量子相干介质的非线性光学性质及其相关现象的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究量子相干介质中的非线性光学性质及其应用,更确切地说是在冷原子介质和半导体量子阱材料中,对光学非线性的增强效应、超慢光孤子、高效混频转换、光学双稳和多稳态的控制、自发辐射谱线的相干调控以及光在稀薄和稠密冷原子介质中的动力学性质作了理论研究。主要内容有:
     (1)阐述了仅利用一个低强度脉冲激光辐射,在一种长寿命增宽的三能级冷原子介质中超慢亮暗光孤子的有效生成。
     (2)研究了在三能级V型原子介质中借助一个微波共振辐射,二激光脉冲间非线性转化的潜在性。结果表明当一个弱泵浦激光脉冲被运用时,微波驱动场的出现能够导致具有高转化效率新激光脉冲的参量生成。
     (3)分析了在一个普通N型原子系统中混合吸收色散型的光学双稳态和多稳态,该系统通过一个单向环形腔由一个简并探测场和一个相干耦合场激发。发现光学双稳态可以通过调节这个耦合场的强度和频率失谐来控制,而多稳态能够在合适的频率失谐情况下被观测到。还探讨了原子合作参数对光学双稳态性质的影响。
     (4)分析了具有非对称双量子阱系统的介质,受到一个单向循环腔内的探测激光场的相干驱动,发生带间跃迁,产生可调谐的Fano型干涉时,吸收-色散混合型光学双稳态行为。研究发现,通过调节两个激发态的能级分裂宽度(即量子阱的耦合强度)、Fano型干涉和频率失谐,光学双稳态得到有效控制。还讨论了电子合作参数对光学双稳态的影响。
     同时,分析了基于不对称隧穿耦合双量子阱中间带跃迁的光学双稳态行为,这一量子阱是由探测光场和控制光场通过一个单向环型腔来驱使的。证明了可以通过调谐隧穿耦合的两电子能级间的能级分裂、控制场强度和频率失谐来控制光学双稳态,并讨论了电子合作参数对光学双稳态的影响。
     (5)运用一个射频或微波场驱动一对基态超精细跃迁,研究了四能级和五能级两种原子系统的自发辐射光谱特性。研究发现了一些有趣的现象,如谱线变窄、谱线增强、谱线抑制及荧光淬灭能够通过调节射频驱动场的相位、频率和强度来实现。在耦合和射频驱动场的缀饰态绘景中,该五能级原子系统相当于一个存在多通道自发辐射相干效应的真实原子系统。鉴于不存在(或者尚未发现)具有自发辐射相干效应的真实原子系统,文章等于提出了一种开展相关实验研究的可行性方案。
     (6)考虑到近偶极(NDD)相互作用下的密度依赖,从理论上研究了被单模探测激光驱动的三能级和四能级原子在光密介质中的非线性吸收―色散响应和布居动力学特性。通过数值计算预测了NDD效应对探测场的吸收―色散谱和布居动力学的影响。
     (7)通过引入一个附加信号场的扰动,在一个五能级原子系统中研究了在双暗态共振作用下的探测放大响应。研究发现,通过适当调节微波驱动场和信号激光场的强度,就能实现有或者没有布居反转的探测放大增强。根据量子干涉和缀饰态理论我们定量地解释了产生这些结果的物理机制。
     (8)研究了存在双暗态共振相互作用的五能级原子系统中双光子吸收的特征。结果发现,双光子吸收在两个不同频率处由于两相干耦合场而被完全禁止;原子系统存在抑制双光子吸收的双电磁诱导透明窗口。双光子透明窗口的位置及其宽度可以通过适当调节频率失谐量和两耦合场的强度来控制。另外,在双光子吸收谱中可以观察到一个增强窄中心谱线,这可能在精细光谱学中有所应用。从物理的观点来看,根据由三个不同双光子激发通道导致的量子干涉效应在修饰态绘景中对这些结果做了详细解释。
     总之,本论文的研究不仅有助于理解和掌握冷原子介质和半导体量子阱材料中相干非线性光学的新特性,而且对光信息的存储和提取、原子的相干操纵、全光开关、高精度非线性光谱学和量子信息学等高新技术的研发也大有裨益。
In this thesis for the Doctorate, we have discussed mainly nonlinear optical features and its applications in quantum coherent media. More precisely speaking, we theoretically study optical nonlinear enhanced effects, ultralow optical solitons, high-efficiency mixing conversion, coherent control of optical bistability/multistability and spontaneous emission spectra as well as dynamics in both optically dilute and optically dense media.
     The work of our paper can be divided into the following eight parts:
     (1)We demonstrate the efficient generation of ultraslow bright and dark optical solitons in a lifetime-broadened three-level atomic medium by using only a low-intensity pulsed laser radiation.
     (2)The potential for nonlinear conversion between two laser pulses in a three-level V-type medium with assistance of an auxiliary microwave resonant radiation is studied. The results show that microwave driven field can lead to the parametric generation of a new laser pulse with high conversion efficiency when a weak pump laser pulse is applied.
     ( 3 ) We analyze hybrid absorptive-dispersive optical bistability (OB) and multistability (OM) behavior in a generic N-type atomic system driven by a degenerate probe field and a coherent coupling field by means of a unidirectional ring cavity. We show that the OB can be controlled by adjusting the intensity and the detuning of the coupling field, and the OM can also be observed under the appropriate detuning. The influence of the atomic cooperation parameter on atomic OB behavior is also discussed.
     (4)We analyze hybrid absorptive-dispersive OB behavior via tunable Fano-type interference based on intersubband transitions in asymmetric double quantum wells (QWs) driven coherently by a probe laser field by means of a unidirectional ring cavity. We show that OB can be controlled efficiently by tuning the energy splitting of the two excited states (the coupling strength of the tunnelling), the Fano-type interference, and the frequency detuning. The influence of the electronic cooperation parameter on the OB behavior is also discussed.
     At the same time, we study OB behavior based on intersubband transitions in an asymmetric coupled-quantum well (CQW) driven coherently by a probe laser field and a control laser field by means of a unidirectional ring cavity. We demonstrate that OB can be controlled by tuning the energy splitting between two tunnel-coupled electronic levels, the intensity of the control field, and the frequency detuning of the probe and control fields. The influence of the electronic cooperation parameter on the OB behavior is also discussed.
     (5)We investigate the features of the spontaneous emission spectra in a coherently driven cold four-level and five-level atomic systems by means of a radio frequency (rf) or microwave field driving a hyperfine transition within the ground state. It is shown that a few interesting phenomena such as spectral-line narrowing, spectral-line enhancement, spectral-line suppression, and spontaneous emission quenching can be realized by modulating the phase, the frequency and intensity of the rf-driving field in our systems. In the dressed-state picture of the coupling and rf-driving fields, this five-level atomic system is equivalent in form to a real atomic system with multi-channel spontaneous emission coherence. With respect to no existence of the real atomic system with spontaneous emission coherence effect or not finding it, the paper amounts to proposing a feasible scheme of carrying out experimental investigation.
     (6)Taking the density-dependent near dipole-dipole (NDD) interaction into consideration, we investigate the response of nonlinear absorption and dispersion as well as population dynamics in optically dense media of three-level and four-level atoms driven by a single-mode probe laser. The influence of the NDD effects on the absorption-dispersion of the probe field and population dynamics is predicted via numerical calculations.
     (7)We investigate the response of the probe amplification in a five-level atomic system in the presence of interacting double-dark resonances disturbed by introducing an additional signal field. It is found that a large enhancement of the probe amplification with or without population inversion can be achieved by properly adjusting the strengths of the microwave driving field and the signal laser field. From viewpoint of physics, we qualitatively explain these results in terms of quantum interference and dressed states.
     (8)We investigate the features of two-photon absorption in a five-level atomic system with interacting dark resonances. It is found that two-photon absorption can be completely suppressed at two different frequencies due to the application of two coherent coupling fields and the atomic system exhibits double electromagnetically induced transparency windows against two-photon absorption. The position and width of the double two-photon transparency windows can be controlled via properly adjusting the frequency detuning and the intensities of the two coupling fields. In addition, one enhanced narrow central line can be observed in the two-photon absorption spectra, which may find applications in high precision spectroscopy. Form a physical point of view, we explicitly explain these results in terms of quantum interference induced by three different two-photon excitation channels in the dressed-state picture.
     In summary, these studies may be helpful not only to understand better the new characteristic of nonlinear optics in both the cold atomic media and semiconductor quantum-well material but also to the high techniques of optical information storage and retrieval, the coherent manipulation of atoms, all-optical switching and all-optical storage devices, high-precision spectroscopy as well as quantum information sciences.
引文
[1] Walls D F and Milburn G J. Quantum Optics, First Edition, Berlin: Springer-Verlag, 1994, 91-98.
    [2] Scully M O and Zubairy M S. Quantum Optics, First Edition, the United Kingdom: Cambridge University, 1997, 160-168.
    [3]彭金生,李高翔.近现代量子光学导论(第一版),北京:科学出版社, 1996.
    [4] Arimondo E. Coherent population trapping in laser spectroscopy, edited by Wolf E in Progress in Optics XXXV. Amsterdam: Elsevier Science, 1996, 257-354.
    [5] Barnett S M and Radmore P M. Method in Theoretical Quantum Optics, First Edition, Oxford: Clarendon Press. 1997, 189-196.
    [6] Alzeta G, Gozzini G, Moil A et al. An experimental method for the observation of RF transitions and laser beam resonances in oriented Na vapor. Nuovo Cimento B, 1976, 36(1): 5-20.
    [7] Whitley R M and Stroud C R. Double optical resonance. Phys. Rev. A, 1976, 14(4): 1498-1513.
    [8] Gray H R, Whiteley R M and Stroud C R. Coherent trapping of atomic populations. Opt. Lett., 1978, 3(6): 218-220.
    [9] Arimondo E and Orriols G et al. Nonabsorbing atomic coherence by coherent two-photon transitions in a three-level optical pumping. Lett. Nuovo Cimento, 1976, 17(10): 333-338.
    [10] Agarwal G P. Lasers with three-level absorbors. Phys. Rev. A, 1981, 24(3): 1399-1403.
    [11] Zhang Y L. The study on quantum interference and optical emission in molecular, atomic and ionic multi-level systems. Ph.D. thesis, East China Normal University, 2002, 2-8.
    [12] Harris S E. Electromagnetically induced transparency. Phys. Today, 1997, 50(7): 36-42.
    [13] Harris S E, Field J E and Imanoglu A. Nonlinear optical processes using electromagnetically induced transparency. Phys Rev. Lett., 1990, 64(10):1107-1110.
    [14] Xu W H, Wu J H and Gao J Y. Elimination of the transient absorption in a microwave-driven Lambda-type atomic system. Physics Letters A, 2003, 314(1-2): 23–28.
    [15] Schmidt H, Campman K L, Gossard A C et al. Tunneling induced transparency: Fano interference in intersubband transitions. Appl. Phys. Lett., 1997, 70(25): 3455-3457.
    [16] Schmidt H and Imamoglu A. Nonlinear optical devices based on a transparency in semiconductor intersubband transitions. Opt. Commun., 1996, 131(4-6): 333-338.
    [17] Silvestri L, Bassani F, Czajkowski F G et al. Electromagnetically induced transparency in asymmetric double quantum wells. Eur. Phys. J. B, 2002, 27(1): 89-102.
    [18] Paspalakis E, Kylstra N J and Knight P L. Transparency induced via decay interference. Phys. Rev. Lett., 1999, 82(10): 2079-2082.
    [19] Paspalakis E, Kylstra N J and Knight P L. Transparency of a short laser pulse via decay interference in a closed V-type system. Phys. Rev. A, 2000, 61(4): 045802/1-4.
    [20] Tea D H. Theory and application of the density matrix. Rep. Prog. Phys., 1961, 24(1): 304-362.
    [21] Scully M O. Enhanced of index of refraction via quantum coherence. Phys. Rev. Lett., 1991, 67(14): 1855-1858.
    [22] Dowling J P and Bowden C M. Near dipole-dipole effects in lasing withoutinversion: An enhancement of gain and absorptionless index of refraction. Phys. Rev. Lett., 1993, 70(10): 1421-1424.
    [23] Vemuri G, Agarwal G S and Nageswara Rao B D. Sub-Doppler resolution in inhomogenously broadened media using intense control fields. Phys. Rev. A, 1996, 53(4): 2842-2845.
    [24] Field J E and Imagoglu A. Spontaneous emission into an electromagnetically induced transparency. Phys. Rev. A, 1993, 48(3): 2486-2489.
    [25] Li Y Q and Xiao M. Observation of quantum interference between dressed states in an electromagnetically induced transparency. Phys. Rev. A, 1995, 51(6): 4959-4962.
    [26] Lee H W. Quantum theory of electromagnetically induced suppression of absorption and inversionless lasing in a three-level system. J. Opt. Soc. Am. B, 1995, 12(3): 449-455
    [27] Zhang G Z, Katsuragawa M, Hakuta K et al. Sum-frequency generation using srtong-field and induced transparency in atomic hydrogen, Phys. Rev. A, 1995, 52(2): 1584-1593.
    [28] Berman P R and Salomaa R. Comparition between dressed-atom and bar e-a tom pictures in laser spectroscopy. Phys. Rev. A, 1982, 25(5): 2667-2692.
    [29] Li F L and Zhu S Y. Resonance fluorescence quenching and spectral line narrowing via quantum interference in a four-level atom driven by two coherent fields. Phys. Rev. A, 1999, 59(3): 2330-2341.
    [30] Cohen J L and Berman P R. Amplification without inversion: understanding probability amplitudes quantum interference and Feynman rules in a strongly driven system. Phys. Rev. A, 1997, 55(5): 3900-3917.
    [31] Agarwal G S and Harshawardhan W. Inhibition and enhancement of two photon absorption. Phys. Rev. Lett., 1997, 77(6): 1039-1042.
    [32] Zou J H, Hu X M, Cheng G L et al. Inhibition of two-photon absorption in athree-level system with a pair of bichromatic fields. Phys. Rev. A, 2005, 72(5): 055802/1-4.
    [33] Zhu Y, Saldana J, Wen L et al. Steady-state population inversion by multi-photon electromagnetically induced transparency. J. Opt. Soc. Am. B, 2004, 21(4): 806-810.
    [34] Hou B P, Wang S J, Yu W L et al. Control of one- and two-photon absorption in a four-level atomic system by changing the amplitude and phase of a driving microwave field. J. Phys. B, 2005, 38(10): 1419-1434.
    [35] Li Y Q and Xiao M. Transient property of an electromagnetically induced transparency in three-level atoms. Opt. Lett., 1995, 20(13): 1489-1491.
    [36] Harris S E and Luo Z F. Preparation energy for electromagnetically induced transparency. Phys. Rev. A, 1995, 52(2): 928-931.
    [37] Wu Y and Yang X. Electromagnetically induced transparency in V-, Lambda-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A, 2005, 71(5): 053806/1-7.
    [38] Harris S E. Electromagnetically induced transparency with matched pulses. Phys. Rev. Lett., 1993, 72(5): 552-555.
    [39] Zhang Y, Brown A W and Xiao M. Matched ultraslow propagation of highly efficient four-wave mixing in a closely cycled double-ladder system Phys. Rev. A, 2006, 74(5): 053813/1-10.
    [40] Petch J C, Keitel C H, Knight P L et al. Role of electromagnetically induced transparency in resonant four-wave mixing schemes. Phys. Rev. A, 1996, 53(1): 543-561.
    [41] Zibrov A S, Lukin M D and Scully M O. Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic medium. Phys. Rev. Lett., 1999, 83(20): 4049- 4052.
    [42] Merriam A J, Sharpe S J, Shverdin M et al. Efficient nonlinear frequencyconversion in an all-resonant double-Lambda system. Phys. Rev. Lett., 2000, 84(23): 5308-5311.
    [43] Braje D A, Balic V, Goda S et al. Frequency mixing using electromagnetically induced transparency in cold atoms. Phys. Rev. Lett., 2004, 93(18): 183601/1-4.
    [44] Johnsson M T and Fleischhauer M. Quantum theory of resonantly enhanced four-wave mixing: Mean-field and exact numerical solutions. Phys. Rev. A, 2002, 66(4): 043808/1-10.
    [45] Wu Y, Saldana J and Zhu Y. Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency. Phys. Rev. A 67(1): (2003) 013811/1-5.
    [46] Wu Y and Yang X. Highly efficient four-wave mixing in double-Lambda system in ultraslow propagation regime. Phys. Rev. A, 2004, 70(5): 053818/1-5.
    [47] Wu Y, Wen L and Zhu Y. Efficient hyper-Raman scattering in resonant coherent medium. Opt. Lett., 2003, 28(8): 631-633.
    [48] Wu Y, Payne M G, Hagley E W et al. Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference. Opt. Lett., 2004, 29(19): 2294-2296.
    [49] Kang H, Hernandez G and Zhu Y. Slow-light six-wave mixing at low light intensities Phys. Rev. Lett., 2004, 93(7): 073601/1-4.
    [50] Kang H, Hernandez G and Zhu Y. Resonant four-wave mixing with slow light. Phys. Rev. A, 2004, 70(6): 061804/1-4.
    [51] Zibrov A S, Matsko A B and Scully M O. Four-wave mixing of optical and microwave fields. Phys. Rev. Lett., 2002, 89(10): 103601/1-4.
    [52] Li Z, Cao D Z and Wang K. Manipulating synchronous optical signals with a double-Lambda atomic ensemble. Phys. Lett. A, 2005, 341(5-6): 366-370.
    [53] Wang K G and Yang G J. Dynamic polariton and quantum state swapping between an electromagnetic field and atomic ensemble. Chin. Phys. Lett., 2002,19(12): 1801-1804.
    [54] Niu Y, Li R and Gong S. High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system Phys. Rev. A, 2005, 71(4): 043819/1-5.
    [55] Xue Y, He Q Y, LaRocca G C et al. Dynamic control of four-wave-mixing enhancement in coherently driven four-level atoms. Phys. Rev. A, 2006, 73(1): 013816/1-7.
    [56] Wang J, Zhu Y, Jiang K J et al. Bichromatic electromagnetically induced transparency in cold rubidium atom. Phys. Rev. A, 2003, 68(6): 063810/1-4.
    [57] Lukin M D, Yelin S F, Fleichhauser M et al. Quantum interference effects induced by interacting dark resonances. Phys. Rev. A, 1999, 60(4): 3225-3228.
    [58] Chen Y C, Liao Y A, Chiu H Y et al. Observation of the quantum interference phenomenon induced by interacting dark resonances. Phys. Rev. A, 2001, 64(5): 053806/1-5.
    [59] Ye C Y, Zibrov A S, Rostovtsev Y V et al. Unexpected Doppler-free resonance in generalized double dark states. Phys. Rev. A, 2002, 65(4): 043805/1-4.
    [60] Yelin S F, Sautenkov V A, Kash M M et al. Nonlinear optics via double dark resonances. Phys. Rev. A, 2003, 68(6): 063801/1-7.
    [61] Niu Y, Gong S, Li R et al. Creation of atomic coherent superposition states via the technique of stimulated Raman adiabatic passage using a Lambda-type system with a manifold of levels. Phys. Rev. A, 2004, 70(2): 023805/1-4.
    [62] Goren C, Wilson-Gordon A D, Rosenbluh M et al. Sub-Doppler and subnatural narrowing of an absorption line induced by interacting dark resonances in a tripod system. Phys. Rev. A, 2004, 69(6): 063802/1-5.
    [63] Paspalakis E, Kylstra N J and Knight P L. Propagation and nonlinear generation dynamics in a coherently prepared four-level system. Phys. Rev. A, 2002, 65(5): 053808/1-8.
    [64] Schmidt H and Imamoglu A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett., 1996, 21(23): 1936-1938.
    [65] Kang H and Zhu Y. Observation of Large Kerr Nonlinearity at Low Light Intensities. Phys. Rev. Lett., 2003, 91(9): 093601/1-4.
    [66] Hu X M and Xu J. Enhanced index and negative dispersion without absorption in driven cascade media. Phys. Rev. A, 2004, 69(4): 043812/1-9.
    [67] Scully M O. Enhancement of the index of refraction via quantum coherence. Phys. Rev. Lett., 1991, 67(14): 1855-1858.
    [68] Fleischhauer M, Keitel C H, Scully M O et al. Resonantly enhanced refractive index without absorption via atomic coherence. Phys. Rev. A, 1992, 46(3): 1468-1487.
    [69] Xiao M, Li Y, Jin S et al. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett., 1995, 74(5): 666-669.
    [70] Fleischhauer M, Imamoglu A and Marangos J P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys., 2005, 77(2): 633-673.
    [71] Ning C N. Two-photon lasers based on intersubband transitions in semiconductor quantum wells. Phys. Rev. Lett., 2004, 93(18): 187403/1-4.
    [72] Liu A and Ning C Z. Terahertz optical gain based on intersubband transitions in optically pumped semiconductor quantum wells: Coherent pump–probe interactions. Appl. Phys. Lett., 1999, 75(9): 1207-1209.
    [73] Bergmann K, Theuer H and Shore B W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys., 1998, 70(3): 1003-1025.
    [74] Pellinzzari T, Gardiner S A, Cirac J I et al. Decoherence continous observation and quantum computing: A cavity QED model. Phys. Rev. Lett., 1995, 75(21): 3788-3791.
    [75] Fry E S, Lukin M D, Walther T et al. Four-level atomic coherence and CW VUV lasers. Opt. Commun., 2000, 179(1-6): 499-504.
    [76] Faist F, Sirtori C, Capasso F et al. Tunable Fano interference in intersubband absorption. Opt. Lett. 1996, 21(13): 985-987.
    [77] Faist J, Capasso F, Sirtori C et al. Controlling the sign of quantum interference by tunneling from quantum wells. Nature, 1997, 390(6660): 589-591.
    [78] Imamoglu A and Ram R J. Semiconductor lasers without population inversion. Opt. Lett., 1994, 19(21): 1744-1746.
    [79] Frogley M D, Dynes J F, Beck M et al. Gain without inversion in semiconductor nanostructures. Nature Mater., 2006, 5(3): 175-178.
    [80] Serapiglia G B, Paspalakis E, Sirtori C et al. Laser-induced quantum coherence in a semiconductor quantum well. Phys. Rev. Lett., 2000, 84(5): 1019-1022.
    [81] Li T, Wang H, Kwong N H et al. Electromagnetically induced transparency via electron spin coherence in a quantum well waveguide. Opt. Express, 2003, 11(24): 3298-3303.
    [82] Yang X X, Li Z W and Wu Y. Four-wave mixing via electron spin coherence in a quantum well waveguide. Phys. Lett. A, 2005, 340(1-4): 320-325.
    [83] Atanasov R, Hache A, Hughes J L P et al. Coherent control of photocurrent generation in bulk semiconductors. Phys. Rev. Lett., 1996, 76(10): 1703-1706.
    [84] Potz W. Coherent control of electron intersubband transitions by frequency-detuned light fields. Physica E (Amsterdam), 2000, 7(1-2): 159-165.
    [85] Muller T, Parz W, Strasser G et al. Pulse-induced quantum interference of intersubband transitions in coupled quantum wells. Appl. Phys. Lett., 2004, 84(1): 64-66.
    [86] Muller T, Bratschitsch R, Strasser G et al. Intersubband absorption dynamics in coupled quantum wells. Appl. Phys. Lett., 2001, 79(17): 2755-2757.
    [87] Nikonov D E, Imamoglu A and Scully M O. Fano interference of collectiveexcitations in semiconductor quantum wells and lasing without inversion. Phys. Rev. B, 1999, 59(19): 12212-12215.
    [88] Phillips M and Wang H. Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well. Opt. Lett. 28(10): 831-833.
    [89] Dynes J F, Frogley M D, Rodger J et al. Optically mediated coherent population trapping in asymmetric semiconductor quantum wells. Phys. Rev. B, 2005, 72(8): 085323/1-7.
    [90] Dynes J F, Frogley M D, Beck M et al. AC Stark splitting and quantum interference with intersubband transitions in quantum wells. Phys. Rev. Lett., 2005, 94(15): 157403/1-4.
    [91] Wu J H, Gao J Y, Xu J H et al. Ultrafast All Optical Switching via Tunable Fano Interference. Phys. Rev. Lett., 2005, 95(5): 057401/1-4.
    [92] Ku P C, Sedgwick F, Chang-Hasnain C J et al. Slow light in semiconductor quantum wells. Opt. Lett., 2004, 29(19): 2291-2293.
    [93] Yelin S F and Hemmer P R. Resonantly enhanced nonlinear optics in semiconductor quantum wells: An application to sensitive infrared detection. Phys. Rev. A, 2002, 66(1): 013803/1-5.
    [94] Roskos G H, Nuss M C, Shah J et al. Coherent submillimeter-wave emission from charge oscillations in a double-well potential Phys. Rev. Lett., 1992, 68(14): 2216-2219.
    [95] Luo M S C, Chuang S L, Planken P C M et al. Coherent double-pulse control of quantum beats in a coupled quantum well Phys. Rev. B, 1993, 48(15): 11043-11050.
    [96] Planken P C M, Brener I, Nuss M C et al. Coherent control of terahertz charge oscillations in a coupled quantum well using phase-locked optical pulses. Phys. Rev. B, 1993 48(7): 4903-4906.
    [97] Vasko F T and Raichev O E. Ultrafast edge photoexcitation and coherent oscillations in tunnel-coupled double quantum wells. Phys. Rev. B, 1995, 51(23): 16965-16972.
    [98] Raichev O E. Charge oscillations in double quantum wells: Nonlinear effects caused by the Coulomb interaction. Phys. Rev. B, 1995, 51(24): 17713-17717.
    [99] Joshi A and Xiao M. Optical bistability in a three-level semiconductor quantum-well system. Appl. Phys. B: Lasers Opt., 2004, 79(1): 65-69.
    [100] Bastard G. Wave mechanics applied to semiconductor heterostructure (Halasted, Paris, 1988)
    [101] Kim K Y and Lee B. Proposal on the suppression of optical absorption by quantum interference via parallel-perpendicular kinetic energy coupling effect. 2001, IEEE J. Quant. Electro. 37(4): 546-551.
    [102] Kim K Y and Lee B. Effect of parallel-perpendicular kinetic energy coupling under effective mass approximation a theterostructure boundaries in a quantum wire. J. A ppl. Phys., 1998, 84(10): 5593-5596.
    [103] Boller K J, Imamoglu A and Harris S E. Observation of electromagnetically induced transparency. Phys. Rev. Lett., 1991, 66(20): 2593-2596.
    [104] Field J E, Hahn K H, Harris S E et al. Observation of electromagnetically induced transparency in collisionally broadened lead vapour. Phys. Rev. Lett., 1991, 67(22): 3062-3065.
    [105] Kasapi A. Enhanced isotope discrimination using electromagnetically induced transparency. Phys. Rev. Lett., 1996, 77(6): 1035-1038.
    [106] Gea-Banacloche J, Li Y Q, Jin S Z et al. Electromagnetically induced transparency in ladder-type in homogeneously broadened media-theory and experiment. Phys. Rev. A, 1995, 51(1): 576-584.
    [107] Li Y Q and Xiao M. Electromagnetically induced transparency in a three-level Lambda system in rubidium atoms. Phys. Rev. A, 1995, 51(4): 2703-2706.
    [108] Zibrov A S, Lukin M D, Hollberg L et al. Experimental demonstration of enhanced index of refraction via quantum coherence in Rb. Phys. Rev. Lett., 1996, 76(21): 3935-3938.
    [109] Moseley R R, Shepherd S, Fulton D J et al. Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing. Phys. Rev. Lett., 1995, 74(5): 670-673.
    [110] Moseley R R, Shepherd S, Fulton D J et al. Electromagnetically induced focusing. Phys. Rev. A, 1996, 53(1): 408-415.
    [111] Kasapi A, Jain M, Yin G Y et al. Electromagnetically induced transparency: Propagation dynamics. Phys. Rev. Lett., 1995, 74(13): 2447-2450.
    [112] Hau L V, Harris S E, Dutton Z et al. Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature, 1999, 397(6720): 594-598.
    [113] Vanderveldt T, Roch J F, Grelu P et al. Nolinear absorption and dispersion of cold Rb-87 atoms. Opt. Commun., 1997, 137(4-6): 420-426.
    [114] Yan M, Rickey E G and Zhu Y. Electromagnetically induced transparency in cold rubidium atoms. J. Opt. Soc. Am. B, 2001, 18(8): 1057-1062.
    [115] Phillips D F, Fleischhauer A, Mair A et al. Storage of light in atomic vapor. Phys. Rev. Lett., 2001, 86(5): 783-786.
    [116] Liu C, Dutton Z, Behroozi C H et al. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 2001, 409(6819): 490-493.
    [117] Bajcsy M, Zibrov A S and Lukin M D. Stationary pulses of light in an atomic medium. Nature, 2003, 426(6967): 638-641.
    [118] Michael M K, Sautenkov V A, Zibrov A S et al. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett., 1999, 82(26): 5229-5232.
    [119] Budker D, Kimball D F, Rochester S M et al. Nonlinear magneto-optics andreduced group velocity of light in atomic vapor with slow ground state relaxation. Phys. Rev. Lett., 1999, 83(9): 1767-1770.
    [120] Lin S H, Hsu K Y and Yeh P. Experimental observation of the slowdown of optical beams by a volume-index grating in a photorefractive LiNbO3 crystal. Opt. Lett., 2000, 25(21): 1582-1584.
    [121] Kocharovskaya O, Rostovtsev Y and Scully O. Stopping light via hot atoms. Phys. Rev. Lett., 2001, 86(4): 628-631.
    [122] Gao J Y, Yang S H, Wang D et al. Electromagnetically induced inhibition of two-photon absorption in sodium vapor. Phys. Rev. A, 2000, 61(2): 023401/1-3.
    [123] Yan M, Rickey E G and Zhu Y. Suppression of two-photon absorption by quantum interference. Phys. Rev. A, 2001, 64(4): 043807/1-4.
    [124] Yan M, Rickey E and Zhu Y. Nonlinear absorption by quantum interference in cold atoms. Opt. Lett., 2001, 26(8): 548-550.
    [125] Zhao Y, Wu C K, Ham B S et al. Microwave induced transparency in ruby. Phys. Rev. Lett., 1997, 79(4): 641-644.
    [126] Ham B S, Shahriar M S, Kim M K et al. Frequency-selective time-domain optical storage by electromagnetically induced transparency in a rare-earth-doped solid. Opt. Lett., 1997, 22(24): 1849-1851.
    [127] Zhang G, Bo F, Dong R et al. Phase-coupling-induced ultraslow light propagation in solids at room temperature. Phys. Rev. Lett. 2004, 93(13): 133903/1-4.
    [128] Agarwal G S. Nature of quantum interference in electromagnetic-field-induced control of absorption. Phys. Rev. A, 1997, 55(22): 2467-2470.
    [129] Fulton D J, Mosely R R, Shepherd S et al. Effects of Zeeman splitting electromagnetically on induced transparency. Opt. Commun., 1995, 116(1-3): 231-239.
    [130] Chen Y C, Lin C W and Yu I E. Role of degenerate Zeeman levels inelectromagnetically induced transparency. Phys. Rev. A, 2006, 61(5): 053805/1-6.
    [131] Letokhov V S and Chebotayev V P. Nonlinear Laser Spectroscopy, New York: Springer, 1977, 13-24.
    [132] Shephed S, Fulton D J and Dunn M H. Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium. Phys. Rev. A, 1996, 54(6): 5394-5399.
    [133] Wu B L, Burket W H and Xiao M. Electromagnetically induced transparency with variable coupling-laser line width. Phys. Rev. A, 1997, 56(1): 976-979.
    [134] Zhu Y F and Wasserlauf T N. Sub-Doppler linewidth with coupling laser offset. Phys. Rev. A, 1995, 54(4): 3653-3656.
    [135] Fulton D J, Sphepherd S, Moseley R R et al. Continous-wave electromagnetically induced transparency: comparision of V-system, lamad-system and cascade systems. Phys. Rev. A, 1995, 52(3): 2302-2311.
    [136] Wielandy S and Gaeta A L. Inverstigation of electromagnetically induced transparency in strong probe regime. Phys. Rev. A, 1998, 58(3): 2500-2505.
    [137] Harris S E. Lasers without inversion-interference of lifetime-broadened resonances. Phys. Rev. Lett., 1989, 62(9): 1033-1036.
    [138] Imamoglu A, Field J E and Harris S E. Lasers without inversion: A closed lifetime broadened system. Phys. Rev. Lett., 1991, 66(9): 1154-1156.
    [139] Kocharovskaya O A and Mandel P. Amplification without inversion: The double-Lambda scheme. Phys. Rev. A, 1990, 42(1): 523-535.
    [140] Kocharovskaya O A, Mauri F and Arimondo E. Laser without population inversion and coherent trapping. Opt. Commun., 1991, 84(5-6): 393-400.
    [141] Kocharovskaya O, Mandel P and Radeonychev Y V. Inversionless amplification in a three-level medium. Phys. Rev. A, 1992, 45(3): 1997-2005.
    [142] Narducci L M, Doss H M, Ru P et al. A simple model of a laser without inversion.Opt. Commun., 1991, 81(6): 379-402.
    [143] Gao J Y, Guo C, Guo X Z et al. Observation of light amplification without population inversion in sodium. Opt. Commun., 1992, 93(5-6): 323-327.
    [144] Nottelmann A, Peters C and Lange W. Inversionless amplification of picosecond pulses due to Zeeman coherence. Phys. Rev. Lett., 1993, 70(12): 1783-1768.
    [145] Fry E S, Li X, Nikonov D et al. Atomic coherence effects within the sodium D1 line: Lasing without inversion via population trapping. Phys. Rev. Lett., 1993, 70(21): 3235-3238.
    [146] van der Veer W, van Diest R J J, Donszelmann A et al. Experimental demonstration of light amplification without population inversion. Phys. Rev. Lett., 1993, 70(21): 3243-3246.
    [147] Goy P, Raimond J M, Gross M et al. Observation of cavity enhanced single atom spontaneous emission. Phys. Rev. Lett., 1983, 50(24): 1903-1906.
    [148] Kleppner D. Inhibited spontaneous emission. Phys. Rev. Lett, 1981, 47(4): 233-236.
    [149] Cardimona D A, Raymer M G and Stroud C R. Steady-state quantum interference fluorescence. J. Phys. B, 1982, 15(1): 55-64.
    [150] Narducci L M, Scully M O, Oppo G L et al. Spontaneous emission properties of a driven three- level system. Phys. Rev. A, 1990, 42(3): 1630-1649.
    [151] Gauthier D J, Zhu Y and Mossberg T W. Observation of linewidth narrowing due to coherent stabilization of quantum fluctuations. Phys. Rev. Lett., 1991, 66(19): 2460-2463.
    [152] Javanainen J. Effect of state superposions created by spontaneous emission on laser driven transitisons. Europhys. Lett, 1992, 17(5): 407-412.
    [153] Agarwal G S. Quantum Optics-Springer Tracts and Modem Physics, Berlin: Springer, 1974, 95-112.
    [154] Zhu S Y, Narducci L M and Scully M O. Quantum mechanical interferenceeffects in spontaneous-emission spectrum of a driven atom. Phys. Rev. A, 1995, 52(6): 4791-4802.
    [155] Huang H, Zhu S Y and Zubairy M S. Nondecaying state in a three-level system driven by a single field: Effect of relaxations. Phys. Rev. A, 1997, 55(1): 744-750.
    [156] Paspalakis E and Knight P L. Phase control of spontaneous emission. Phys. Rev. Lett., 1998, 81(2): 293-296.
    [157] Hu X M and Xu Z Z. Two color control of spontaneous emission from a single channel system. Opt. Commun., 2002, 204(1-6): 253-262.
    [158] Li G X, Li F L and Zhu S Y. Quantum interference between decay channels of a three-level atom in a multilayer dielectric medium. Phys. Rev. A, 2001, 64(1): 013819/1-10.
    [159] Ghafoor F, Zhu S Y and Zubairy M S. Amplitude and phase control of spontaneous emission. Phys. Rev. A, 2000, 62(1): 013811/1-7.
    [160] Paspalakis E, Keitel C H and Knight P L. Fluorescence control through multiple interference mechanisms. Phys. Rev. A, 1998, 58(6): 4868-4877.
    [161] Hu X M and Peng J S. Quantum interference from spontaneous decay in Lambda-systems: realization in the dressed-state picture. J. Phys. B, 2000, 33(5): 921- 931.
    [162] Lee H, Polynkin P, Scully M O et al. Quenching of spontaneous emission via quantum interference. Phys. Rev. A, 1997, 55(6): 4454-4465.
    [163] Joshi A, Yang W and Xiao M. Effect of spontaneously generated coherence on the dynamics of multi-level atomic systems. Phys. Lett. A, 2004, 325(1): 30-36.
    [164] Zhu S Y and Scully M O. Spectral line elimination and spontaneous emission cancellation via quantum interference. Phys. Rev. Lett. 76(3): 388-391 (1996).
    [165] Zhou P and Swain S. Quantum interference in probe absorption: Narrow resonances, transparency, and gain without population inversion. Phys. Rev. Lett.78(5): 832-835 (1997).
    [166] Ghafoor F, Qamar S and Zubairy M S. Atom localization via phase and amplitude control of the driving field. Phys. Rev. A, 2002, 65(4): 043819/1-8.
    [167] Martinez M A G, Herczfeld P R, Samuels C et al. Quantum interference effects in spontaneous atomic emission: Dependence of the resonance fluorescence spectrum on the phase of the driving field. Phys. Rev. A, 1997, 55(6): 4483-4491.
    [168] Wu J H, Li A J, Ding Y et al. Control of spontaneous emission from a coherently driven four-level atom. Phys. Rev. A, 2005, 72(2): 023802 /1-5.
    [169] Li A J, Gao J Y, Wu J H et al. Simulating spontaneously generated coherence in a four-level atomic system. J. Phys. B, 2005, 38(21): 3815-3823.
    [170] Fountoulakis A, Terzis A F and Paspalakis E. Coherent phenomena due to double-dark states in a system with decay interference. Phys. Rev. A, 2006, 73(3): 033811/1-8.
    [171] Xia H R, Ye C Y and Zhu S Y. Experimental observation of spontaneous emission cancellation. Phys. Rev. Lett., 1996, 77(6): 1032-1034.
    [172] Sargent M, Scully M O and Lamb W E. Laser Physics, Reading Mass: Addison-Wesley, 1974, 236-241.
    [173] Menon S and Agarwal G S. Effects of spontaneously generated coherence on the pump-probe response of a lamada system. Phys. Rev. A, 1998, 57(5): 4014-4018.
    [174] Paspalakis E, Gong S Q and Knight P L. Spontaneous emission induced coherent effects in absorption and dispersion of a V-type three-level atom. Opt. Commun., 1998, 152(4-6): 293-298.
    [175] Menon S and Agarwal G S. Gain components in the Autler-Towns doublet from quantum interference in decay channels. Phys. Rev. A, 1999, 61(1): 013807/1-8.
    [176] Lugiato L A, optical bistability, edited by Wolf E in Progress in Optics, North-Holland: Amsterdam, 1984, 71-89.
    [177] Wall D F and Zoller P. A. coherent nonlinear mechanism for optical bistability from three level atoms. Opt. Commun., 1980, 34(2), 260-264.
    [178] Harshawardhan W and Agarwal G S. Controlling optical bistability using electromagnetic field induced transparency and quantum interferences. Phys. Rev. A, 1996, 53(3): 1812-1817.
    [179] Gong S, Du S, Xu Z et al. Optical bistability via a phase fluctuation effect of the control field. Phys. Lett. A, 1996, 222(4): 237-240.
    [180] Hu X M and Xu Z. Phase control of amplitude-fluctuation-induced bistability. J. Opt. B: Quantum Semiclass. Opt., 2001, 3(2): 35-38.
    [181] Chen Z, Du C, Gong S et al. Optical bistability via squeezed vacuum input. Phys. Lett. A, 1999, 259(1): 15-19.
    [182] Joshi A, Yang W and Xiao M. Effect of quantum interference on optical bistability in the three-level V-type atomic system. Phys. Rev. A, 2003 68(1): 015806/1-4.
    [183] Joshi A, Yang W and Xiao M. Effect of spontaneously generated coherence on optical bistability in three-level Lambda-type atomic system. Phys. Lett. A, 2003, 315(3-4): 203-207.
    [184] Brown A, Joshi A and Xiao M. Controlled steady-state switching in optical bistability. Appl. Phys. Lett., 2003, 83(7): 1301-1303.
    [185] Joshi A, Brown A, Wang H et al. Controlling optical bistability in a three-level atomic system. Phys. Rev. A, 2003, 67(4): 041801(R)/1-4.
    [186] Joshi A and Xiao M. Optical Multistability in three-level atoms inside an optical ring cavity. Phys. Rev. Lett., 2003, 91(14): 143904/1-4.
    [187] Joshi A, Yang W and Xiao M. Dynamical hysteresis in a three-level atomic system. Opt. Lett., 2005, 30(8): 905-907.
    [188] Wang H, Goorskey D J and Xiao M. Bistability and instability of three-level atoms inside an optical cavity. Phys. Rev. A, 2001, 65(1): 011801(R)/1-4.
    [189] Chang H, Wu H, Xie C et al. Controlled shift of optical bistability hysteresis curve and storage of optical signals in a four-level atomic system. Phys. Rev. Lett., 2004, 93(21): 213901/1-4.
    [190] Wang H, Goorskey D and Xiao M. Controlling light by light with three-level atoms inside an optical cavity. Opt. Lett., 2002, 27(15): 1354-1356.
    [191] Rempe G, Walther H and Klein N. Observation of quantum collapse and revival in one-atom maser. Phys. Rev. Lett., 1987, 58(4): 353-356.
    [192] Rempe G, Schmidt-Kaler F and Walther H. Observation of sub-poissonian photon statistics in a micromaser. Phys. Rev. Lett., 1990, 64(23): 2783-2786.
    [193] Yang X X, Wu Y and Li Y J. Unified and standardized procedure to solve various nonlinear Jaynes-Cummings models. Phys. Rev. A, 1997, 55(6): 4545-4551.
    [194] Wu Y. Effective Raman theory for a three-level atom in the Lambda configuration. Phys. Rev. A, 1996, 54(2): 1586-1592.
    [195] Wu Y and Yang X. Effective two-level model for a three-level atom in the ladder configuration. Phys. Rev. A, 1997, 56(3): 2443-2446.
    [196] Haus H A and Wong W S. Solitons in optical communications. Rev. Mod. Phys., 1996, 68(2): 423-444.
    [197] Kivshar Y S and Luther-Davies B. Dark optical solitons: physics and applications. Phys. Rep., 1998, 298(2-3): 81-197.
    [198] Agrawal G P. Nonlinear Fiber Optics, New York: Academic, Third Edition, 2002, 21-121.
    [199] Hong T. Spatial weak-light solitons in an electromagnetically induced nonlinear waveguide. Phys. Rev. Lett., 2003, 90(18): 183901/1-4.
    [200] Wu Y and Deng L. Ultraslow bright and dark optical solitons in a cold three-state medium. Opt. Lett., 2004, 29(17): 2064-2066.
    [201] Wu Y and Deng L. Ultraslow optical solitons in a cold four-state medium. Phys. Rev. Lett., 2004, 93(14): 143904/1-4.
    [202] Wu Y. Two-color ultraslow optical solitons via four-wave mixing in cold-atom media. Phys. Rev. A, 2005, 71(5): 053820/1-5.
    [203] Wu Y and Deng L. Ultraslow bright and dark optical solitons in a cold three-state medium. Commun. Theor. Phys., 2006, 45(2): 335-342.
    [204] Bowden C M and Dowling J P. Near–dipole-dipole effects in dense media: Generalized Maxwell-Bloch equations. Phys. Rev. A, 1993, 47(2): 1247-1251.
    [205] Scully M O and Fleischhauer M. High-sensitivity magnetometer based on index-enhanced media. Phys. Rev. Lett., 1992 69(9): 1360-1363.
    [206] Bennett C H and Divincenzo D P. Quantum information and computation. Nature, 2000, 404(6775): 247-255.
    [207] Liu C. Study of quantum coherent control to the nonlinear optical proterties of atomic system. Ph.D. thesis, Shanghai Institute of Optics and Fine Mechanics, 2005, 18-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700