用户名: 密码: 验证码:
运动二能级原子与光场纠缠特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子纠缠不仅对了解量子力学的基本概念有着重要的意义,而且它更是一种有用的信息“资源”。它在量子隐行传态、量子密集编码、量子密钥分配以及在量子计算的加速、量子纠错、防错等方面都起着关键作用。在实际问题中,原子与场的耦合系数可能是变化的,因此,探究含运动的二能级原子与光场的纠缠特性有一定的创新性和学术价值。
     本文应用量子信息熵理论,把标准的Jaynes-Cummings模型扩展到考虑原子运动和不同场模结构以及耦合系数为高斯型的状况,主要对二能级运动原子与光场的纠缠特性进行了研究,并与原子静止时的情况进行了比较。论文主要包括以下五个部分:
     第一部分主要介绍了量子纠缠的概念、发展史及其在量子信息中的应用价值,并阐述了本文的选题背景、意义和主要工作。
     第二部分介绍了纠缠理论和压缩真空场及其特点,并将场与原子相互作用的理论模型-标准Jaynes-Cummings推广到原子运动的状况,建立了含原子运动的J-C模型的一般动力学基础,为下面的研究工作奠定了理论基础。
     第三部分可分为以下三个方面:
     1.用量子信息理论研究具有原子运动的双光子Jaynes-Cummings模型中运动原子与光场的纠缠特性。结果表明:当运动原子的场模结构参数p取值较小时,系统的纠缠度不具有周期振荡特性;当p取值较大时,系统的纠缠度有明显的周期振荡特性,且振荡周期是原子静止时的两倍;当在运动原子处于基态或激发态时,系统处于消纠缠状态;当运动原子处于相干叠加态时,原子才与场发生纠缠。
     2.用全量子理论研究了原子运动时两纠缠二能级原子与单模真空场相互作用体系的纠缠特性。研究结果表明:当双原子初始处在EPR态时,三体纠缠量最大值与理想W纠缠态纠缠量相同。场模结构参数p影响三体纠缠量随时间演化的振荡特性,随着p值的逐渐增大,三体纠缠量的平均值将越来越小,体系三体纠缠态也会逐渐趋于消纠缠状态。
     3.研究了当耦合系数为高斯型分布时运动原子与压缩真空场的纠缠特性,讨论了原子垂直于腔轴的运动、原子初态、压缩参数r对纠缠度的影响。结果发现:原子速度的增大会使原子与光场的有效作用时间变短,纠缠度也将很快达到最大值。压缩参数r对纠缠度的演化曲线有明显的调制作用,当压缩参数取适当值(如r =2)时,系统可长久停留在最大纠缠态、无消纠缠态或持续地处于消纠缠态。
Quantum entanglement not only has important significance in knowing the basic concept of quantum mechanics, but also is one of useful information resources. It is a key problem in quantum teleportation, quantum dense coding, quantum key distribution, quantum computation, quantum error correction and error prevention. In actual problem, the coupling coefficient of atom and field is possibly variational, therefore, to some extent, it is valuable in considering the entangled properties of motorial atom and cavity field.
     This paper will expand standard Jaynes-Cummings model to the condition of considering atomic motion, the parameter of field-mode, Gaussian coupling, and mostly investigate the entangled properties of motorial two-level atom and cavity field, and Compare the atoms which are static with that of motion. This paper contants the following five parts:
     In the first part, the paper will mainly introduce the quantum entanglement’s concept, development history and applying value in quantum communication, and then elaborate the paper’s subject-selecting background, significance and main work. In the second part, we will present quantum theory, squeezing vacuum field and its character, then expand standard Jaynes-Cummings model to the condition of considering atomic motion, the basic dynamic model with atomic motion will be established, as the theoretical basic of the work in the below.
     The third part is made of three facets.
     1. The entangled properties of motorial atom and field in the two-photon Jaynes-Cummings model with atomic motion are studied by using the quantum information theory. It is shown that:(1) When the parameter p of the field model structure with atomic motion is smaller, the entanglement of system is not provided with the characteristic of periodic oscillations, when the value of p is greater, the entanglement of system is obviously provided with the characteristic of periodic oscillations, the oscillation period is as much again as atom is resting . when motorial atom is prepared in ground state or excited state ,the system is in the disentangled state; when motorial atom is prepared in coherent superpositions states, the entanglement occurs between motorial atom and field.
     2. We investigate the entanglement properties of two entangled two-level atoms that interact resonantly with a single-mode vacuum field with atomic motion using quantum theory. The results show that if the two atoms are prepared in maximum entangled (EPR) state initially, the maximum of three-body entanglement measure is equated with the perfect three-body W entangled state. The parameter of field-mode structure p influences the time evolution oscillation property of three-body entanglement measure, with the gradually increasing of p, the average of three-body entanglement measure will gradually decrease, three-body entangled state will tend to disentangled state inch by inch.
     3. The properties of the entanglement between squeezing vacuum state field and moving atom with Gaussian coupling are studied. The influence of atomic motion perpendicularity to the axes of resonant cavity , the initial states of atom, the squeezing parameter on entanglement degree are discussed. The results show that: with the increase of atomic velocity, effective interaction time of the atom and field will shorten, the entanglement degree will also reach the maximum quickly. The squeezing parameter r have a obvious role of concocting the evolution curve of degree of entanglement, if the squeezing parameter is take appropriate value(such as r =2), the system of quantum state will be maximally entangled state for a long time, without disentangled-free state or disentangled state, and the degree of entanglement is stationary.
引文
[1] A.Einstein, B. Podolsky, N.Rosen. Can quantum mechanics description of physical reality be considered complete[J]. Phys. Rev. A, 1935, 47:777.
    [2] D. Bohm, Quantum Theory, Prentice-Hall, Englewood Cliffs, NJ (1951).
    [3] E. Schro dinger, The present situation in quantum mechanics, 译者:T. D. John, Prcceedings of the American Philosophical Society, 124:323.
    [4] 张礼、葛墨林编著,量子力学的前沿问题,第一章、第三章,清华大学出版社,2000年 4 月第一版.
    [5] J. S. Bell, On the problem of hidden variables in quantum mechanics, Review of Modern Phys. , 1996, 38:447.
    [6] A. K. Akert, Quantum cryptography based on Bell’s Theorem, Phys. Rev. Lett.,1991,61:661.
    [7] T. Jennewein, C. Simon and G. Weihs et al. quantum cryptography with entangledphotons. Phys. Rev. Lett., 2000,84: 4725.
    [8] D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proceedings of the Royal Society of London A, 1985, 400: 97.
    [9]P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, Proc. 35th Annual Symposium on the Foundations of Computer Science, 1994, 124.
    [10] L. K. Grover, Quantum Mechanics helps in searching for a needle in a haystack., Phys. Rev. Lett., 1997,78:325
    [11] I. L. Chuang, L. M. K. Vandersypen and X. Zhou et al. Experimental realization of a quantum algorithm,1998,393:143.
    [12] C. H. Bennett, G. Brassard and C. Crepeau et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 1993,70: 1895-1899.
    [13] D. Bouwmeester. J. W. Pan and K. Mattle et al. Experimental quantum teleportation,Nature, 1997, 390:575.
    [14] E. Schro dinger, Die gegenwa. Rfige situation inder quantenmechanik[J]. Naturwissen -schaften., 1935, 23:807-823.
    [15] 张永德 量子力学[M]. 北京:科学出版社, 2003:410-413.
    [16] G. J. Milburn 著,郭光灿,周正威,张永生译.费曼处理器-量子计算机简介[M]. 江西: 江西教育出版社, 1999:49-56.
    [17] D.Bohm. A suggested interpretation of the quantum theory in terms of hiddenvariables[J]. Phys.Rev., 1952, 85:166-179.
    [18] J. S. Bell. On the problem of hidden variables in quantum mechanics[J]. Rev. Mod. Phys., 1966, 38:477-482 J. S. Bell, Physics, 1964, 1: 195.
    [19] A. Aspect, P. Grangier and G. Roger. Experimental tests of realistic local theories via bell’s theorem[J]. Phys. Rev. Lett.,1982, 49(2):91-94.
    [20] P. Grangier. Count them all[J]. Nature, 2001,409(6822):774-779.
    [21] Y. H. Shin and C. O. Alley. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quantum produced by optical parametric down conversation[J]. Phys. Rev. Lett., 1998, 61(26): 2921-2924.
    [22] Z. Y. Ou and L. Mandel. Violation of Bell’s inequlity and classical probability in a two-photon correlation experiment[J]. Phys. Rev. Lett., 1988, 61(1): 50-53.
    [23] Bennett C H, DiVincenzo D P, Smolin J A, Wootters W.K. Mixed-state entanglement and quantum error correction[J]. Phys. Rev. A, 1996,54(5): 3824-3851.
    [24] Vedral V , Plenio M B, Rippin M A .Quantifying entanglement[J].Phy. Rev. Lett., 1997,78(24) : 2275-2778.
    [25] Tong Z Y, Kuang L M. Broadcasting of entanglement in three-particle Greenberger-Horne-Zeilinger state via quantum copying[J]. Chin. Phys. Lett., 2000, 17(7): 469-471.
    [26] 左战春,夏云杰. Tavis-Cummings 模型中三体纠缠态纠缠量的演化特性[J].物理学报, 2003,52(11):2687-2693.
    [27] Diedrich F,Bergquist J C.Itano W M, Wineland D J.Laser cooling to the zero-point energy of motion Phys.Rev.Lett,1989,62(4):403-406.
    [28]Schlicher R R. Jaynes-Cummings model with atomic motion. Opt. Commun, 1989,70(2): 97-102.
    [29]Joshi A,Lawande S V. Effect of atomic motion on Ryderg atoms undergoing two-transitions in a lossless cavity. Phys. Rev(A), 1990, 42(3): 1752-1756.
    [30]Lawande A J S V. Squeezing and quasiprobabilities for a two-photon Jaynes-Cummings model with atomic motion.Int J Mod.Phys(B), 1992, 6(10): 3539-3545.
    [31] F ang M F. Effects of atomic motion and field mode structure on the field entropy and Schro dinger? catstates in the Jaynes-Cummings model. Physica(A), 1998, 259(2): 193-204.
    [32] 刘小娟,王琴惠. 具有原子运动的双光子 J-C 模型的场熵和薛定谔猫态. 量子光学学报,1999,5(1):1-9.
    [33] 陈菊梅,方卯发. 原子质心运动和场模结构对场相位动力学的影响. 光学学报,2000,20(7):890-895.
    [34] 刘安玲,方卯发. 双光子过程中模场与运动原子相互作用的非经典性质. 量子光学学报,2000,6(4):139-143.
    [35] Bartzis V. Generalized Jaynes-Cummings model with atomic motion. Physica(A), 1992, 180(3): 428-434.
    [36] 刘堂昆,王继锁,詹明生. 含原子运动的 Jaynes-Cummings 模型中的量子态保真度. 原子与分子物理学报,2001,18(1):58-63.
    [37] 田永红,彭金生. 原子运动和场模结构对原子动力学特性的影响. 光子学报,2001,30(11):1298-1302.
    [38] 刘小娟,方卯发,周清平. 具有原子运动的双光子 J-C 模型中量子力学通道与量子互熵. 物理学报,2005,54(2):0703-0709.
    [39] Yariv A. Quantum Electronics[M].New York: John Wiley and Sons Inc.,1975.
    [40] 王忠纯. 高斯型耦合 Tavis-Cummings 模型中原子的量子特性. 量子电子学报,2006,23(6):830-835.
    [41] Horace P. Yuen. Two-photon coherent states of the radiation field. Phys. Rev. A, 1976, 13(6): 2226-2243.
    [42]Janos A, Bergou et al. Minimum uncertainty states for amplitude-squared squeezing:Hermite polynomial states. Phys. Rev. A, 1991, 43(1): 515-520.
    [43] J S Peng, G X Li. Influence of the virtual-photon processes on the squeezing of light in the two-photon Jaynes-Cummings model. Phys. Rev. A, 1993, 47(4): 3167-3172.
    [44] 郭光灿,柴金华. 光泵三能级原子体系产生光子数压缩态. 物理学报,1991,40(6):912-922.
    [45] R. E. Slusher, L. W. Hollberg et al. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 1985, 55(22): 2409-2412.
    [46] M. Hillery. Squeezing of the square of the field amplitude in second harmonic generation. Opt. Commun., 1987, 62(2): 135-138.
    [47] X. Yang, X. Zheng. Squeezing of the squared field amplitude by an anharmonic oscillator. Phys. Rev. A, 1988, 37(5): 1779-1781.
    [48] X P Yang, X P Zheng, Squeezing of the square of the field amplitude in the multiphoton Jaynes-Cummings model. Phys. Lett. A, 1989, 138(8): 409-411.
    [49] 郭光灿,量子光学(高等教育出版社,北京,1990),第 546-548 页.
    [50] 冯勋立,徐至展等. 压缩真空态光场抽运的双光子激光. 物理学报,2000,49(2):0235-0240.
    [51] 黄春佳,厉江帆,贺慧勇. 压缩真空场与耦合双原子 Raman 相互作用过程中光场的量子特性. 物理学报,2001,50(03): 0473-0477.
    [52] 田永红,彭金生. 双模压缩真空场作用下二能级原子的偶极压缩与相干俘获. 物理学报,1999,48(11):2060-2069.
    [53] 王长春,汪贤才,曹卓良. 压缩真空场与运动Ξ 型三能级原子作用系统的光场压缩效应. 原子与分子物理学报,2006,23(2):0287-0292.
    [54] 严琴,刘素梅. 耦合二能级原子与压缩真空场相互作用过程中原子布居态几的动力学性质. 量子电子学报,2004,21(4):0497-0501.
    [55] 黄燕霞,赵朋义等. 压缩真空场与原子非线性作用过程中的纠缠与消纠缠. 物理学报,2004,53(01):0075-0081.
    [56] 曾谨言.量子力学卷Ⅱ(第三版)[M]. 北京: 科学出版社, 2001: 586-593.
    [57] 李承祖, 黄明球, 陈平行, 梁林梅. 量子通信和计算[M]. 长沙: 国防科技大学出版社, 2000: 3-6.
    [58] D. M. Greenberger, M. A. Horne, A. Shimony and A. Zeilinger. Bell’s theorem without inequalities[J]. Am. J. Phys., 1990, 58: 1131.
    [59] W. Du r G. Vidal and J. I. Cirac. Three qubits can be entangled in two inequivalent ways[J]. Phys. Rev. A, 2000, 62: 062314-062325.
    [60] Bennett C H, Popescu S. Rohrlich D, Smolin J A and Thapliyal A V. Exact and asymptotic measure of multipartite pure-state entanglement. Phys. Rev. A. 2001, 63:012307.
    [61] Bennett C H, Bernstein H J, Popescu S, Schumacher B. Concentrating partial entanglement by local operations. Phys. Rev. A. 1996,53: 2046-2052.
    [62] 彭金生,李高翔,近代量子光学导论, 北京:科学出版社,1996,92-97,165-193.
    [63] E. T. Jaynes, F. W. Cummings, Comparison of quantum and semiclassical radiation theories with application to beam maser[J]. Proc. IEEE, 1963, 51(1): 89-109.
    [64] J. H. Eberly, N. B. Narozhny, J.J. Sanchez-Mondragon, Preiodic spontaneous collapse and revival in a simple quantum mode[J], Phys. Rev. Lett., 1980, 44(20): 1323-1326.
    [65] G. S. Agarwal, Vacuum-field Rabi oscillations of atoms in a cavity[J]. J. Opt.Soc. Am.B1985, (2): 480-485.
    [66] D. F. Walls, P. Zoller, Reduced quantum fluctuations in resonancefluorescence[J], Phys. Rev. Lett., 1981,47(10): 709-711.
    [67] R. J. Thompson, G. Rempe, H. J. Kimble, Observation of normal-mode splitting for an atom in an optical cavity[J]. Phys. Rev. Lett., 1992, 68(8): 1132-1135.
    [68] G. Rempe, H. Walther, N. Klein, Observation of quantum collapse and revival in a one-atom maser[J]. Phys. Rev. Lett., 1987,58(4): 353-356.
    [69]Scully M O, Zubairy M S. Quantum Optics[M].Cambridge:Cambridge University Press,1997.
    [70]Wong A and Christensen N .Potential multiparticle entanglement measure[J].Phys.Rev.A,2001, 63(4):44301-44304.
    [71] Horodechi M,Horodecki P and Horodechi R.Limit for Entanglement Measures[J]. Phys.Rev.Lett.,2000,84(9):2014-2017.
    [72] Zheng S B and Guo G C.Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED[J].Phys.Rev.Lett.,2000,85(11): 2392-2395.
    [73] Sukumar C V,Buck B.Multi-phonon generalization of the Jaynes-Cummings model[J]. Phys.Lett.A, 1981, 83(5): 211-213.
    [74] Brune M,Raimond J M,Haroche S.Theory of the Rydberg-atom two-photon micromaser[J]. Phys.Rev.A,1987, 35(1): 154-163.
    [75] 饶志明,谢芳森等.双光子 J-C 模型中原子与光场的纠缠及纠缠度[J].江西师范大学学报(自然科学版),2004, 28(5): 387-390.
    [76] Joshi A,Lawande S V.Squeezing and quasiprobabilities for a two-photon Jaynes-Cummings model with atomic motion[J].Int.J.Mod.Phys.B,1992,6(21): 3539-3550. Bartzis V.Generalized Jaynes-Cummings model with atomic motion[J].Physica A,1992,180(3-4):428-434. Joshi A,Lawande S V.Effect of atomic motion on Rydberg atoms undergoing two-photon transitions in a lossless cavity[J].Phys.Rev.A,1990,42(3): 1752-1756.
    [77] Yan Kezhu,Kong Xianghe,Xia Yunjie.The Wehrl’s Entropy and Shannon’s Entropy for Even and Odd Coherent States[J] .Acta Optica Sinica,1998,18(6):717-721.
    [78]Vedral V.Statistical Inference,distingguishability of quantum states, and quantum entanglement[J].Phys Rev A,1997,56(6):4452-4455.
    [79]Tavis M and Cummings F W. Exact solution for an N-molecule-radiation-field Hamiltonian[J]. Phys. Rev., 1968, 170(2) : 379-384.
    [80] 田永红,彭金生. Tavis-Cummings 模型中原子间偶极作用对光场性质的影响.光学学报,2000, 20(9) :1187-1193.
    [81] 王忠纯, 王琪等. 经典外场驱动下 Tavis-Cummings 系统的能量本征值和波函数[J]. 物理学报, 2005, 54(1) :0107-0112.
    [82] Bogoliubov N M, Bulloughz R K and Timonenx J. Exact solution of generalized Tavis - Cummings models in quantum optics. J. Phys. A: Math. Gen.,1996,19(29): 6305-6312.
    [83] Diedrich F, Bergquist J C, Itano W M and Wineland D. Laser Cooling to the Zero-Point Energy of Motion. Phys. Rev. Lett.,1989,62(4): 403-406.
    [84] Meschede D, Walther H and Muller G. One-atom maser. Phys. Rev. Lett.,1985,54(6): 551-554.
    [85] 王忠纯. Tavis-Cummings 模型中原子运动时光场的非经典特性.物理学报,2006, 55(1): 0192-0196.
    [86] 黄春佳,贺慧勇等.光场与纠缠双原子相互作用过程中的熵演化特性.物理学报,2006, 55(4): 1764-1768.
    [87] 单传家,夏云杰. Tavis-Cummings 模型中两纠缠原子纠缠的演化特性.物理学报,2006, 55(4): 1585-1590.
    [88] 黄春佳, 贺慧勇等. Tavis-Cummings 模型中原子间偶极相互作用对场熵演化特性的影响[J]. (物理学报), 2002, 51(5) :1049-1053.
    [89] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干[J]. (物理学报) 2002, 51(9) :1989-1995.
    [90]万琳,刘三秋,陶向阳. 虚光子过程对“两个二能级原子-单模光场”相互作用系统场熵演化特性的影响. 光子学报, 2001, 30(6): 651-656.
    [91]黄燕霞,郭光灿. 压缩真空场 Jaynes-Cummings 模型中场熵的演化特性. 量子光学学报, 1996,2(2):97-104.
    [92] 黄春佳, 厉江帆等. 虚光场对双模压缩真空场与原子相互作用系统中光子统计性质的影响[J]. 物理学报, 2001,50(10):1920-1924.
    [93] 黄春佳, 文立. Kerr 介质对双模压缩真空场与四能级原子相互作用系统中光场量子特性的影响[J]. 物理学报, 2002, 51(09): 1978-1982.
    [94]侯邦品. 含时调制的Jaynes-Cummings的pancharatnam相位. 物理学报, 2000, 49(9): 1663-1666.
    [95] Knoll L,Orlowski A.Distance between density operators [J].Phys. Rev. A, 1995,51(02):1622-1630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700