蔬菜中不同形态砷的测定方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷是自然界中常见的元素,也是长期以来被认为对人体健康有负面影响的元素。近年来,随着对砷研究的深入开展,人们发现砷元素的毒性大小是随着化合物的形态不同而变化的,用总量评价砷的毒性和环境污染无法真实反映砷污染状况,因此应该对砷的各种形态进行定性定量分析。本研究选择环境中最常见的毒性较强的四种砷形态(包括As(Ⅲ)、As(Ⅴ)、MMA、DMA)作为分析对象,首次建立了蔬菜中不同形态砷的测定方法。
     目前,常用的砷形态检测方法包括:高效液相色谱-等离子体质谱法(HPLC-ICP-MS)、氢化物-电感耦合等离子体-原子吸收光谱法(HG-ICP-AAS)、高效液相色谱-氢化物-原子荧光光谱法(HPLC-HG-AFS)。其中,HPLC-HG-AFS具有灵敏度高、价格低廉、稳定性好等优点,是近几年报道最多、应用最广的联用检测方法。本课题优化和建立了HPLC-HG-AFS测定蔬菜中不同形态砷的方法,主要包括以下几个方面:
     第一,确立研究对象。收集不同种类的蔬菜样品,通过总砷的测定,选择其中砷含量较高的蕨菜作为方法的研究对象。
     第二,确立仪器条件。包括三个方面:1.分离系统条件的优化。主要考察高效液相色谱分离条件,以磷酸氢二铵作为流动相,在其浓度为15mmol/L、pH为6.0时谱峰得到最好的分离。2.氢化物发生条件的优化。使用盐酸为载流、硼氢化钾为氢化发生还原剂,在盐酸浓度为7%(v/v)、硼氢化钾的浓度为1.5%(w/v)时信噪比达到最佳。3.检测系统条件的优化。主要考察原子荧光检测条件,当光电倍增管负高压为290V、灯电流为100mA、原子化器温度为200℃、载气流速为300ml/min、屏蔽气流速为600ml/min时信噪比达到最佳。
     第三,前处理方法的选择。以1:1(v/v)甲醇水为提取剂,采用超声(20min)+离心(20min)对蔬菜样品连续提取3次达到最佳效果。
     第四,方法评价。测定四种形态砷检出限为As(Ⅲ)2μg/L、DMA 4μg/L、MMA 4μg/L、As(Ⅴ)10μg/L,方法平均回收率在82.3%-88.3%之间,相对标准偏差分别为As(Ⅲ)1.01%、DMA2.51%、MMA4.76%、As(Ⅴ)4.67%。四种形态砷表现出良好的线性关系,相关系数均大于0.999。说明方法具有检出限低、准确性好、稳定性高、线性关系显著等特点。
     本课题的另一部分工作是将优化后的方法应用于蔬菜样品的测定。通过调查市场上常见的陆生蔬菜和水生蔬菜,结果表明:(1)水生蔬菜(海生蔬菜)砷含量普遍高于陆生蔬菜;(2)陆生蔬菜砷含量较低,主要以无机砷形态为主;(3)水生蔬菜(海生蔬菜)砷含量较高,但主要以无毒的有机砷为主,无机砷含量较低:(4)砷富集蔬菜(如蕨菜、污染区油菜等)的砷含量很高,且以毒性最强的无机砷形态存在。
Arsenic is one of the ordinary elements in the nature. It has a century-long reputation of being poisonous. Recently, as the development of investigating on arsenic, people know that the toxicity of arsenic is greatly dependent on its chemical form. So the total content of arsenic could not reflect the real influence of it on environment. It is qualitative and quantitative analysis of different arsenic species. Our study selects As(III)、As(V)、MMA、DMA, which have toxicity and universality, as analytical subject to establish speciation method of vegetables for the first time.
     Now, arsenic speciation analysis is achieved by High Pressure Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry (HPLC-ICP-MS), Hydride Generation-Inductively Coupled Plasma-Atomic Absorption Spectroscopy (HG-ICP-AAS) and High Pressure Liquid Chromatography-Hydride Generation-Atomic Fluorescence Spectroscopy (HPLC-HG-AFS). HPLC-HG-AFS is the most reported and the most widely used. It has high accuracy, stability and sensitivity. We want to find a method that used to Arsenic Speciation Analysis of vegetables.
     Firstly, the object of study is established. We collect different types of vegetable samples and detect the total arsenic content of samples. Bracken is identified as research subjects, because it's higher arsenic content.
     Secondly, the equipment condition is optimized. Include three aspects: 1 .Optimization of separation system. The main study is for HPLC separation conditions. The concentration is 15 mmol/L, the pH is 6.0, and (NH_4)_2HPO_4 is used as mobile phase. The four arsenic species are baseline separated. 2. Optimization of HG. Carrier solution is 7 % (v/v) Hcl, reducing agent of HG is 1.5% (m/v) KBH_4 solution. 3. Optimization of detection system. The main study is for AFS detection system. The best conditions include that: the photomultiplier tube of negative high voltage is 290 V, lamp current is 100 mA, atomization temperate is 200℃, carrier gas's flow rate is 300 ml/min, and shielding gas's flow rate is 600 ml/min.
     Thirdly, pre-treatment method is chose. Extract is 1:1 (v/v) methanol-water solution. Ultrasound (20 min) - centrifugal (20 min) through 3 consecutive times extraction is the extraction method.
     Fourthly, the method is evaluated. Independently, the DL are: As(III) 2μg/L、DMA 4μg/L、MMA 4μg/L、As( V) 10μg/L, the recovery is between 82.3%-88.3%, and the RSD are: As(III) 1.01%, DMA 2.51%, MMA4.76%, As(V) 4.67%. It shows that the four arsenic species has good linearity, correlation coefficient> 0.999. It indicates that the method has the characteristic of high sensitivity, good accuracy, stability and wide range of linearity.
     Another part of the study is to make optimized method apply in the vegetables sample determination. Through investigation market in common terrestrial vegetables and aquatic vegetables, finally indicated: (1) The aquatic vegetables arsenic content is higher than the terrestrial vegetables general; (2) The terrestrial vegetables arsenic content is lower and mainly by inorganic arsenic shape primarily; (3) The aquatic vegetables arsenic content is higher, but by the non-toxic organic arsenic primarily, the inorganic arsenic content is mainly low; (4) The Arsenic-rich vegetables (such as bracken, rapes in contaminated areas, etc.) the arsenic content is very high and by toxic strongest inorganic arsenic forms existence.
引文
1.陈甫华,卫红梅,杨克莲.离子色谱-氢化物发生-原子吸收测定天然水中的砷形态.分析化学,1993,21(7):761-767
    2.陈甫华,陈伟琪,杨克莲.砷形态在湖水中垂直分布的研究.环境化学,2004.13(6):204-209
    3.陈树榆,张志锋,余华明.HG-ICP-MS同时测定生物样品中痕量As、Se、Hg.分析试验室,2004,23(5):9-13
    4.陈世忠.氢化物发生电感耦合等离子发射光谱法测定黄姜中的砷、锑和铋.微量元素与健康研究,2003,20(3):34-36
    5.陈燕.氢化物发生.原子荧光光谱法测定水中微量砷.上海环境科学,1998.12(4):48-50
    6.蔡秋,龙梅立.消化.石油醚提取氢化物-原子荧光光谱法测定食用油中砷.光谱实验室,2004,21(1):22-24
    7.邓天龙,廖梦霞,贾敏如.中药材GAP基地土壤和中药材中重金属研究.成都:四川科学技术出版社,2005:7-8
    8.顾微,杨惠芬.氢化物发生-原子荧光光谱法(HG-AFS)测定食品中不同价态的无机砷.卫生研究,1999.28(6):372-374
    9.侯静,弓振斌,郭旭明.流动注射-氢化物发生-非色散原子荧光光谱法对海水中As(Ⅲ)和As(Ⅴ)的研究.分析实验室,2000,19(6):13-15
    10.何小青,刘湘生,潘元海.HPLC-ICP-MS联用技术应用于砷的形态分析.现代科学仪器,2004,4:33-36
    11.黄泽春、陈同斌、雷梅、胡天斗.超富集植物蜈蚣草中砷化学形态的EXAFS研究.植物学报,2004,46(1):53-60
    12.姜能座.断续流动注射.催化原子荧光光谱法测定碘.分析化学,2003,31(8):965-968
    13.卢伢,邓天龙.植物样品中痕量砷的形态分析研究进展.广东微量元素科学,2006,13(4):7-13
    14.梁朝玉,韦敢.AFS-230E原子荧光光度计测定砷的调试和使用.光谱实验室,2006,23(4):47-50
    15.刘明钟,闫军,王安邦.原子荧光应用手册.北京吉天仪器有限公司内部刊物,2007
    16.刘志红,杨秀环,张展霞.植物中砷的形态分析.分析测试学报,1994,13(4):56-59
    17.李巧,舒薇薇.中药黄芩中砷的形态分析.中药材,1996,19(8):412-413
    18.孟紫强.砷的分子毒理学研究进展.癌变-畸变-突变,1998,10(1):62-64
    19.孙鸿德,马玲,胡宵晨.癌信号结合中西医辩证治疗急性早幼粒白血病.中国中西医结合杂志,1992,12(3):170
    20.王洪义,翟江丽.砷的形态和痕量分析研究进展.邢台学院学报,2005,20(2),99-102
    21.王宏.急性砷中毒患者砷代谢的研究.国外医学-医学地理分册,2005,21(2):93
    22.王建国.环境教育中的一个重要问题:砷的形态及其与人类健康的关系.鞍山师范学院学报,2005-12,7(6):80-82
    23.王亮,余定学,周峻杰.茶叶中的微量砷及其在茶汤中形态的分析.干旱环境监测,1999,13(4):193-195
    24.王亮,陈莉莉,朱光辉.云南中草药鬼针草中微量砷的形态分析.微量元素与健康研究,2000,17(1):44-45
    25.昊少尉,史建波.HPLC-HG-AFS测定As(Ⅲ)和As(Ⅴ)的方法研究.湖北民族学院学报(自然科学版),2003,21(4):54-56
    26.许增辉,王洪玮,郭新彪.高效液相色谱-氢化物发生-原子荧光法检测不同形态的砷.中华预防医学杂志,2004,38(2):111-113
    27.杨瑞瑛,叶军,王珂.阿左旗地方性砷中毒病区环境水中砷的化学形态中子活化分析.核技术,2001,24(8):705-710
    28.阎秀兰,陈同斌,廖晓勇,武斌.防止植物样品中无机砷形态转化的样品保存方法.植物营养与肥料学报,2005,11(6):855-857
    29.杨红丽,王镨,朱四喜.联用技术在砷形态分析中的应用进展,浙江海洋学院学报(自然科学版),2007,26(1):65-73
    30.杨莉丽,李娜,张德强.氢化物发生-原子吸收光谱法测定中药中砷(Ⅲ)和砷(Ⅴ).分析科学学报,2004,20(5):483-485
    31.赵永红,高国伟.土壤样品中微量砷的形态分析方法研究.南方冶金学院学报,2003,24(2):59-63
    32.赵素莲,王玲芬,梁京辉.饮用水中砷的危害及除砷措施.现代预防医学,2002,29(5):651-652
    33.张普敦,许国旺,魏复盛.砷形态分析方法进展.分析化学,2001,29(8):971-977
    34.张强,刘永美.水中无机砷检测技术的进展.化学工业与工程技术,2005,26(5):50-54
    35.朱敬萍,郭远明.氢化物发生原子荧光法测定海水中的微量砷.浙江海洋学院学报(自然科学版),2002,21(3):247-251
    36.朱志良,秦琴.痕量砷的分析方法研究进展.光谱学与光谱分析,2008,28(5):1176-1180
    37.Arica L G,Rode S,Girdle I.Comparison of biota sample pretreatments for arsenic speciation with coupled HPLC-HG-ICP-MS.Analyst,2000,125:401-407
    38.Beau C D,Suite K,McLain J W,Berman S.Determination of arsenic species by high performance liquid chromatography 2 induct coupled plasma mass spectrometry.Anal At Spectrum,1999,4:258-289
    39.Branch S,Ebon L,Neill O.Determination of arsenic species in fish by directly coupled high2 performance liquid chromatography 2 induct coupled plasma mass spectrometry. Anal. At.Spectrum, 1994, 9: 33-37
    
    40. Brock K V, Vanda E C, Genus J M C. Speciation by liquid chromatographic-inductively coupled plasma mass spectrometry of arsenic in mug bean seed lings used as a bio-indicator for the arsenic contamination. Anal Chime Anta, 1998,361:101-111
    
    41. Cullen W R, Reimer K J. Arsenic speciation in the environment. Chem. Rev, 1999, 89:713-764
    
    42. Chena B S, Smith N J. Urinary arsenic speciation by high2performance liquid chromatography atomic absorption spectrometry for monitoring occupational exposure to inorganic arsenic.Anal Chime Act, 1997, 197: 177-186
    
    43. Dagan T, Pedro A, Rubio R, Rarest G. Optimization of the extraction of arsenic species from mussels with low power focused microwaves by applying a Boehlert design. Anal Cham Act,1998, 364: 19-30
    
    44. Ellwood M J, Maher W A, Measurement of arsenic species in marine sediments by high-performance liquid chromatography-inductively coupled plasma mass spectrometry,Analytical Chi mica Act, 2003, 477: 279-291
    
    45. Das D, Chatterer A, Manual B. K. Arsenic in ground water in six districts of west Bengal,India: the biggest arsenic calamity in the world, Part II. Arsenic concentration in drinking water, hair, nails, urine, skin2 scale and tissue (biopsy) of the affected people. Analyst, 1995,20: 917-924
    
    46. Georgia M, Helena M. Extraction of arsenate and arsenide species from soils and sediments.Environment Pollution, 2006, 141: 22-29
    
    47. Hague S, Johan K Arsenic concentration sand speciation on ground water flow path: The Carrizo Sand aquifer, Texas, USA. Chemical Geology, 2006, 228: 57-71
    
    48. Helgesen H, Larsen E H, Biota V. Ability and speciation of arsenic in carrots grown in contaminated soil. Analyst, 1998, 123: 791-796
    
    49. Jokai Z, Hector J, Fodor P. Stability and optimization of extraction of four arsenic species.Microchemist, 1998,59: 117-124
    
    50. Kaiser T, Oyo Y, Ochi T. Toxicological study of organic arsenic compound in marine algae using mammalian cell culture technique. Food Hug, 1996, 37:135-141
    
    51. Kara J, Leon A, Massimo. Continuous flow hydride generation-atomic flu ores metric determination and speciation of arsenic in wine. Spectra chimera Act Part B, 2005, 60:816-823
    
    52. Munoz O, Velez D, Carvers M L, Montero R. Rapid and quantitative release, separation and determination of inorganic arsenic in seafood products by microwave-assisted distillation and hydride generation atomic absorption spectrometry. J Anal. At Spectrom.1999,14: 1607-1613
    
    53. Moll A.E, Hamburger R, Laggard F. Arsenic speciation in marine organisms: from the analytical methodology to the constitution of reference materials. Fresenius Anal Chem., 1996,354: 550-556
    
    54. Norwood W P, Bergmann U, Dixon D G. Chronic toxicity of arsenic, cobalt, chromium and manganese to Hayley Azteca in relation to exposure and elation. Environmental Pollution,2007, 147(1): 262-272
    
    55. Nandi S, Lena Q M. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyper accumulator Petri's vitiate L. and non-hyper accumulator Petri's uniform is L.Environmental Pollution, 2006,141: 238-246
    
    56. Pizarro I, Gomez M, Candara C, Palacios M A. Arsenic speciation in environmental and biological samples. Analytical Chimera Act, 2003,495(1-2): 85-98
    
    57. Ramer M, Goessel W, France K. Improved chrome to graphics' aeration of thin-arsenic compounds by re-versed-phase high per for manse liquid chromatography-inductively coupled plasma mass spectrometry. Journal of Chord-ma to graph A, 2006, 1128: 164-170
    
    58. Rye J, Goo S, Dahl G R. Arsenic distribution, speciation and solubility in shallow groundwater of Owens Dry Lake. California Act, 2002,66(17): 2281-2294
    
    59. Ravenna P, Farrago M E, Thornton I. Urinary arsenic species in Devon and Cornwall residents,U K. A lot study. Analyst, 1998,123: 27-29
    
    60. Raba A, Hansen H R, Zhang L Y. Arsenic accumulation and speciation analysis in wool from sheep exposed to sugars. Atlanta, 2002, 58:67-76
    
    61. Seiko V Z, Elder J T V, Byrne A R. A dual arsenic speciation system combining liquid chromatographic and purge and trap 2 gas chromatographic separation with atomic fluorescence spectrometric detection. Anal Chime Act, 1998, 358: 51-60
    
    62. Schmid A C, Raiser W, Mattock J. Evaluation of extraction procedures for the ion chromatographic determination of arsenic species in plant materials. Chromatogram A, 2000,889: 83-91
    
    63. Suds T, Barbizon A, Ogawa T. Inorganic arsenic: A dangerous enigma for mankind. Appl.Organ met. Chem., 1992, 6: 309-322
    
    64. Thomas P, Sainte K. Induct coupled plasma mass spectrometry: application of the determination of arsenic species. Fresenius Anal. Chem., 1995, 351: 410-414
    
    65. Villa L M C, Alonso R E, Lopez M P. Coupled high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry for inorganic and organic arsenic speciation in fish tissue.Atlanta,2002,57(4):741-750
    66.Velez D,Yana N,Montero R.Optimization of extraction and determination of monomer arsenic and dime arsenic acids in seafood products by coupling liquid chromatography with hydride generation atomic absorption spectrometry.Anal At Spectrum,1996,11:271-277
    67.CNKI概念知识元库,http://define.cnki.net/WebForms/WebDefault.aspx

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700