超支化多臂星型嵌段共聚物的RAFT合成及其自组装行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超支化多臂星型嵌段共聚物同时拥有线形聚合物以及超支化聚合物的性质,近年来对于它们的研究发展得很快。这些聚合物一般是通过活性聚合方法得到的,如阴、阳离子聚合,可控开环聚合(CROP),原子转移自由基聚合(ATRP)与可逆加成-断裂链转移(RAFT)聚合。RAFT聚合与其它“活性”自由基聚合方法相比,最突出的优越性在于单体的适用面很广,可以扩展到带官能团的单体,而且聚合条件温和,因此RAFT聚合成为制备新型嵌段聚合物和结构更复杂聚合物的强有力的研究工具。另外,与线性嵌段共聚物的自组装研究相对比,超支化聚合物的自组装研究较晚,有很多关键性问题等待我们去解决,如:探索可控合成具有各种拓扑结构超支化多臂共聚物的新方法,并研究聚合物的分子结构和组装行为的关系,细致研究组装过程中超支化共聚物的微相分离过程,获得新的组装形貌,建立新的表征方法等。
     基于此,本论文主要采用RAFT聚合技术合成了几种不同结构的超支化多臂星型嵌段共聚物,并研究了它们在选择性溶剂中的自组装行为。具体研究结果见如下:
     1.通过两步法成功合成了超支化双硫酯大分子链转移剂。首先利用超支化聚酯上的羟基与马来酸酐发生酯化反应得到端基含有双键的聚合物,然后利用聚合物末端的双键和二硫代苯甲酸发生加成反应生成超支化大分子引发剂,得到的超支化大分子带有大约16个末端二硫代基团。以超支化双硫酯为链转移剂,使用“core-first”的RAFT方法,对甲基丙烯酸N,N-二甲胺乙酯(DMAEMA)单体进行了RAFT聚合反应,得到超支化多臂星型共聚物H20-star-PDMAEMA。H20-star-PDMAEMA具有温度响应性,运用紫外分光光度计、动态光散射(DLS)对它在浓溶液中的温度响应行为进行了研究。
     2.以超支化双硫酯为链转移剂,偶氮二异丁氰(AIBN)为引发剂,采用RAFT活性自由基聚合方法,合成了以超支化聚酯(BoltornH20)为核,聚丙烯酸为臂的两亲性超支化多臂共聚物(H20-star-PAA),并通过紫外分光光度计、动态光散射(DLS)和透射电子显微镜(TEM)对它在水溶液中的pH响应的自组装行为进行了研究。结果表明:在稀溶液条件下,H20-star-PAA始终以单分子胶束的形式存在,随着溶液pH的降低,胶束的PAA壳层会逐步塌缩,导致胶束尺寸减小;而在浓溶液条件下,当溶液的pH较低时,单分子胶束会进一步聚集形成多分子胶束。
     3.利用“core-first”方法,通过连续的CROP和RAFT聚合反应,制备了一类具有交替杂化臂的超支化多臂共聚物。首先合成了带有大约32个交替羧基和二硫代基团的超支化大分子引发剂,然后在BF3 OEt2催化下,用其引发了环氧乙烷(EO)和四氢呋喃(THF)的阳离子开环聚合得到超支化星型共聚物H20-P(EO-THF),再用H20-P(EO-THF)作为大分子链转移剂,进行了甲基丙烯酸甲酯(MMA)的RAFT聚合发应,得到带有P(EO-THF)和PMMA交替臂的超支化星型共聚物。此工作也提供了一条聚合THF的简便方法,即用环氧乙烷作为促进剂,羧基作为引发剂可以直接一步就能引发环氧乙烷和四氢呋喃的阳离子开环共聚合反应。由于反应活性有很大差别,环氧乙烷首先进行聚合反应,然后再引发四氢呋喃开环聚合。
     4.以带有大约32个交替羧基基团和二硫代基团的超支化大分子聚合物为引发剂,通过连续的CROP和RAFT聚合制备得到了一种新的带有多条交替P(EO-THF)臂和PDMAEMA臂的两亲性超支化多臂共聚物。由于具有复杂的两亲性四嵌段结构,得到的杂臂超支化共聚物在DMF/水中能组装成具有核-壳结构的球形胶束。通过TEM,DLS和1H NMR对其自组装行为进行了研究。其可能的自组装机理为:疏水的超支化H20核心和PTHF链段聚集形成不溶的球形胶束的核心,伸展的PDMAEMA链段形成了胶束的亲水的外壳层(胶束的冠),而PEO链段被局限在不溶的胶束核心,形成胶束的内壳层。另外,得到的聚合物胶束由于具有PDMAEMA亲水的外壳,温度升高至PDMAEMA的LCST时,发生相转变行为,导致PDMAEMA链段塌缩在胶束的表面,聚合物胶束粒径减小,但由于PEO内壳层的存在,胶束不会缔合。并利用DLS, UV-Vis和1H NMR研究了聚合物胶束的相转变行为。
     5.以超支化双硫酯为链转移剂,AIBN为引发剂,进行聚乙二醇甲基丙烯酸酯(PEGMA)的RAFT聚合得到了超支化多臂星型聚合物刷。超支化星型聚合物刷在水中可以进行自组装形成大的球形胶束。通过1H NMR,DLS和TEM的研究,表明其自组装机理为“多胶束聚集体(MMA)”机理。疏水相互作用和分子之间的氢键是自组装的驱动力。单个超支化聚合物刷分子在疏水作用的驱动下,先形成具有核-壳结构的小胶束,然后小胶束通过二次聚集形成多胶束聚集体。超支化多臂星型聚合物刷在水中形成的球形大胶束具有温度响应行为,其相转变温度大约为92 oC。通过UV-Vis和DLS研究发现,温度升至LCST时,胶束表面的亲水基团与水分子间的氢键作用被破坏,疏水基团相互作用加强,大胶束与大胶束缔合形成更大的聚集体,发生温度响应行为。
Recently, much interest has been aroused in the research of dendritic star copolymers because they have the properties of both linear polymers and dendritic polymers. These polymers are generally prepared by living polymerization, such as living cationic/ anionic polymerization, cationic ring-opening polymerization (CROP), atom transfer radical polymerization (ATRP) and reversible addition–fragmentation transfer (RAFT) polymerization. In comparison with other living radical polymerization techniques, RAFT polymerization has the advantages of utilizing versatile functional vinyl monomers and easy operations. So it becomes a powerful tool to synthesize novel copolymers with complicated architectures. In addition, the self-assembly behaviors of dendritic star copolymers is still at the very early beginning compared with that of linear polymer. There are still many key questions to resolve, such as synthesizing more dendritic star copolymers with novel structure by living polymerization, studying the relationship of the polymer molecular structure and self-assembly behaviors, carefully investigating the micro-phase separation of the dendritic star copolymer, obtaining new assemble shape and establishing new characterization methods.
     All the above facts lead to the origin and impetuses of this thesis. The main research work in this thesis is the synthesis of several different dendritic star copolymers as well as their self-assembly behaviors in selective solvents. The main results obtained in this thesis are as follows:
     1. The dendritic macroRAFT agent has been successfully synthesized by a two-step approach. The first step involved the reaction of terminal hydroxyl groups in the dendritic core with Maleic anhydride (MAh) to obtain the dendritic core with 16 terminal vinyl groups. The second step involved the reaction of double bond in the obtained dendritic core with dithiobenzoic acid (DTBA) to form the dendritic macroRAFT agent with nearly 16 dithiobenzoate groups. By the‘core-first’approach, the macroRAFT agent was used to induce the RAFT polymerization of 2-(Dimethylamino)ethyl methacrylate(DMAEMA) to obtain the dendritic multiarm copolymer of H20-star-PDMAEMA. H20-star-PDMAEMA undergoes a thermosensitive phase transitions at the LCST of PDMAEMA, and the phase transition behaviors of the polymer with a moderate concentration in water are examined by DLS and fluorescence spectroscopy.
     2. RAFT copolymerization of Acrylic acid initiated by fractionated dendritic polyester (Bolton H20) based macroRAFT agent was conducted to obtain a dendritic multiarm star copolymer of H20-star-PAA. The pH-responsive phase transition and self-assembly behavior of H20-star-PAA at different solution pH were also studied by using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results show that at the lower polymer concentration, the dendritic macromolecules exist as unimolcular core-shell micelles with hydrophobic BoltornH20 as the cores and swollen poly (acrylic acid) (PAA) as the shells, and the PAA shells will collapse on the surface of the micelles with decreasing the solution pH. While in the high concentration of the polymer, H20-star-PAA self-assemble into large multimolecular micelles due to the secondary aggregation of unimolecular micelles stabilized by the intermolecular hydrogen bonding at a low solution pH.
     3. By the‘core-first’approach, we synthesized a heteroarm star polymer with a dendritic core and multi alternating mixed polymer arms by combination of sequential CROP and RAFT polymerization. A special dendritic core with multi-alternating carboxylic acid and dithiobenzoate groups was synthesized from a dendritic polyester with 16 terminal hydroxyl groups. And then it was used to initiate the sequential CROP of tetrahydrofuran (THF) in the presence of ethylene oxide (EO) as the polymerization promoter and BF3 OEt2 as catalyst, and RAFT polymerization of methyl methacrylate (MMA). Finally, a heteroarm star copolymer with a dendritic core and multi-alternating arms of P(EO-THF) and PMMA were successfully prepared. In addition, the work also demonstrated a facile method for the ROP of THF in the presence of the polymerization promoter of ethylene oxide (EO). Carboxylic acid groups were directly used as the initiators to perform the one-step ROP copolymerization of EO and THF, where EO polymerized at an early stage and then the resulted PEO served as the macro-initiator to initiate the block copolymerization of THF by utilizing the great difference of the polymer activity between EO and THF.
     4. A new dendritic amphiphilic heteroarm copolymer containing multi alternating arms of P(EO-THF) and PDMAEMA on a dendritic core was synthesized by combination of sequential CROP and RAFT polymerization initiated by a dendritic macroinitiator capped with nearly 32 alternating terminal carboxyl acid and dithiobenzoate groups. The obtained mixed-arms dendritic star copolymer can self-assemble into spherical micelles with a core-shell-corona structure in mixed solvent of DMF/water. The self-assembly behavior was investigated by TEM, DLS and NMR spectrum and a possible self-assembly process is put forward. The hydrophobic dendritic H20 core and the PTHF segments associate into the hydrophobic insoluble core, and the extended PDMAEMA arms form the hydrophilic corona, while the hydrophilic PEO segments are restricted in the periphery of the hydrophobic insoluble core and form the hydrophilic shell. The obtained polymer micelles undergo a phase transitions at the LCST of PDMAEMA. During he LCST transition, the PDMAEMA chains shrike on the surface of the micelles core and are partially wrapped inside the PEO segments. Thus, the core-shell-corona structure of the micelles transformed into a core-shell structure with the PDMAEMA and PEO segments as the shell. The diameter of the micelles decreases greatly during the LCST transition, but no aggregation is found. Such a reversible phase transition behaviors of the micelles are examined by DLS and fluorescence spectroscopy.
     5. The dendritic copolymers with multiarm polymer brush have been successfully synthesized by RAFT of poly(ethylene glyco1)methyl ether methacrylate (PEGMA) initiated by dendritic macroinitiator. The dendritic multiarm polymer brush can self-assemble into spherical micelles in water. The self-assembly behavior was investigated by 1H NMR, DLS and TEM measurements, and a“multimicelle aggregate (MMA)”mechanism was suggested for the self-assembly process. The driving forces of aggregation are the hydrogen-bonding interactions between molecules and the hydrophobic interaction. In water, the dendritic brush polymers spontaneously self-assemble into small micelles with a core-shell structure driven by hydrophobic interaction, and then the small micelles further aggregate into larger MMAs by intermicellar interactions. The obtained polymer micelles undergo phase transitions at the LCST of PEGMA and the temperature is about 92 oC. When the solution was heated to the temperature above the LCST, hydrogen-bonding interactions between the water molecules and the PEGMA segments on the surface of the micelles were destroyed and the multimolecular micelles joined together to form the even larger aggregates driven by the increasing intermicellar hydrophobic interaction.
引文
1. Bosman A. W.; Janssen H. M.; Meijer E. W. About Dendrimers: Structure, Physical Properties, and Applications. Chem.Rev, 1999, 99, 1665-1688.
    2. Yan D. Y.; Zhou Y. F.; Hou J. Supramolecular Self-Assembly of Macroscopic Tubes. Science, 2004, 303, 65-67.
    3. Zhou Y. F.; Yan D. Y. Supramolecular Self-Assembly of Giant Polymer Vesicles withControlled Sizes. Angew. Chem. Int. Ed., 2004, 43, 4896-4899.
    4. Hong H.Y.; Mai Y.Y.; Zhou Y. F.; Yan D. Y.; Cui J. Self-Assembly of Large Multimolecular Micelles from Hyperbranched Star Copolymers. Macromol. Rapid Commun, 2007, 28, 591-596.
    5. Mai Y. Y.; Zhou Y. F.; Yan D. Y. Real-Time Hierarchical Self-Assembly of Large Compound Vesicles from an Amphiphilic Hyperbranched Multiarm Copolymer. Small, 2007, 3, 1170– 1173.
    6. Tang Liming(唐黎明),Qiu Teng(邱藤),You Hu(由虎),Fang Yu(方宇),Tuo Xinlin(庹新林)Liu Deshang(刘德山)超支化聚负离子/超支化聚正离子自组装膜的制备及反应.Aeata Polymefica Siniea(高分子学报),2005, 4, 625-628.
    7. Comanita B.; Noren B.; Roovers J. Star Poly(ethylene oxide)s from Carbosilane Dendrimers. Macromolecules 1999, 32, 1069-1072.
    8. Zhao Y. L.; Shuai X. T.; Chen C. F.; Xi F. Synthesis and Characterization of Star-Shaped Poly(L-lactide)s Initiated with Hydroxyl-Terminated Poly(Amidoamine) (PAMAM-OH) Dendrimers. Chemistry of Materials 2003, 15, 2836-2843.
    9. Heise A.; Diamanti S.; Hedrick J. L.; Frank C. W.; Miller R. D. Investigation of the Initiation Behavior of a Dendritic 12-Arm Initiator in Atom Transfer. Radical Polymerization. Macromolecules 2001, 34, 3798-3801.
    10. Zheng Q.; Pan C. Y. Synthesis and Characterization of Dendrimer-Star Polymer Using Dithiobenzoate-Terminated Poly(propylene imine) Dendrimer via Reversible Addition-Fragmentation Transfer Polymerization. Macromolecules, 2005, 38, 6841-6848.
    11. Whitesides G. M.; Mathias J. P.; Seto C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science, 1991, 254,1312-1319.
    12. Whitesides G. M.; Grzybowski B. Self-assembly at all scales. Science, 2002, 295,2418.
    13.Tomalia D. A.; Nayor A. M.; Goddard W. A. Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matte. Angew. Chem. Int. Ed. Engl. 1990, 29, 138-175.
    14. Roovers J., Comanita B. Dendrimers and dendrimer-polymer hybrids Adv. Polym. Sci. 1999, 142, 179.
    15. Kim Y. H. Hyperbranched Polymers 10 Years After. J. Polym. Sci. Part A. Polym.Chem. 1998, 36, 1685-1698.
    16. Voit B. New Developments in Hyperbranched Polymers.J. Polym. Sci. Part A. Polym.Chem. 2000, 38, 2505-2525.
    17. Jikei M., Kakimoto M. Hyperbranched polymers: a promising new class of materials. Prog. Polym. Sci. 2001, 26, 1233.
    18.施文芳,黄宏.超支化聚合物研究进展.高等学校化学学报1997, 18, 1398-1405.
    19.魏焕郁,施文芳.超支化聚合物的结构特征、合成及其应用.高等学校化学学报2001, 22, 338-344.
    20.王国建,颜德岳.高支化聚合物的合成与表征.高分子通报1999, 2,1-10.
    21. Wooley K. L.; Fréchet J. M. J.; Hawker C. J. INFLUENCE OF SHAPE ON THE REACTIVITY AND PROPERTIES OF DENDRITIC, HYPERBRANCHED AND LINEAR AROMATIC POLYESTERS. Polymer, 1994, 35, 4489-4495.
    22. Lu P.; Paulasaari J. K.;Weber W. P. Polym. Prepr. 1996, 37, 342.
    23. Aoshima S.; Fréchet J. M. J.; Grubbs R. B.; Hemmi M., Leduc M. Polym. Prepr. 1995, 36,342.
    24. Bahleier E.; Wehner W.; Vogtle F. "Cascade"- and "Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies. Synthesis, 1978,155.
    25. Hawker C.; Frechet J. M. J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc., 1990, 112, 7638-7647.
    26. Holter D.; Frey H. Degree of branching in hyperbranched polymers .2.Enhancement of the DB: Scope and limitations [J].Acta Polym., 1997, 48, 298-309.
    27. Yan D.Y.; Zhou Z. P. Molecular weight distribution of hyperbranched polymers generated from polycondensation of AB(2) type monomers in the presence of multifunctional core moieties [J]. Macromolecules, 1999, 32, 819-824.
    28. Frechet J. M. J.; Hawker C. J.; Gitsov I.; Leon J. W. Dendrimers and hyperbranched polymers: Two families of three-dimensional macromolecules with similar but clearly distinct properties [J]. J. Macromol. Sci. - Pure Appl. Chem., 1996, A33, 1399-1425.
    29. Shu C. F.; Len C. M. Hyperbranched Poly(ether ketone) with Carboxylic Acid Terminal Groups: Synthesis, Characterization, and Derivatization. Macromolecules, 1999, 32: 100-105.
    30.陆玉,施文芳,超支化聚(胺-酯)的分子设计及其制备.高分子学报,2000,8, 411-414.
    31. Malmstrom E.; Johansson M.; Hult A. Hyperbranched Aliphatic Polyesters. Macromolecules, 1995, 28, 1698-1073.
    32. Kumar A.; Ramakrishnan S. A novel one-pot synthesis of hyperbranched polyurethanes. J. Chem. Soc. Chem. Commun., 1993, 1453.
    33. Bharathi P.; Moore J. S. Solid-Supported Hyperbranched Polymerization: Evidence for Self-Limited Growth. J. Am. Chem. Soc, 1997, 119: 3391-3392.
    34. Craig J., Chu F.K. Hyperbranched Poly(ethylene glycol)s: A New Class of Ion-Conducting Materials.Macromolecules, 1996, 26, 3831-3838.
    35. Y.H.Kim; O.W.Webster, Hyperbranched Polyphenylenes, Macromolecules, 1992, 25, 5561-5572.
    36. J.M.J.Frechet, The 35 th IUPAC Int. Symp. On Macromolecules. Oho, USA: Akron, 1991.
    37. T.H.Moursey; S.R.Turner; J.M.J.Frechet Unique Behavior of Dendritic Macromolecules: Intrinsic Viscosity of Polymer Dendrimers, Macromolecules, 1992, 25, 2401-2406.
    38. P.G.de Gennes, Long range distortions in an anisotropic superfluid, Phys.Lett.A, 1973, 44, 271.
    39. Hawker C. J.; Chu F. K.; Pomery P. J.; Hill D. J. T. Hyperbranched Poly(ethylene glycol)s: A New Class of Ion-Conducting Materials. Macromolecules 1996, 29, 3831-3838.
    40. Hobson L. J.; Feast W. J. Poly(amidoamine) hyperbranched systems: synthesis, structure and characterization. Polymer, 1999, 40, 1279.
    41. Wu F. I.; Shu C. F. Synthesis and characterization of new hyperbranched poly(aryl ether oxadiazole)s. J. Polym. Sci. Part A. Polym. Chem. 2001, 39, 3851.
    42. Johansson M,Hult A. Synthesis, Characterization and UV Curing of Acrylate Functional Hyperbranched Polyester Resins. J. Coat. Technol. 1995, 67, 35.
    43. Massa D. J.; Shriner K. A.; Turner S. R; Voit B.I. Novel Blends of Hyperbranched Polyesters and Linear Polymers. Macromolecules, 1995, 28, 3214-3220.
    44. Campagna S.; Giannetto A.; Serroni S.; Denti G.; Trusso S.; Mallamace F.; Micali N. Aggregation in Fluid Solution of Dendritic Supermolecules made of Ruthenium(I1) - andOsmium(I1)–Polypyridine Building Blocks. J Am. Chem. Soc, 1995,117, 1754-1758.
    45. Hedrick J. L.; Hawker C. J.; Miller R. D.; Twieg R.; Srinivasan S. A. Trollsas M. Structure Control in Organic-Inorganic Hybrids Using Hyperbranched High-Temperature Polymers. Macromolecules 1997, 30, 7607-7610.
    46. Didymus J. M.; Oliver P.,; Mann S.; Devries A. L.; Hauschka P. V.; Westbroek P. J Chem. Soc. Faraday Trans. 1993, 89, 2891.
    47. Roovers J.; Zhou L. L.; Toporowski P. M.; Vanderzwan M.; Iatrou H.; Hadjichristidis N. Regular star polymers with 64 and 128 arms. Models for polymeric micelles. Macromolecules 1993, 26, 4324-4331.
    48. Kimura M.; Kato M.; Muto T.; Hanabusa K.; Shirai H. Temperature-Sensitive Dendritic Hosts: Synthesis, Characterization, and Control of Catalytic Activity. Macromolecules, 2000, 33, 1117-1119.
    49. Cooper A. I.; Londono J. D.; Wignall G.; McClain J. B.; Samulski E. T.; Lin J. S.; Dobrynin A.; Rubinstein M.; Burke A. L. C.; Frechet J. M. J.; DeSimone J. M. Extraction of a hydrophilic compound from water into liquid CO2 using dendritic surfactants. Nature, 1997, 389, 368-371.
    50. Hedden R. C.; Bauer B. J.; Smith A. P.; Grohn F.; Amis E. Templating of inorganic nanoparticles by PAMAM/PEG dendrimer-star polymers. Polymer, 2002, 43, 5473-5481.
    51. Luo D.; Haverstick K.; Belcheva N.; Han E.; Saltzman W. M. Poly(ethylene glycol)-Conjugated PAMAM Dendrimer for Biocompatible, High-Efficiency DNA Delivery. Macromolecules, 2002, 35, 3456-3462.
    52. Hedden R. C.; Bauer B. J. Structure and Dimensions of PAMAM/PEG Dendrimer-Star Polymers. Macromolecules, 2003, 36, 1829-1835.
    53. Matyjaszewski K.; Miller P. J.; Pyun J;Kickelbick G.; Diamamti S. Synthesis and characterization of star polymers with varying arm number, length and composition from organic and hybrid inorganic/organic multifunctional initiators. Macromolecules, 1999,32, 6526-6535.
    54. Heise A.; Diamanti.; Hedrick J. L;Frank C. W.; Miller R. D. Investigation of the initiation behavior of a dendritic 12-arm initiator in atom transfer radical polymerization. Macromolecules, 2001, 34, 3798-3801.
    55. Hull D. L.; Kennedy J. P. Synthesis, Characterization, and Crosslinking of novel stars comprising eight poly(isobutylene-azeotropic-styrene) copolymer arms with allyl or hydroxyl termini. 11. Stars of eight isobutylene/styrene azeotropic copolymer arms emanating from a calix[8j arene core. J Polym Sci Part A Po加n Chem 2001, 39, 1525-1532.
    56. Hou S.; Taton D.; Saule M.; Logan].;Chaikof E. L;Gnanou丫Synthesis of functionalized multiarm poly(ethylene oxide) stars. Polymer, 2003, 44, 5067-5074.
    57. Moschogianni P.; Pispas S.; Hadjichristidis N. Multifunctional ATRP initiators: Synthesis of four-arm star homopolymers of methyl methacrylate and graft copolymers of polystyrene and poly(t-buty methacrylate). J Polym Sci Part A Polym Chem, 2001, 39, 650-655.
    58. Hovestad N.; van Koten G.; Bon S. A.F.; Haddleton D. M. Copper(I) bromide/N-(n-Octyl)-2-pyridylmethanimine-mediated living-radical polymerization of methyl methacrylate using carbosilane dendritic initiators. Macromolecules 2000, 33, 4048-4052.
    59. Angot S.; Taton D.; Gnanou Y. Am户iphilic stars and dendrimer-like architectures based on poly(ethylene oxide) and polystyrene. Macromolecules, 2000, 33, 5418-5426.
    60. Knischka R.; Lutz P. J.; Sunder A.; Millhaupt R.; Frey H. Functional poly(ethylene oxide) multiarm star polymers: core-first synthesis using hyperbranched polyglycerol initiators Macromoiecules, 2000, 33, 315-320.
    61. Carlmark A.; Vestberg R.; Jonsson E. M. Atom transfer radical polymerization of methyl acrylate from a multifunctional initiator at ambient temperature. Polymer, 2002, 43, 4237-4242.
    62. Gong C. G. End Functionalization of Hyperbranched Poly(siloxysilane): Novel Crosslinking Agents and Hyperbranched–Linear Star Block Copolymers. J Polym Sci, Part A: Polym Chem., 2000, 38 , 2970.
    63. Weberskirch R; Hettich,R. Synthesis of new amphiphilic star polymers derived from a hyperbranched macroinitiator by the cationic 'grafting from' method. Macromol chem. Phys, 1999, 200, 863.
    64. Wang F. An Electrically Conducting Star Polymer. J Am Chem Soc, 1997,119, 11106.
    65. Hou J.; Yan D. Y. Synthesis of a Star-Shaped Copolymer with a Hyperbranched Poly(3-methyl-3-oxetanemethanol) Core and Tetrahydrofuran Arms by One-Pot Copolymerization. Macromol. Rapid Commun, 2002, 23, 456-459.
    66. Jia Z F.; Zhou Y F.; Yan D Y. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43, 6534-6544.
    67. Zhao Y. L.; Shuai X. T.; Chen C. F.; Xi F. Synthesis of Star Block Copolymers from Dendrimer Initiators by Combining Ring-Opening Polymerization and Atom Transfer Radical Polymerization. Macromolecules, 2004, 37, 8854-8862.
    68. Liu C.; Zhang Y.; Huang J. L. Well-Defined Star Polymers with Mixed-Arms by Sequential Polymerization of Atom Transfer Radical Polymerization and Reverse Addition-Fragmentation Chain Transfer on a Hyperbranched Polyglycerol Core.Macromolecules, 2008, 41, 325-331.
    69. Alexander S. Hyperbranched Polyether-Polyols Based on Polyglycerol: Polarity Design by Block Copolymerization with Propylene Oxide. Macromolecules, 2000, 33, 309-314.
    70. Alexander S., Synthesis and Thermal Behavior of Esterified Aliphatic Hyperbranched Polyether Polyols. Macromolecules, 2000,33,1330-1337.
    71. Alward D. B.; Kinning D. J.; Thomas E. L.; Fetters L. J. Efect of arm number and arm molecular weight on the solid-state morphology of poly(styrene-isoprene) star block copolymers. Macromolecules.1986, 19, 215-224.
    72. Kasko A. M.; Heintz A. M.; Pugh C. The Efect of Molecular Architecture on the Thennotropic Behavior of Polyf I 1一(4'-cyanophenyl-4"-phenoxy)undecyl acrylatel and Its Relation to Polydispersity. Macromolecules. 1998, 31(2), 256-271.
    73. Ueda J.; Kamigato M.; Sawamoto M. Calixarene-Core Multifunctional Initiators for the Ruthenium-Mediated Living Radical Polymerization of Methacrylates. Macromolecules.1998, 31(20), 6762-6768.
    74. Angot S.; Murthy K. S.; Taton D.; Gnanou. Atom Transfer Radical Polymerization of Styrene Using a Novel Octafunctional Initiator: Synthesis of Well-Defined Polystyrene Stars. Macromolecules. 1998, 31, 7218-7225.
    75. Chong Y. K.; Le下P.下;Moad G.; Rizzardo E.; Thang S. H. More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization: The RAFT Process. Macromolecules, 1999, 32, 2071-2074.
    76. Hawker C. L. Architectural Control in“Living”Free Radical Polymerizations. Preparation 1456-1459.
    77. Le T P, Moad G, Rizzardo E, et al. Polymerization with living characteristics. PCT Int Appl. WO9801478 Al. 9800115,1998.
    78. Roshan T A M, Rizzardo E, John C R, et al. Living Polymers by the Use of Trithiocarbonates as RAFT Agents:ABA Triblock Copolymers by Radical Polymerization in Two Steps, Macromolecules, 2000, 33, 243-248.
    79.唐向阳,于九皋,王艳君.可逆加成-断裂链转移聚合研究进展,高分子通报,2004,3,29-37.
    80.王艳君,王玉霞,袁才登,曹同玉,可逆加成-断裂链转移聚合研究进展,高分子通报,2003,3,57-63.
    81.Calitz F. M.; Tonge M. P.; Sanderson R D. Kinetic and Electron Spin Resonance Analysis of RAFT Polymerization of Styrene, Macromolecules, 2003, 36, 5-8.
    82. Le, T. P.; Moad, G.; Rizzardo, E.; Yhang, S. H. PCT Int. Appl. WO 9801478 A1 980115.
    83.邹友思,庄荣传,陈江溪.以双硫酯为链转移剂的活性自由基聚合.高分子学报,2001,1,27-31.
    84. (Bill) Y K Chong; Julia Krstina; Tam P T Le; Ezio Ri-zzardo; San H Thang. Thiocarbonylthio Compounds [S=C(Ph)S-R] in Free Radical Polymerization with RAFT Polymerization: Role of the Free-Radical Leaving Group(R). Macromolecules, 2003,36, 2256-2272.
    85. Roshan T AMayadunne; Ezio Rizzardo; Graeme Moad. Living Radical Polymerization with RAFT Polymerization Using Dithiocarbamates as Chain Transfer Agents, Macromolecules, 1999, 32,5977-6980.
    86. Moad G.; Chiefari J.; Chong Y. K.; Krstina J.; Mayadunne R. T. A.; Postma A.; Rizzardo E.; Thang S. H. Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT). Polym. Int. 2000, 49, 993-1001.
    87. Stenzel-Rosenbaum M.; Davis T. P.; Chen V.; Fane A. G. Star-polymer synthesis via radical reversible addition-fragmentation chain-transfer polymerization. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2777-2783.
    88. Stenzel M. H.; Davis T. P. Star polymer synthesis using trithiocarbonate functional beta-cyclodextrin cores (Reversible addition-fragmentation chain-transfer polymerization) J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 4498-4512.
    89. Mayadunne R. T. A.; Jeffery J.; Moad G.; Rizzardo E. Living Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization): Approaches to Star Polymers. Macromolecules 2003, 36, 1505-1513.
    90. Dureault A.; Gnanou Y.; Taton D.; Destarac M.; Leising F. Reaction of cyclic tetrathiophosphates with carboxylic acids as a means to generate dithioesters and control radical polymerization by RAFT. Angew. Chem. In. Ed. 2003, 42, 2869-2872.
    91. Ikkala1, O.; Brinke, G. T. Functional Materials Based on Self-Assembly of Polymeric Supramolecules. Science, 2002, 295, 2407-2409.
    92. Whitesides, G. M.; Grzybowski B. Self-Assembly at All Scales. Science 2002, 295, 2418-2421.
    93. Zhang, L.; Eisenberg, A. Multiple Morphologies of“Crew-Cut”Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers. Science 1995, 268, 1728-1731.
    94. Zhang, L.; Eisenberg, A. Multiple Morphologies and Characteristics of“Crew-Cut”Micelle-like Aggregates of Polystyrene-b-Poly(acrylic acid) Diblock Copolymers in Aqueous Solutions. J. Am. Chem. Soc. 1996, 118, 3168-3181.
    95. Zhang, L.; Eisenberg, A. Ion-induced Morphological Changes in“Crew-Cut”Aggregates of Amphiphilic Block Copolymer. Science 1996, 272, 1777-1779.
    96. Zhang, L.; Eisenberg, A. Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers in Solutions. Macromolecules 1996, 29, 8805-8815.
    97. Zhang, L.; Eisenberg, A. Formation of Crew-Cut Aggregates of Various Morphologies from Amphiphilic Block Copolymers in Solution. Polym. Adv. Technol. 1998, 9, 677.
    98. Yu, K.; Eisenberg, A. Bilayer Morphologies of Self-Assembled Crew-Cut Aggregates of Amphiphilic PS-b-PEO Diblock Copolymers in Solution. Macromolecules 1998, 31, 3509-3518.
    99. Cameron, N. S.; Eisenberg, A.; Brown, G. R. Amphiphilic Block Copolymers as Bile Acid Sorbents: 2. Polystyrene-b-poly(N,N,N-trimethylammoniumethylene acrylamide chloride): Self-Assembly and Application to Serum Cholesterol Reduction. Biomacromolecules 2002, 3, 124-132.
    100. Zhang, L., Bartels, C.; Yu, Y.; Shen, H.; Eisenberg, A. Mesosized Crystal-like Structure of Hexagonally Packed Hollow Hoops by Solution Self-Assembly of Diblock Copolymers. Phys. Rev. Lett. 1997, 79, 5034.
    101. Shen, H.; Eisenberg, A. Control of Architecture in Block Copolymer Vesicles. Angew. Chem. Int. Ed. 2000, 39, 3310.
    102. Luo, L.; Eisenberg, A. Thermodynamic Stabilization Mechanism of Block Copolymer Vesicles. J. Am. Chem. Soc. 2001, 123, 1012-1013.
    103. Luo, L.; Eisenberg, A. One-Step Preparation of Block Copolymer Vesicles with Preferentially Segregated Acidic and Basic Corona Chains. Angew. Chem. Int. Ed. 2002, 41, 1001.
    104. Discher D. E.; Eisenberg A. Polymer Vesicles. Science 2002, 297, 967-973.
    105. Riegel, I. C.; Eisenberg, A.; Petzhold, C. L.; Samios, D. Novel Bowl-shaped Morphology of Crew-Cut Aggregates from Amphiphilic Block Copolymers of Styrene and 5-(N,N-Diethylamino)isoprene. Langmuir, 2002, 18, 3358-3363.
    106. Martin, TJ.; Prochazka, K.; Munk, P.; Webber, S.E. pH-Dependent Micelization of Poly(2-vinylpyridine)-block-poly(ethylene oxide) [J], Macromolecules, 1996, 29, 6071.
    107. (a) Butun, V.; Billingham, N.C.; Armes, S.P Unusual Aggregation Behavior of a Novel Tertiary Amine Methacrylate-Based Diblock Copolymer: Formation of Micelles and Reverse Micelles in Aqueous Solution [J], J. Am. Chem. Soc. 1998, 120,11818-11819. (b) Butun, V; Lowe, N.C.; Billingham, N.C; Armes, S.P. Synthesis of Zwitterionic Shell Cross-Linked Micelles [J], J. Am. Chem. Soc. 1999, 121, 4288-4289.
    108. Harada, A.; Kataoka, K. Chain length recognition: core-shell supermolecular assembly from opssitely charged block copolymers [J], Science, 1999, 283, 65-67.
    109. Kabanov, A. X.; Bronich T. K.; Kabanov V. A.; Yu, K. Eisenberg; A. Spontaneous Formation of Vesicles from Complexes of Block Ionomers and Surfactants [J], J. Am. Chem. Soc. 1998, 120, 9941-9942.
    110. Harada, A.; Cammas, S.; Kataoka, K. Stabilized -Helix Structure of Poly(Llysine)-block-poly(ethylene glycol) in Aqueous Medium through Supramolecular Assembly [J], Macromolecules, 1996, 29, 6183-6188.
    111. Yuan, X.F; Lang, M.; Zhao, H.Y; Wang, M.; Zhao, Y; Wu, Ch. Noncovalently Connected Polymeric Micelles in Aqueous Medium [J], Langmuir, 2001, 17, 6122-6126.
    112. Bednar, J.M.; Edwards, K.; Almgren, M.; Tormod, S.; Tuzar, Z. The mechanism of micelle formation [J], Makromol. Chem. Rapid Commun. 1989, 9, 758.
    113. Zhou, Y.; Yan, D. Supramolecular Self-Assembly of Giant Polymer Vesicles with Controlled Sizes. Angew. Chem. Int. Ed. 2004, 43, 4896.
    114. Zhou, Y.; Yan, D. Real-Time Membrane Fission of Giant Polymer Vesicles. Angew. Chem. Int. Ed. 2005, 44, 3223.
    115. Zhou, Y.; Yan, D. Real-Time Membrane Fusion of Giant Polymer Vesicles. J. Am. Chem. Soc. 2005, 127, 10468-10469.
    116. Pelton, R.; Temperature-sensitive aqueous microgels Advances in Colloid and Interface Science, 2000, 85, 1-33.
    117. Alarcon C.D.H.; Pennadam S.; Alexander C. Stimuli responsive polymers for biomedical applications. Chemical Society Reviews, 2005, 34, 276-285.
    118. Gil E.S.; Hudson S.A. Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science, 2004, 29, 1173-1222.
    119. Kikuchi A.; Okano T. Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Progress in Polymer Science, 2002, 27, 1165-1193.
    120. Kost J.; Langer R. Responsive polymeric delivery systems. Advanced Drug Delivery Reviews, 2001, 46, 125-148.
    121. Bromberg L.E.; Ron E.S. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Advanced Drug Delivery Reviews, 1998, 31, 197-221.
    122. Stimuli-responsive water-soluble and amphiphilic polymers. McCornmick, C. L.; Eds.; American Chemical Society: Washington, 2001.
    123.马俊涛,赵林,黄荣华.刺激-响应型水溶性聚合物的研究进展化学世界2001, 608-614.
    124. Haba Y.; Harada A.; Takagishi T.; Kono K. Rendering poly(amidoamine) or poly(propylenimine) dendrimers temperature sensitive. J. Am. Chem. Soc., 2004, 126, 12760-12761.
    125. Gillies E.R.; Jonsson T.B.; Frechet J.M.J. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J. Am. Chem. Soc., 2004, 126, 11936-11943.
    126. You Y. Z.; Hong C. Y.; Pan C. Y. Wang P. H. Synthesis of a Dendritic core-shell Nanostructure with a Temperature-sensitive shell. Adv. Mater., 2004, 16, 1953-1957.
    127. Xu J.; Luo S. Z.; Shi W. F.; Liu S. Y. Two-Stage Collapse of Unimolecular Micelles with Double Thermoresponsive Coronas. Langmuir, 2006, 22, 989-997.
    128. Haba Y., Kojima C., Harada A., etc., Control of temperature-sensitive properties of poly(amidoamine) dendrimers using peripheral modification with various alkylamide groups, Macromolecules, 2006, 39, 7451-5473.
    129. Tono Y., Kojima C., Haba Y., etc., thermosensitive properties of poly(amidoamine) dendrimers with peripheral phenylalanine residues, Langmuir, 2006, 22, 4920-4922.
    130. Jia Z. F.; Chen H.; Zhu X. Y.; Yan, D. Y. Backbone-thermoresponsive hyperbranched polyethers, J. Am. Chem. Soc., 2006, 128, 8144-8145.
    1. Moad G.; Chiefari J.; Chong Y. K.; Krstina J.; Mayadunne R. T. A.; Postma A.; Rizzardo E.; Thang S. H. Living free radical polymerization with reversible addition– fragmentation chain transfer (the life of RAFT). Polym. Int. 2000, 49, 993-1001.
    2. Chiefari J.; Chong Y. K.; Ercole F.; Krstina J.; Jeffery J.; Le T. P. T.; Mayadunne R. T. A.; Meijs G. F.; Moad C. L.; Moad G.; Rizzardo E.; Thang S. H. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process. Macromolecules, 1998, 31, 5559-5562.
    3. Chiefari J.; Jeffery J.; Mayadunne R. T. A.; Moad G.; Rizzardo E.; Thang S. H. Chain Transfer to Polymer: A Convenient Route to Macromonomers. Macromolecules 1999, 32, 7700-7702.
    4. Stenzel-Rosenbaum M.; Davis T. P.; Chen V.; Fane A. G. J. Polym. Sci. Part A: Polym. Chem. Star-Polymer Synthesis via Radical Reversible Addition–Fragmentation Chain-Transfer Polymerization.2001, 39, 2777-2783.
    5. Stenzel M. H.; Davis T. P. Star Polymer Synthesis Using Trithiocarbonate Functionalβ-Cyclodextrin Cores (Reversible Addition–Fragmentation Chain-Transfer Polymerization). J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 4498-4512.
    6. Mayadunne R. T. A.; Jeffery J.; Moad G.; Rizzardo E. Living Free Radical Polymerization withReversible Addition-Fragmentation Chain Transfer (RAFT Polymerization): Approaches to Star Polymers. Macromolecules 2003, 36, 1505-1513.
    7. Dureault A.; Gnanou Y.; Taton D.; Destarac M.; Leising F. Reaction of Cyclic Tetrathiophosphates with Carboxylic Acids as a Means to Generate Dithioesters and Control Radical Polymerization By RAFT. Angew. Chem. In. Ed. 2003, 42, 2869-2872.
    8. Darcos V.; Dureault A.; Taton D.; Gnanou Y.; Marchand P.; Caminade A. M.; Majoral J. P.; Destarac M.; Leising F. Synthesis of hybrid dendrimer-star polymers by the RAFT process. Chem. Commun. 2004, 2110-2111.
    9. Hao X. J.; Nilsson C.; Jesberger M.; Stenzel M. H.; Malmstrom E.; Davis T. P.; Ostmark E.; Barner-Kowollik C. Dendrimers as Scaffolds for Multifunctional Reversible Addition–Fragmentation Chain Transfer Agents: Syntheses and Polymerization J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 5877-5890.
    10. Zheng Q.; Pan C. Y. Synthesis and Characterization of Dendrimer-Star Polymer Using Dithiobenzoate-Terminated Poly(propylene imine) Dendrimer via Reversible Addition-Fragmentation Transfer Polymerization. Macromolecules, 2005, 38, 6841-6848.
    11. Ilvasky M.; Hrouz T.; Ulbrich K. A Thermosensitive Poly (organophosphazene) Gel,Polym Bull, 1982, 7, 107.
    12. Liu W.G.; Zhang B.Q.; Lu W.W.; Li X.W.; Zhu D.W.; De Yao K.; Wang Q.; Zhao C.R.; Wang C.D. A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials, 2004, 25, 3005-3012.
    13. Gupta K.C.; Khandekar K. Temperature-responsive cellulose by ceric(IV) ion-initiated graft copolymerization of N-isopropylacrylamide. Biomacromolecules, 2003, 4, 758-765.
    14. Aoshima S.; Hashimoto K. Stimuli-responsive block copolymers with polyalcohol segments: Syntheses via living cationic polymerization of vinyl ethers with a silyloxyl group and their thermoreversible physical gelation. Journal of Polymer Science Part A-Polymer Chemistry, 2001, 39, 746-750.
    15. Sugihara S.; Hashimoto K.; Okabe S.; Shibayama M.; Kanaoka S.; Aoshima S. Stimuli-responsive diblock copolymers by living cationic polymerization: Precision synthesis and highly sensitive physical gelation. Macromolecules, 2004, 37, 336-343.
    16. Sugihara S.; Aoshima S. Syntheses of various stimuli-responsive diblock copolymers by living cationic polymerization-thermally-induced micellization and physical gelation. Kobunshi Ronbunshu, 2001, 58, 304-310.
    17. Sosnik A.; Cohn D. Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock copolymers. Biomaterials, 2005, 26, 349-357.
    18. Dimitrov P.; Rangelov S.; Dworak A.; Tsvetanov C.B. Synthesis and associating properties of poly(ethoxyethyl glycidyl ether)/poly(propylene oxide) triblock copolymers. Macromolecules, 2004, 37, 1000-1008.
    19. Aoki S.; Koide A.; Imabayashi S.; Watanabe M. Novel thermosensitive polyethers prepared by anionic ring-opening polymerization of glycidyl ether derivatives. Chemistry Letters, 2002, 1128-1129.
    20. Andre X.; Zhang M.F.; Muller A.H.E. Thermo- and pH-responsive micelles of poly(acrylic acid)-block-poly(N,N-diethylacrylamide). Macromolecular Rapid Communications, 2005, 26, 558-563.
    21. Panayiotou M.; Freitag R. Synthesis and characterisation of stimuli-responsive poly (N,N '-diethylacrylamide) hydrogels. Polymer, 2005, 46, 615-621.
    22. Schilli C.M.; Zhang M.F.; Rizzardo E.; Thang S.H.; Chong Y.K.; Edwards K.; Karlsson G.; Muller A.H.E. A new double-responsive block copolymer synthesized via RAFT polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules, 2004, 37, 7861-7866.
    23. Kaholek M.; Lee W.K.; Ahn S.J.; Ma H.W.; Caster K.C.; LaMattina B.; Zauscher S. Stimulus-responsive poly(N-isopropylacrylamide) brushes and nanopatterns prepared by surface-initiated polymerization. Chemistry of Materials, 2004, 16, 3688-3696.
    24. Park S.Y.; Cho S.H.; Yuk S.H.; Jhon M.S. Characterization of temperature-induced phase transition of polymer complex composed of poly-(N,N-dimethylamino)ethyl methacrylate and poly(ethylacrylamide) by H-1-NMR relaxation time measurement. European Polymer Journal, 2001, 37, 1785-1790.
    25. Yuk S.H.; Cho S.H.; Lee S.H. pH/temperature-responsive polymer composed of poly((N,N-dimethylamino)ethyl methacrylate-co-ethylacrylamide). Macromolecules, 1997, 30, 6856-6859.
    26. Bai R. K.; You Y. Z.; Pan C. Y. Study on controlled free-radical polymerization in the presence of dithiobenzoic acid (DTBA). Polym. Int., 2000, 49, 898-902.
    27. You Y. Z.; Hong C. Y.; Pan C. Y. Wang P. H. Synthesis of a Dendritic core-shell Nanostructure with a Temperature-sensitive shell. Adv. Mater., 2004, 16, 1953-1957.
    28. (a) Butun, V.; Billingham, N. C.; Armes, S. P. Synthesis and aqueous solution properties of novel hydrophilic-hydrophilic block copolymers based on tertiary amine methacrylates. Chem. Commun. 1997, 671-672. (b) Lee, A. S.; Gast, A. P.; Butun, V.; Armes, S. P. Characterizing the Structure of pH Dependent Polyelectrolyte Block Copolymer Micelles. Macromolecules, 1999, 32,4302-4310.
    29. Butun, V.; Armes, S. P.; Billingham, N. C. Synthesis and aqueous solution properties ofnear-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer, 2001, 42, 5993.
    30. Vamvakaki, M.; Billingham, N. C.; Armes, S. P. Synthesis of Controlled Structure Water-Soluble Diblock Copolymers via Oxyanionic Polymerization. Macromolecules, 1999, 32, 2088-2090.
    31. Xu J.; Luo S. Z.; Shi W. F.; Liu S. Y. Two-Stage Collapse of Unimolecular Micelles with Double Thermoresponsive Coronas. Langmuir, 2006, 22, 989-997.
    32. Hong H Y.; Mai Y Y.; Zhou Y F.; Yan D Y.; Chen Y.Synthesis and Supramolecular Self-Assembly of Thermosensitive Amphiphilic Star Copolymers Based on a Hyperbranched Polyether Core. Journal of Polymer Science, 2008, 46, 668-681.
    1. Pelton, R.; Temperature-sensitive aqueous microgels Advances in Colloid and Interface Science, 2000, 85, 1-33.
    2. Alarcon C.D.H.; Pennadam S.; Alexander C. Stimuli responsive polymers for biomedical applications. Chemical Society Reviews, 2005, 34, 276-285.
    3. Gil E.S.; Hudson S.A. Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science, 2004, 29, 1173-1222.
    4. Kikuchi A.; Okano T. Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Progress in Polymer Science, 2002, 27, 1165-1193.
    5. Kost J.; Langer R. Responsive polymeric delivery systems. Advanced Drug Delivery Reviews, 2001, 46, 125-148.
    6. Bromberg L.E.; Ron E.S. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Advanced Drug Delivery Reviews, 1998, 31, 197-221.
    7. Stimuli-responsive water-soluble and amphiphilic polymers. McCornmick, C. L.; Eds.; American Chemical Society: Washington, 2001.
    8.马俊涛,赵林,黄荣华刺激-响应型水溶性聚合物的研究进展.化学世界, 2001, 608-614.
    9. Hamley, 1. W. The Physics of Block Copolymers. Oxford University Press: Oxford 1998; p 131.
    10. Zhang, L. F.; Eisenberg, A. Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers. Science, 1995, 268, 1728-1731.
    11. Luo, L. B.; Eisenberg, A. Thermodynamic Size Control of Block Copolymer Vesicles in Solution. Langmuir, 2002, 18, 1952-1952.
    12. Liu, M.; Kono, K.; Frechet, J. M. J. Water-soluble dendritic unimolecular micelles: Their potential as drug delivery agents. J. Control Release, 2000, 65, 121.
    13. Aathimanikandan, S. V.; Savariar, E. N.; Thayumanavan, S. Temperature-Sensitive Dendritic Micelles. J Am Chem Soc, 2005, 127, 14922-14929.
    14. Zhao, Y. L.; Chen, Y. M.; Chen, C. F.; Xi, F. Synthesis of well-defined star polymers and star block copolymers from dendrimer initiators by atom transfer radical polymerization. Polymer, 2005, 46, 5808.
    15. Gillies, E. R.; Frechet, J. M. Dendrimers and dendritic polymers in drug delivery. J. Drug Discov Today 2005, 10, 35.
    16. Haag, R. Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angew Chem, Int Ed. 2004, 43, 278.
    17. Thayumanavan, S.; Bharathi, P.; Sivanandan, K.; Vutukuri, D. R. Towards dendrimers as biomimetic macromolecules. C R Chim, 2003, 6,767-778.
    18. Jones, M. C.; Ranger, M.; Leroux, J. C. pH-sensitive unimolecular polymeric micelles: Synthesis of a novel drug carrier. Bioconjugate Chem, 2003, 14, 774.
    19. Yusa, S.; Sakakibara, A.; Yamamoto, T.; Morishima, Y. Fluorescence Studies of pH-Responsive Unimolecular Micelles Formed from Amphiphilic Polysulfonates Possessing Long-Chain Alkyl Carboxyl Pendants. Macromolecules, 2002, 35, 10182-10188.
    20. Heise, A.; Hedrick, J. L.; Frank, C. W.; Miller, R. D. Starlike Block Copolymers with Amphiphilic Arms as Models for Unimolecular Micelles. J Am Chem Soc, 1999, 121, 8647-8648.
    21. Hawker, C. J.; Wooley, K. L.; Frechet, J. M. J. Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. J Chem Soc, Perkin Trans, 1993, 1287.
    22. You Y. Z.; Hong C. Y.; Pan C. Y. Wang P. H. Synthesis of a Dendritic core-shell Nanostructure with a Temperature-sensitive shell. Adv. Mater., 2004, 16, 1953-1957.
    23. Zheng Q.; Pan C. Y. Synthesis and Characterization of Dendrimer-Star Polymer Using Dithiobenzoate-Terminated Poly(propylene imine) Dendrimer via Reversible Addition-Fragmentation Transfer Polymerization. Macromolecules, 2005, 38, 6841-6848.
    24. Comanita B, Noren B, Roovers J. Star Poly(ethylene oxide)s from Carbosilane Dendrimers. Macromolecules, 1999, 32: 1069-1072.
    25. Zhao Y L, Shuai X T, Chen C F, Xi F. Synthesis and Characterization of Star-Shaped Poly(L-lactide)s Initiated with Hydroxyl-Terminated Poly(Amidoamine) (PAMAM-OH) Dendrimers. Chem. Mater., 2003, 15, 2836-2843.
    26. Heise A, Diamanti S, Hedrick J L, Frank C W, Miller R D. Investigation of the Initiation Behavior of a Dendritic 12-Arm Initiator in Atom Transfer Radical Polymerization. Macromolecules, 2001, 34: 3798-3801.
    27. Bai R. K.; You Y. Z.; Pan C. Y. Study on controlled free-radical polymerization in the presence of dithiobenzoic acid (DTBA). Polym. Int., 2000, 49, 898-902.
    1. [a] Yan D Y.; Zhou Y F.; Hou J. Supramolecular Self-Assembly of Macroscopic Tubes. Science, 2004, 303, 65-67. [b] C. Gao, D. Yan, Prog. Polym. Sci, 2004, 29, 183-275;[c] Tian H. Y.; Deng C.; Lin H.; Sun J.; Deng M.; Chen X. S; Jing X. Biodegradable cationic PEG-PEI-PBLG hyperbranched block copolymer: synthesis and micelle characterization. Biomaterials 2005, 26, 4209-4217;[d] He C. L.; Zhao C. W.; Chen X. S.; Guo Z.J.; Zhuang X .L.; Jing X. B. Novel pH-and Temperature-Responsive Block Copolymers with Tunable pH-Responsive Range. Macromol. Rapid Commun., 2008, 29, 490-497;[e] Xu J.; Luo S. Z.; Shi W. F.; Liu S. Y. Two-Stage Collapse of Unimolecular Micelles with Double Thermoresponsive Coronas. Langmuir, 2006, 22, 989-997; [f] Ornatska M..; Peleshanko S.; Genson K. L.; Rybak B.; Bergman K. N.; Tsukruk V. V.; Assembling of Amphiphilic Highly Branched Molecules in Supramolecular Nanofibers. J. Am. Chem. Soc., 2004, 126, 9675-9684.
    2. [a] Tsitsilianis C.; Alexandridis P.; Lindman B. Lyotropic Liquid Crystalline Structures Formed by Amphiphilic Heteroarm Star Copolymers. Macromolecules, 2001, 34, 5979-5983; [b] Fernyhough C. M.; Young R. N.; Tack R. D. Synthesis and Characterization of Polyisoprene-Poly(methyl methacrylate) AB Diblock and A2B2 Heteroarm Star Copolymers. Macromolecules, 1999, 32, 5760-5764.
    3. [a] Kanaoka S.; Omura T.; Sawamoto M.; Higashimura T. Star-Shaped Polymers by Living Cationic Polymerization. 3. Synthesis of Heteroarm Amphiphilic Star-Shaped Polymers of Vinyl Ethers with Hydroxyl or Carboxyl Pendant Groups. Macromolecules, 1992, 25, 6407-6413; [b] Kanaoka S.; Nakata S.; Yamaoka H.; Hitoshi Y. Amphiphilic Heteroarm Star-Shaped Polymers by Living Cationic Polymerization: A Unique Behavior in Aqueous Solution. Macromolecules, 2002, 35, 4564-4566.
    4. [a] Gao H F.; Tsarevsky N V.; Matyjaszewski K. Synthesis of Degradable Miktoarm Star Copolymers via Atom Transfer Radical Polymerization. Macromolecules, 2005, 38, 5995-6004. [b] Xu H. ; Sun F. C.; Shirvanyants D. G.; Rubinstein M.; Shabratov D.; Beers K. L. ; Matyjaszewski K. ; Sheiko S. S. Molecular Pressure Sensors. Adv. Mater., 2007, 19, 2930-2934; [c] Du J. Z. ; Chen Y. M. PCL Star Polymer, PCL-PS Heteroarm Star Polymer by ATRP and Core-Carboxylated PS Star Polymer Thereof. Macromolecules, 2004, 37, 3588-3594.
    5. [a] Georgiades S. N.; Vamvakaki M.; Patrickios C. S. Synthesis and Characterization of Double-Hydrophilic Model Networks Based on Cross-linked Star Polymers of Poly(ethylene glycol) Methacrylate and Methacrylic Acid. Macromolecules, 2002, 35, 4903-4911; [b] Georgiou T. K.; Patrickios C. S. Synthesis, Characterization, and Modeling of Double-Hydrophobic Model Networks Based on Cross-Linked Star Copolymers of n-Butyl Methacrylate and Methyl Methacrylate. Macromolecules, 2006, 39, 1560-1568; [c] Georgiou T. K.; Vamvakaki M.; Phylactou L. A.; Patrickios C. S. Synthesis, Characterization, and Evaluation as Transfection Reagents of Double-Hydrophilic Star Copolymers: Effect of Star Architecture. Biomacromolecules, 2005, 6, 2990-2997.[d] Vamvakaki M.; Patrickios C. S. Synthesis and Characterization of Electrolytic Amphiphilic Model Networks Based on Cross-linked Star Polymers: Effect of Star Architecture. Chem. Mater. 2002, 14, 1630-1638.
    6. Liu C.; Zhang Y.; Huang J. L. Well-Defined Star Polymers with Mixed-Arms by SequentialPolymerization of Atom Transfer Radical Polymerization and Reverse Addition-Fragmentation Chain Transfer on a Hyperbranched Polyglycerol Core.Macromolecules, 2008, 41, 325-331.
    7. [a] Peleshanko S.; Jeong J.; Shevchenko V. V.; Genson K. L.; Pikus Yu.; Ornatska M.; Petrash S.; Tsukruk V. V. Synthesis and Properties of Asymmetric Heteroarm PEOn-b-PSm Star Polymers with End Functionalities. Macromolecules, 2004, 37, 7497-7506; [b] Heise A.; Trollsas M.; Magbitang T.; Hedrick J. L.; Frank C. W.; Miller R. D. Star Polymers with Alternating Arms from Miktofunctionalí-Initiators Using Consecutive Atom Transfer Radical Polymerization and Ring-Opening Polymerization. Macromolecules, 2001, 34, 2798-2804; [c] Han D.H.; Pan C.Y. Preparation and Characterization of Heteroarm H-Shaped Terpolymers by Combination of Reversible Addition-Fragmentation Transfer Polymerization and Ring-Opening Polymerization. J Polym Sci Part A: Polym Chem, 2007, 45, 789–799;[d] Durmaz H.; Karatas F.; Tunca U.; Hizal G. Heteroarm H-Shaped Terpolymers through the Combination of the Diels–Alder Reaction and Controlled/Living Radical Polymerization Techniques. J Polym Sci Part A: Polym Chem, 2006, 44, 3947–3957.
    8. Bai R. K.; You Y. Z.; Pan C. Y. Study on controlled free-radical polymerization in the presence of dithiobenzoic acid (DTBA). Polym. Int., 2000, 49, 898-902.
    9. You Y. Z.; Hong C. Y.; Pan C. Y. Wang P. H. Synthesis of a Dendritic core-shell Nanostructure with a Temperature-sensitive shell. Adv. Mater., 2004, 16, 1953-1957.
    10. Hou J.; Yan D. Y. Synthesis of a Star-Shaped Copolymer with a Hyperbranched Poly(3-methyl-3-oxetanemethanol) Core and Tetrahydrofuran Arms by One-Pot Copolymerization. Macromol. Rapid Commun, 2002, 23, 456-459.
    11. [a] Zhang A. F.; Zhang G. L.; Zhang H. Z. ACTA POL YMERICA SINICA, 1999, 502-505; [b] Zhang A F.; Zhang G. L.; Zhang H Z. Studies on mechanism of tetrahydrofuran polymerization initiated by a heteropolyacid. Macromol. Chem. Phys., 1999, 200, 1846–1853.
    12. [a] Malmstrtjm E.; Johansson M.; Hult A. Hyperbranched Aliphatic Polyesters. Macromolecules, 1995, 28, 1698-1703; [b] Hawker C. J.; Malmstr?m E.; Frank C. W.; Kampf J. P. Exact Linear Analogs of Dendritic Polyether Macromolecules: Design, Synthesis, and Unique Properties. J. Am. Chem.Soc., 1997, 119, 9903-9904.
    1. F?rster S., Plantenberg T., From self-organizing polymers to nanohybrid and biomaterials. Angew. Chem. Int. Ed., 2002, 41, 688-714.
    2. Ulbrich, K.; Konak, C.; Zutar, Z.; Kopecek, J.; Macromol. Chem. 1987, 188, 1261.
    3. La, S. B.; Okano, T.; Kataoka, K.; Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated Poly(ethylene oxide)-poly(beta-benzyl L-aspartate) block copolymer micelles.J. Pharm. Sci. 1996, 85, 85-90.
    4. Fukushima, S;Miyata, K.; Nishiyama, N.; Kanayama, N.; Yamasaki, Y; Kataoka, K.; PEGylated Polyplex Micelles from Triblock Catiomers with Spatially Ordered Layering of Condensed pDNA and Buffering Units for Enhanced Intracellular Gene Delivery.J Am. Chem. Soc;2005;127;2810-2811.
    5. Wakebayashi, D.; Nishiyama, N.; Itaka, K.; Miyata, K;Yamasaki, Y.; Harada, A.; Koyama, H.;Nagasaki, Y.; Kataoka, K.; Polyion Complex Micelles of pDNA with cetal-poly(ethyleneglycol)-poly(2-(dimethylamino)ethyl methacrylate) Block Copolymer as the Gene Carrier System: Physicochemical Properties of Micelles Relevant to Gene Transfection Efficacy. Biomacromolecules; 2004; 5; 2128--2136.
    6. Yan D. Y.; Zhou Y. F.; Hou J. Supramolecular Self-Assembly of Macroscopic Tubes. Science, 2004, 303, 65-67.
    7. Zhou, Y.; Yan, D. Supramolecular Self-Assembly of Giant Polymer Vesicles with Controlled Sizes. Angew. Chem. Int. Ed. 2004, 43, 4896-4899.
    8. You Y. Z.; Hong C. Y.; Pan C. Y. Wang P. H. Synthesis of a Dendritic core-shell Nanostructure with a Temperature-sensitive shell. Adv. Mater., 2004, 16, 1953-1957.
    9. Xu J.; Luo S. Z.; Shi W. F.; Liu S. Y. Two-Stage Collapse of Unimolecular Micelles with Double Thermoresponsive Coronas. Langmuir, 2006, 22, 989-997.
    10. Ling Zhong, YongFeng Zhou, DeYue Yan, CaiYuan Pan. Synthesis of a Multi Alternating-Arm-Containing Dendritic Star Copolymer by RAFT and Cationic Ring-Opening Polymerization. Macromolecular Rapid Communications, 2008, 29, 1385-1391.
    11. Kohori, F.; Sakai, K.; Aoyagi, T.; Yokyama, M.; Sakurai, Y.; Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-DL-lactide). JOURNAL OF CONTROLLED RELEASE, 1998, 55, 87-98.
    12. Bai R. K.; You Y. Z.; Pan C. Y. Study on controlled free-radical polymerization in the presence of dithiobenzoic acid (DTBA). Polym. Int., 2000, 49, 898-902.
    13. Zhang L.; Eisenberg A. Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers in Solutions. Macromolecules, 1996, 29, 8805-8815
    14. Mai Y Y.; Zhou Y F.; Yan D Y. Synthesis and Size-Controllable Self-Assembly of a Novel Amphiphilic Hyperbranched Multiarm Copolyether. Macromolecules, 2005, 38, 8679-8686.
    15. Erhardt, R.; B?ker, A.; Zettl, H.; Kaya, H.; Pyckhout-Hintzen, W.; Krausch, G.; Abetz, V.; Müller, A. H. E. Janus Micelles. Macromolecules, 2001, 34, 1069-1075.
    16. Yuan, X.; Jiang, M.; Zhao, H.; Wang, M.; Zhao, Y.; Wu, C. Noncovalently Connected Polymeric Micelles in Aqueous Medium. Langmuir, 2001, 17, 6122-6126.
    17. (a) Butun, V.; Billingham, N. C.; Armes, S. P. Synthesis and aqueous solution properties of novel hydrophilic-hydrophilic block copolymers based on tertiary amine methacrylates. Chem. Commun. 1997, 671-672. (b) Lee, A. S.; Gast, A. P.; Butun, V.; Armes, S. P. Characterizing the Structure of pH Dependent Polyelectrolyte Block Copolymer Micelles. Macromolecules, 1999, 32, 4302-4310.
    18. Butun, V.; Armes, S. P.; Billingham, N. C. Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer, 2001, 42, 5993-6008.
    19. Vamvakaki, M.; Billingham, N. C.; Armes, S. P. Synthesis of Controlled Structure Water-Soluble Diblock Copolymers via Oxyanionic Polymerization. Macromolecules, 1999, 32, 2088-2090.
    20. Zhao, B.; Brittain, W. J. Polymer brushes: Surface-immobilized macromolecules. Prog. Polym. Sci. 2000, 25, 677-710.
    21. Halperin, A.; Tirrell, M.; Lodge, T. P. AdV. Polym. Sci., 1992, 100, 31.
    1. Hester J. F., Banerjee P., Mayes A. M. Preparation of Protein-Resistant Surfaces onPoly(vinylidene fluoride) Membranes via Surface Segregation. Macromolecules 1999, 32, 1643-1650.
    2.Yang B. S., J. Lai, J. Kohn, J. S. Huang, W. B. Russel, R. K. Prudihomme, Interaction of Hydrophobically Modified Polymers and Surfactant Lamellar Phase.Langmuir 2001,17,5834-5841.
    3. D. J. Irvine, A. M. Mayer, Nanoscale Clustering of RGD Peptides at Surfaces Using Comb Polymers. 1. Synthesis and Characterization of Comb Thin Films. Biomacromolecules 2001, 2, 85-94.
    4. Roberts M. J., Harris J. M. Attachment of degradable poly(ethylene glycol) to proteins has the potential to increase therapeutic efficacy. J. Pharm Sci. 1998, 87, 1440-1445.
    5. Hallden A., Ohisson B., wesslen B. Poly(ethylene-graft-ethylene oxide) (PE-PEO) and poly(ethylene-co-acrylic acid) (PEAA) as compatibilizers in blends of LDPE and polyamide-6. J. Appl. Polym. Sci. 2000, 28, 2416.
    6. Lin J. J., Chang I. J., Chen C. N., Kwan C. C. Synthesis, characterization, and interfacial behaviors of poly(oxyethylene)-grafted SEBS copolymers. Ind. Eng. Chem. Res. 2000, 39, 65-71.
    7. Olugebefola S. C., Park S. Y., Banerjee P., Mayers A. M., Santini C. M. B. J. Iyer, P. T. Hammond, Multiparticle effects on the interactions of complex colloidal dispersions. Langmuir 2002,4, 1098-1103.
    8. Hooper R., Lyons L. L., Mapes M. K., Schumacher D., Moline D. West A., R. Highly Conductive Siloxane Polymers. Macromolecules 2001, 34, 931-936.
    9. Jannasch P. Synthesis of Novel Aggregating Comb-Shaped Polyethers for Use as Polymer Electrolytes, Macromolecule, 2002, 33, 8604-8610.
    10. O'Donnell P. M., Brzezinska K., Powell D., Wagener K. B.“Perfect Comb”ADMET Graft Copolymers. Macromolecules, 2001, 34, 6845-6849.
    11. K. Ito, K. Tanaka, H. Tanaka, G. Imai, S. Kawaguchi, S. Itswno, Poly(ethy1ene oxide) Macromonomers. 7. Micellar Polymerization in Water. Macromolecules, 1991, 24, 2348-2354.
    12. Li Y G, Shi P. J., Zhou Y S., Pan C. Y. Synthesis and characterization of block comb-like copolymers P(A-MPEO)-block-PSt. Polymer Int. 2004, 53, 349.
    13. De-Hui Han, Cai-Yuan Pan. A Novel Strategy to Synthesize Double Comb-Shaped Water Soluble Copolymer by RAFT Polymerization. Macromolecular Chemistry and Physics, 2006, 207, 836-843.
    14. Narrainen, A. P.; Pascual, S.; Haddleton, D.M. Amphiphilic diblock, triblock, and star block copolymers by living radical polymerization: Synthesis and aggregation behavior. J. Polym. Sci., Polym. Chem. Ed. 2002, 40, 439-450.
    15. Angot, S.; Taton, D.; Gnanou, Y. Amphiphilic stars and dendrimer-like architectures based on poly(ethylene oxide) and polystyrene. Macromolecules, 2000, 33, 5418-5426.
    16. Meier, M. A. R.; Gohy, J. F.; Fustin, C.-A.; Schubert, U. S. J. Combinatorial synthesis of star-shaped block copolymers: Host-guest chemistry of unimolecular reversed micelles. J. Am. Chem. Soc. 2004, 126, 11517-11521.
    17. Heise, A.; Hedrick, J. L.; Frank, C. W.; Miller, R. D. Starlike block copolymers with amphiphilic arms as models for unimolecular micelles. J. Am. Chem. Soc., 1999, 121, 8647-8648.
    18. Whitesides, G. M.; Grzybowski, B. A. Self-assembly at all scale. Science, 2002, 295,2418-2421.
    19. Lehn J.-M., Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim, 1995).
    20. Lehn, J.M. Toward Self-Organization and Complex Matter, Science, 2002, 295, 2400-2403.
    21. Ringsdorf, H.; Simon, J. Snap-together vesicles. Nature, 1994, 284,371.
    22. Bucknall, D. G.; Anderson, H. L. Polymers Get Organized. Science, 2003, 302, 1904-1905.
    23. R?sler, A.; Vandermeulen, G. W. M.; Klok, H.-A. Advanced Drug Delivery Devices via Self-Assembly of Amphiphilic Block Copolymers. Adv. Drug Deliv. Rev. 2001, 53, 95.
    24. Antonietti, M.; F?rster, S. Vesicles and Liposomes: A Self-Assembly Principle Beyond Lipids. Adv. Mater. 2003, 15, 1323.
    25. F?rster, S.; Antonietti, M. Amphiphilic Block Copolymers in Structure-controlled Nanomaterial Hybrids. Adv. Mater. 1998, 10, 195.
    26. Forster S., Plantenberg T. From self-organizing polymers to nanohybrid and biomaterials. Angew. Chem. Int. Ed., 2002, 41, 688.
    27.Tu, Y.; Wang, X.; Zhang, H.; Fan, X.; Chen, X.; Zhou, Q.; Chau, K. Self-Assembled Nanostructures of Rod-Coil Diblock Copolymers with Different Rod Lengths. Macromolecules, 2003, 36, 6565-6569.
    28. Wang, C.; Ravi, P.; Tam, K. C.; Gan, L. H. Self-Assembly Behavior of Poly(methacrylic acid-block-ethyl acrylate) Polymer in Aqueous Medium: Potentiometric Titration and Laser Light Scattering Studies. J. Phys. Chem. B, 2004, 108, 1621.
    29. Schilli, C. M.; Zhang, M.; Rizzardo, E.; Thang, S. H.; Chong, Y. K.; Edwards, K.; Karlsson, G.; Müller, A. H. E. A New Double-Responsive Block Copolymer Synthesized via RAFT Polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules, 2004, 37, 7861-7866.
    30.Zhang, L.; Eisenberg, A. Multiple Morphologies of“Crew-Cut”Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers. Science, 1995, 268, 1728-1731.
    31. Zhang, L.; Eisenberg, A. Multiple Morphologies and Characteristics of“Crew-Cut”Micelle-like Aggregates of Polystyrene-b-Poly(acrylic acid) Diblock Copolymers in Aqueous Solutions. J. Am. Chem. Soc. 1996, 118, 3168-3181.
    32. Zhang, L.; Eisenberg, A. Ion-induced Morphological Changes in“Crew-Cut”Aggregates of Amphiphilic Block Copolymer. Science, 1996, 272, 1777-1779.
    33. Zhang, L.; Eisenberg, A. Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers in Solutions. Macromolecules, 1996, 29, 8805-8815.
    34. Zhang, L.; Eisenberg, A. Formation of Crew-Cut Aggregates of Various Morphologies from Amphiphilic Block Copolymers in Solution. Polym. Adv. Technol. 1998, 9, 677.
    35. Yu, K.; Eisenberg, A. Bilayer Morphologies of Self-Assembled Crew-Cut Aggregates of Amphiphilic PS-b-PEO Diblock Copolymers in Solution. Macromolecules, 1998, 31, 3509-3518.
    36. Cameron, N. S.; Eisenberg, A.; Brown, G. R. Amphiphilic Block Copolymers as Bile Acid Sorbents: 2. Polystyrene-b-poly(N,N,N-trimethylammoniumethylene acrylamide chloride): Self-Assembly and Application to Serum Cholesterol Reduction. Biomacromolecules, 2002, 3, 124-132.
    37.Erhardt, R.; Zhang, M.; Boker, A.; Zettl, H.; Abetz, C.; Frederik, P.; Krausch, G.; Abetz, V.; Müller, A. H. E. Amphiphilic Janus Micelles with Polystyrene and Poly(methacrylic acid)Hemispheres. J. Am. Chem. Soc. 2003, 125, 3260-3267.
    38.Yiyong Mai, Yongfeng Zhou, Deyue Yan, Synthesis and Size-Controllable Self-Assembly of a Novel Amphiphilic Hyperbranched Multiarm Copolyether. Macromolecules, 2005, 38, 8679-8686.
    39. You Y. Z.; Hong C. Y.; Pan C. Y. Wang P. H. Synthesis of a Dendritic core-shell Nanostructure with a Temperature-sensitive shell. Adv. Mater., 2004, 16, 1953-1957.
    40. Yan, D.; Zhou, Y.; Hou, J. Supramolecular Self-Assembly of Macroscopic Tubes. Science, 2004, 303, 65-67.
    41. Zhou, Y.; Yan, D. Supramolecular Self-Assembly of Giant Polymer Vesicles with Controlled Sizes. Angew. Chem. Int. Ed. 2004, 43, 4896.
    42.Dou, H.; Jiang, M.; Peng, H.; Chen, D.; Hong, Y. pH-Dependent Self-Assembly: Micellization and Micelle–Hollow-Sphere Transition of Cellulose-based Copolymers. Angew. Chem. Int. Ed. 2003, 42, 1516.
    43.Erhardt, R.; B?ker, A.; Zettl, H.; Kaya, H.; Pyckhout-Hintzen, W.; Krausch, G.; Abetz, V.; Müller, A. H. E. Janus Micelles. Macromolecules, 2001, 34, 1069-1075.
    44. Yuan, X.; Jiang, M.; Zhao, H.; Wang, M.; Zhao, Y.; Wu, C. Noncovalently Connected Polymeric Micelles in Aqueous Medium. Langmuir, 2001, 17, 6122-6126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700