1-4
    [195] Wang Z, Xu M. Control of the switch between optical multistability and bistabilityin three-level V-type atoms. Opt. Commun.,2009,282(8):1574–1578
    [196] Xiao Z H, Kim K. Optical bistability using quantum coherence in a microwave-driven four-level atomic system. Opt. Commun.,2010,283(10):2178–2181
    [197] Bonifacio R, Lugiato L A, Optical bistability and cooperative effects in resonancefluorescence. Phys. Rev. A,1978,18(3):1129–1144
    [198] Anto′n M A, Caldero′n O G. Optical bistability using quantum interference in V-typeatoms. J. Opt. B,2002,4(2):91–98
    [199] Wall D F, Zoller P. A coherent nonlinear mechanism for optical bistability fromthree level atoms. Opt. Commun.,1980,34(2):260–264
    [200] Joshi A, Yang W, Xiao M. Hysteresis loop with controllable shape and direction inan optical ring cavity. Phys. Rev. A,2004,70(4):041802(R)/1-4
    [201] Chang H, Wu H, Xie C et al. Controlled shift of optical bistability hysteresis curveand storage of optical signals in a four-level atomic system. Phys. Rev. Lett.,2004,93(21):213901/1-4
    [202] Li J H, Hao X Y, Liu J B et al. Optical bistability in a triple semiconductor quantumwell structure with tunnelling-induced interference. Phys. Lett. A,2008,372(5):716–720
    [203] Wang Z P. Control of the optical multistability in a three-level ladder-type quantumwell system. Opt. Comm.,2009,282(24):4745–4748
    [204] Hu X M, Wang J. Sideband control of optical bistability and multistability. Phys.Lett. A,2007,365(3):253-257
    [205] Serapiglia G B, Paspalakis E, Sirtori C et al. Laser-induced quantum coherence ina semiconductor quantum well. Phys. Rev. Lett.,2000,84(5):1019-1022
    [206] Dynes J F, Frogley M D, Beck M et al. AC stark splitting and quantum interfer-ence with intersubband transitions in quantum wells. Phys. Rev. Lett.,2005,94(15):157403/1-4
    [207] Zhao N, Ho S W, Liu R B. Decoherence and dynamical decoupling control ofnitrogen vacancy center electron spins in nuclear spin baths. Phys. Rev. B,2012,85(11):115303/1-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700