农产品中不同形态汞检测方法的建立与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞是自然界中毒性最大的元素之一,应用极广,易挥发,对人体危害很大。不同形态汞化合物毒性差异较大,用总汞评价汞环境危害程度不能准确反映出各形态汞生物毒性的差异性,因此应该对汞的各种形态进行定性定量分析。本研究选择环境中最常见三种汞形态(包括Hg(Ⅱ)、MeHg和EtHg)作为研究对象,首次建立了HPLC-VG-AFS法测定蔬菜中不同形态汞的方法,结果表明:
     1浊点萃取和漩涡混合提取两种前处理方法相比,漩涡混合操作简便且具有更高的提取效率。
     2仪器条件优化,包括三个方面:
     (1)分离条件的优化:以5%乙腈(HPLC级, v/v)-0.462%乙酸铵(m/v)-0.12%L-半胱氨酸(m/v)作为流动相,流速1.0mL/min,选择C18反相硅胶色谱柱(Venusil MP C18,4.6mm×150mm,5μm)为分离柱,各形态汞得到最好的分离,且峰型对称。
     (2)气体发生条件的优化:氧化剂浓度为1.0%K2S2O8(m/v)+0.5% KOH (m/v),还原剂:1.5%KBH4(m/v)+0.5% KOH(m/v),载流HCl浓度为7%(v/v),在线紫外消解(UV)时信噪比达到最佳。
     (3)检测条件的优化:汞空心阴极灯灯电流为30 mA,光电倍增管负高压为310 V,原子化器温度为200℃,高度为10 mm,载气流速为400 mL/min,屏蔽气流速为600 mL/min时信噪比达到最佳。
     3方法评价测定三种形态汞检出限为Hg(Ⅱ)0.14μg/L、MeHg 0.05μg/L、EtHg0.12μg/L,方法加标回收率在75%-110%之间,用10μg/L(以Hg计)的汞形态标准溶液,连续进样7次,其保留时间和峰面积的相对标准偏差分别为:Hg(Ⅱ)3.43%、2.75%, MeHg2.24%、4.07%, EtHg1.38%、3.28%;对同一蔬菜样品菠菜的7次测定结果进行分析,三种形态汞的测定值相对标准偏差分别为Hg(Ⅱ)2.26%,MeHg2.23%, EtHg3.06%,以上各相对标准偏差控制在5%以内。三种形态汞的峰面积和其浓度呈现良好的线性关系,相关系数均大于0.999。
     4方法应用
     (1)方法在蔬菜检测中的应用:通过对市场上常见的陆生蔬菜和水生蔬菜进行检测得出:陆地蔬菜基本不存在汞污染,只有个别样品有检出,而且样品中汞形态以无机汞为主,其次为甲基汞,乙基汞均未检出,水生蔬菜中汞含量较高,其形态为无机汞。
     (2)方法在大米、中药材和水产品检测中的应用:将提取剂中HCl浓度变为10%,其他条件不变。结果表明,大米中汞以甲基汞为主,其次为无机汞,没有乙基汞检出;中药材中没有汞形态物质检出;水产品中汞仅以甲基汞形式存在。
Mercury was one of the most toxic elements that were present naturally in the environment. It was widely used in our daily life. Mercury was easy to volatilize and it was harmful to human body. It was well known that the toxicity, biogeochemical behavior and transportation of mercury in the environment were heavily dependent on its chemical form. Total mercury did not convey well the real long-term pollution. so, it was essential to analyze mercury speciations qualitily and quantitatively. In this paper, we established a determination method of ultra-trace amount Hg(Ⅱ), MeHg and EtHg in products by HPLC-VG-AFS for the first time. The main results showed as follows.
     1 Compared with cloud-point extraction, whirlpool-mix extraction had the advantage of simple operation and higher extraction rate, was regard as the better pretreatment method.
     2 Optimize the equipment conditions, this part include there aspects:
     (1) Optimization of the separation condition.5% Acetonitrile (HPLC grade, v/v)-0.462% ammonium acetate (m/v)-0.12% L-Cys (m/v) was chose as mobile phase, flow rate 1.0 mL/min. The mercury compounds were separated on a C18 reverse phase column (Venusil MP C18,4.6mm×150mm,5μm). The there mercury species were baseline separated, and their peaks were all symmetrica.
     (2) Optimization of VG.1.0% K2S2O8 (m/v)+0.5% KOH (m/v) had been employed for oxidation, reducing agent was 1.5% KBH4 (m/v)+0.5% KOH (m/v), carrier solution was 7% HCl(v/v)and coupled with on-line UV, under these condition conveyed best S/N.
     (3) Optimization of detection system. The best conditions included that:the negative high voltage of photomultiplier tube was 310 V, lamp current was 30 mA, atomization's temperature was 200℃, atomization's hight was 10mm, carrier gas's flow rate was 400 mL/min, make up gas's flow rate was 600 mL/min.
     3 Method evaluation.
     Under the optimized conditions, the determination limits (D.L.) of Hg(Ⅱ), MeHg and EtHg were found as 0.14,0.05 and 0.12μg/L(as Hg), respectively. The relative standard deviations(R.S.D, 10μg/L, n=7) of Hg(Ⅱ), MeHg and EtHg were 3.43%/ 2.75%,2.24%/4.07% and 1.38%/3.28%(retention time/peak aera), respectively. The Seven relative standard deviations(R.S.D, n=7) of Hg(Ⅱ), MeHg and EtHg was 2.26%,2.23% and 3.06%, respectively. The spike-recovery is between 75%-110%,and a linear dynamic range between 0~10μg/L injected.
     4 Method application.
     (1) Application in vegetable determination. The optimized method had been applied to the quantitative determination of mercury species in terrestrial vegetables and aquatic vegetables. It was showed that:among all the terrestrial vegetables we detected, only foliaceous vegetables contained with Hg(Ⅱ), then MeHg, EtHg was not detected. Mercury concentration was higher in aquatic vegetables, which only contained with Hg(Ⅱ).
     (2) Application in rice, Chinese herbal medicine and aquatic product determination. Change the concentration of HCl as 10% in extraction solution, other conditions was fixed. It was showed that, MeHg was the main speciation in rice, then Hg(Ⅱ), no EtHg was detected. There was no detectable mercury in Chinese medicinal materials. Mercury speciation in aquatic product was MeHg.
引文
1.百度百科.黄花鱼http://baike.baidu.com/view/197002.htm?fr=ala0_1_1
    2.百度百科.汞http://baike.baidu.com/view/26371.htm?fr=ala0_1
    3.白乌云,赛音.环境中汞的形态及分析方法研究进展.内蒙古师范大学学报,2006,35(3):324-329
    4.蔡文洁,江研因.甲基汞暴露健康风险评价的研究进展.环境与健康杂志,2008,25(1):77-80
    5.曹会兰.汞的污染和危害.陕西环境,2003,10(1):44-45
    6.陈建华,林玉环,彭安.毛细柱与填充柱气相色谱法分析环境中甲基汞.环境科学,1999,20(4):93-95
    7.陈静仪,柯毅龙,林园.石墨炉原子吸收法测定聚苯乙烯泡沫塑料中的汞.分析化学,1994,22(6):573
    8.陈梅芹.水环境中汞形态分析新技术及应用:[硕士学位论文].广东:广东工业大学,2005
    9.池吉安.关于汞污染的探讨.湖南城建高等专科科学校学报,1999,8(3):44-46
    10.邓琳.固相微萃取-液相色谱法测定水中有机污染物的研究:[硕士学位论文]湖北:武汉大学,2004
    11.方凤满,王启超,郝庆菊.大气汞的来源、形态及环境过程研究现状.环境导报,2001,2:18-21
    12.方凤满,王启超.土壤汞污染研究进展.土壤与环境,2000,9(4):326-329
    13.冯新斌,Delphine F, Holger H,仇广乐.汞同位素组成可以用来示踪汞污染来源吗?中国知网,02-Ⅰ-003
    14.付晓萍.重金属污染物对人体健康的影响.辽宁城乡环境科技,2004(6):8-9
    15.韩素平,淦五二,张王兵,苏庆德.电磁感应加热与原子荧光光谱联用测定海产品中的无机汞和有机汞.分析化学研究简报,2007,9(35):1373~1376
    16.何滨,江桂斌.固相微萃取毛细管气相色谱-原子吸收联用测定农田土壤中的甲基汞和乙基汞,1999,18(4):259-262
    17.何滨,江桂斌.汞形态分析中的前处理技术.分析测试学报,2002,21(1):89-94
    18.何云亚.催化动力学光度法测定食品污水中的痕量汞.中国卫生检验杂志,2002,12(3):309-310
    19.慧聪环保网.我国土壤污染现状http://info.ep.hc360.com/zt/zk trwuran/
    20.靳永卿.汞的形态分析及汞环境污染的评价:[硕士学位论文].陕西:陕西师范大学,2007
    21.李兵.土壤中重金属的污染与危害.金属世界,2005(5):52-53
    22.李福谦,唐书泽,李爱萍,汪勇.碱消化法提纯大米淀粉的研究.食品与发酵工业,2005(7):55-58
    23.李秀华,尔墩扎玛.分光光度法检测饲料中汞含量.饲料工业,2007.28(16):48-50
    24.李在均,潘教麦.化妆品中汞的广度分析方法研究及其应用.日用化学工业,2002,32(4):65-67
    25.梁立娜,江桂斌.高效液相色谱及其联用技术在汞形态分析中的应用.分析科学学报,2002,18(4):338-343
    26.刘娜,张兰英,杜连柱,张玉玲,刘瑞,陈登云.高效液相色谱-电感耦合等离子体质谱法测定汞的3种形态.分析化学,2005,33(8):1116-1118
    27.刘国珍,金泽祥.汞的形态分析进展.理化检验-化学分册.2000.36(1):38-41
    28.刘明钟,闫军,王安邦.原子荧光应用手册.北京吉天仪器有限公司内部刊物,2007,4
    29.鲁洪娟,倪吾钟,叶正钱,杨肖娥.土壤中汞的存在形态及过量汞对生物的不良影响.土壤通报,2007,38(3):597-600
    30.墨淑敏,梁立娜,蔡亚岐,牟世芬,江桂斌,温美娟.高效液相色谱与原子荧光光谱联用分析汞化合物形态的研究.分析化学,2006,34(4):493-496
    31.牟仁祥,陈铭学,朱智伟,陈能.微波消解-氢化物发生-原子荧光光谱法测定大米中痕量汞.2004.24(2):236-237
    32.牛建军,汪炳武.痕量汞分析的现状与展望.分析化学,1991,19(12):1448-1454
    33.申进朝,邵学广.浊点萃取技术及其在有机化合物分离分析中的应用.化学进展,2006,18(4):482-487
    34.宋志敏,肖安山,姜素霞,邹兵,单宝田,郭晓艳.血中汞的硫脲提取-原子荧光光谱测定法.环境与健康杂志
    35.宋吉英,李军德,张丽香,王艳丽.浊点萃取-氢化物发生原子吸收光谱法测痕量汞.广州化学,2007,32(2):51-56
    36.孙淑兰.汞的来源、特性、用途及对环境的污染和对人体健康的危害.上海计量测试,2006,5(195):6-9
    37.孙湘平编写.中国的海洋(中国自然地理知识丛书).北京:商务印书馆,1995.
    38.王尔贤.锌锰电池中汞的测定方法.电池工业.2001,6(5):237-240
    39.王宏.汞在环境中的污染和迁移转化.内蒙古环境保护,2000,12(1):46-47
    40.王萌,丰伟悦,张芳,汪冰,史俊稳,李柏,柴之,赵宇亮.高效液相色谱-电感耦合等离子体质谱联用测定生物样品中无机汞和甲基汞.分析化学研究报 告.2005,33(12):1671-1675
    [41.王志平,王凤英,乌日娜.金属汞的污染与危害.集宁师专学报,2006,28(4):70-75
    42.吴昊,曹德森,刘光荣.医院汞污染的现状与治理.中国医学装备,2006,3(7):28-33
    43.吴吉春,张景飞编写.环境化学(高等学校水利学科专业规范核心课程教材).北京:中国水利水电出版社,2009
    44.新华社.我国土壤污染形势相当严峻已对百姓身体健康构成威胁http: //news.sina.com.cn/c/2006-07-18/18259500690s.shtml
    45.许嘉琳,杨居荣.陆地生态系统中的重金属.北京:北京中国环境科学出版社,1995
    46.徐青,殷学锋,李世彬.汞的形态分析研究Ⅱ固相萃取预富集-液相色谱分离测定不同形态的有机汞.分析化学,1995,23(11):1305-1307
    47.阎海鱼,冯新斌,LIANG Lian,商立海,蒋红梅.GC-CVAFS法测定鱼体内甲基汞的分析方法研究.分析测试学报,2005,24(6):78-80
    48.杨居荣,查燕.食品中重金属的存在形态及其与毒性的关系.应用生态学报,1999,10(6):766-770
    49.杨莉丽,李娜,张德强,高丽荣,康海彦.蒸气发生-原子荧光光谱法测定中草药中不同形态的汞.光谱学与光谱分析,2005,25(2):286-289
    50.余莉萍.原子荧光在线联用技术在形态分析中的应用:[博士学位论文].天津:南开大学,2004
    51.殷学锋,刘梅.在线固相萃取预富集-液相色谱分离冷原子吸收联机测定不同形态汞.分析化学研究报告,1996,24(11):1248-1252
    52.袁倬斌,朱敏,韩树波.汞的形态分析研究进展.盐矿测试,1999,18(2),150-154
    53.张冲.东莞蔬菜产区重金属污染调查评价及与土壤环境因子相关性分析:[硕士学位论文].湖北:华中农业大学,2007
    54.张桂平,秦炜,戴猷元.浊点萃取及其应用.中国科技在线,2007,2(12):897-901
    55.张燕萍,颜崇淮,沈晓明.环境中汞污染来源、人体暴露途径及其检测方法.广东微量元素科学,2004,11(6):11-15
    56.张小林.渤海海域海水沉积物中铅、镉、汞、砷污染调查.黑龙江环境通报,2001,15(3):87-90
    57.中国兽药信息网http://www.Ivdc.gov.cn/syglzcfgzt/syglxgjsgf/200903/ t20090319 32061.htm
    58.朱玉燕.固相微萃取技术在痕量有毒有害物质分析中的应用:[硕士学位论文].江苏:苏州大学,2006:3-49
    59. Afkhami A, Madrakian T, Siampour H. Flame atomic absorption spectrometric determination of trace quantities of cadmium in water samples after cloud point extraction in Triton X-114 without added chelating agents. J Hazard Mater B,2006, 138:269-272
    60. Castillo A, Roig-Navarro A F, Pozo O J. Method optimization for the determination of four mercury species by micro-liquid chromatography-inductively coupled plasma mass spectrometry coupling in environmental water samples. Analytica Chimica Acta.2006,577:18-25
    61. Chiou C S, Jiang S J, Danadurai K S K. Determination of mercury compounds in fish by microwave-assisted extraction and liquid chromatography-vapor generation-inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B,2001,56:1133-1142
    62. Diez S, Bayona J M. Determination of methylmercury in human hair by ethylation followed by headspace solid-phase microextraction-gas Chatomatography-cold-vapour atomic fluorescence spectrometry. Journal of Chromatography A,2002, (963):345-351
    63. Fernando B J, Christopher D P, Francisco J K, et al. Determination of total mercury in whole blood by flow injection cold vapor atomic absorption spectrometry with room temperature digestion using tetramethylammonium hydroxide. Anal At Spectrom, 2004,19,1000-1005
    64. Filippeli M, Franco B, Frederick E B, et al. Methylmercruy determination as volatile methylmercury Hydride by Purge and Trap Gas Chromatography in line with Fourier Transform Infrared Spectroscopy. Environment Science and Technology,1992,26: 1457-1460
    65. Tao G H, Scott N W, Ralph E S. Determination of inorganic mercury in biological tissues by cold vapor atomic absorption spectrometry following tetramethylammonium hydroxide solubilization. Anal At Spectrom,1999,14: 1929-1931
    66. Jackie M, Vikki A, Carolanb et al. The speciation of inorganic and methylmercury in human hair by high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. Anal At Spectrom,2002,17:377-381
    67. Chen J G, Chen H W, Jin X Z, et al. Determination of ultra-trace amount methyl-, phenyl-and inorganic mercury in environmental and biological samples by liquid chromatography with inductively coupled plasma spectrometry after cloud point extraction preconcentration. Talanta.2009,77,1381-1387
    68. Karl C B, Apte S C. Determination of methylmercury in sediments by stream distillation/aqueous-phase ethylation and atomic fluorescence spectrometry. Anal Chim Acta,2000,419:145-151
    69. Liang Y L, Chang L F, Jiang S J. Speciation Analysis of Mercury in Cereals by Liquid Chromatography Chemical Vapor Generation Inductively Coupled Plasma-Mass Spectrometry. Agric Food Chem,2008,56:6868-6872
    70. Lemos V A, Franca R S, Moreira B O. Cloud point extraction for Co and Ni determination in water samples by flame atomic absorption spectrometry. Sep Purif Technol,2007,54:349-354
    71. Li M D, Yan X P, Li Y, et al. On-line coupling of flow injection displacement sorption preconcentration to high-performance liquid chromatography for speciation analysis of mercury in seafood. Journal of Chromatography A,2004,1036:119-125
    72. Yu L P, Yan X P. Factors affecting the stability of inorganic and methylmercury during sample storage. Trends in Analytical Chemistry.2003,22(4):245-253
    73. Li Y J, Hu B, Jiang Z C. On-line cloud point extraction combined with electrothermal vaporization inductively coupled plasma atomic emission spectrometry for the speciation of inorganic antimony in environmental and biological samples. Anal Chim Acta,2006,576:207-214
    74. Logar M, Horvat M, Akagi H, et al. Simultaneous determination of inorganic mercury and methylmercury compounds in natural waters. Anal Bioanal Chem,2002,374: 1015-1021
    75. Louise A H E, Corns W T, Peter B S, et al. Comparison of AFS and ICP-MS detection coupled with gas chromatography for the determination of methylmercury in marine samples. Anal Chim Acta,1999,390:245-253
    76. Matthew A, Morrison, James H W. Determination of Monomethylmercury Cation in Sediments by Vacuum Distillation Followed by Hydride Derivatization and Atomic Fluorescence Spectrometric Detection. Appl Organometal Chem.1997,11,761-769
    77. Surme Y, Narin I, Soylak M, et al. Cloud point extraction procedure for flame atomic absorption spectrometric determination of lead (Ⅱ) in sediment and water samples. Microchim Acta,2007,157:193-199
    78. Yin X F, Fresh W, Hoffman E, et al. Spectrometry with flow injection on-line preconcentration and liquid chromatographic separation. Fresenius J Anal Chem, 1998,361:761-765
    79. Ubillus F, Alegria A, Barbera R, et al. Methylmercury and inorganic mercury determination in fish by cold vapour generation atomicabsorption spectrometry. Food Chemistry,2000,71:529-533

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700