被动型相干布居数囚禁原子钟系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原子钟作为世界上最为精确的计时工具,早在1976年就被研究确定为计时标准。它利用原子的超精细能级间的跃迁辐射对时间进行度量。由于其计时的稳定性,在过去的50年中已成为通讯、导航系统、航空航天以及网络同步和科学测量等领域中最为基本的器件之一。然而由于传统的原子钟需要利用谐振腔,体积较大,很大程度上限制了其应用领域的扩展。另一方面,随着各种电子器件与系统朝着小型化发展,传统的原子钟在以往的应用领域也受到挑战。而相干布居数囚禁(Coherent Population Trapping,CPT)原理则给原子钟特别是被动型原子钟的小型化,甚至于微型化带来希望。本文即针对原子钟微型化的发展需求,以CPT原子钟系统实现为目标,在系统层面上对被动型CPT原子钟开展了系统建模、物理系统、电路系统以及系统制作等方面的研究。
     首先在CPT原理物理机理的基础上,开展了被动型CPT原子钟系统层面的建模研究。通过对CPT原理的分析,结合产生CPT所需的条件,分别从光源、光学元件、腔体吸收以及信号检测等方面进行了相关数学建模研究,在此基础上完成了整个CPT原子钟系统的构建,并将CPT原子钟系统划分为物理系统和电路系统两大部分。
     随后针对CPT原子钟,开展了钟物理系统的设计研究。分别从光源器件的选择、光学元件的设计、碱金属腔体材料选择和工艺的设计、恒温加热元件的设计、光电检测元件的设计以及磁场及电磁屏蔽等方面给出了CPT原子钟的物理系统的设计要求,并提出了设计方案。
     在物理系统设计的基础上,对CPT原子钟电路系统的设计进行了研究。分别从微波调频信号合成、光源光频稳定、光源及碱金属腔体恒温控制以及误差信号检测等方面进行了相关电路的设计研究,并分别给出了相应的设计要求,并提出相应的设计方案,给出了相关电路的设计参数,同时给出了电路系统在布局布线中所需要注意的问题及解决方案。
     最后在CPT原子钟物理系统及电路系统的设计的基础上,进行了实际CPT原子钟系统的研制。并分别对系统各部分进行了相关的实验及测试,系统测试表明采用垂直腔表面发射激光器(VCSEL)作为光源时,出射光波长可扫过87Rb的共振吸收线;光学元件可以完成圆偏振态的转换;光电二极管适用于微弱信号的检测;调频微波合成电路输出信号可达3.4 GHz,调频频率在800 Hz时为最优;VCSEL光频稳定环路可实现VCSEL光频的锁定;恒温加热电路可以实现对VCSEL及Rb腔温度的控制,控制精度分别可达0.02℃和0.5℃;误差信号检测电路则可以检测出大噪声背景下低达V的微弱信号。系统整体测试表明设计方案正确,对芯片级CPT原子钟的设计与制作具有指导作用。
As the most precise time keeper, atomic clock was used for the definition of the time by the International System of Units since 1976. It employs the radiation corresponding to the transition between two hyperfine energy levels of the alkali metal atoms to count time. Because of its stable of time keeping, it has become the most basic component among communication, global positioning system, aeronautics and astronautics and network synchronization. However, due to the microwave resonant cavity, which needs to be used in the traditional atomic clock, was very large, it is very difficult to be miniaturized. Besides, there were more and more electronic to be miniaturized, the traditional atomic clock application was challenged. With the coherent population trapping (CPT) theory, the atomic clock could be made very small, even to be chip-scale. This dissertation focuses on the demand for the minaturization of the atomic clock. Taking realization of the CPT atomic clock system as our target, system modeling, physics system and circuit system design and the whole system assembly were studied in this dissertation.
     System modeling was based on the CPT theory and was studied on the device level. Through the CPT analysis, light resource, optical elements, alkali metal atomic cavity and signal detection were described mathematically. And based on the description the system model was constructed for CPT atomic clock specifically. At the same time, the CPT atomic clock system was divided into two parts, physics system and circuit system.
     With the requirements of the CPT theory, the physics system was studied. The physics system included the light source, optical elements, cavity with alkali metal atoms, heaters, light signal detection, inducing magnetic field and electromagnetic field shielding. All of them were designed respectively and the assembly of the physics system was given at the end of the chapter.
     Based on the designed physics system, the circuit system was studied. The circuit system was divided into four parts which were frequency modulated microwave signal synthesizing, light frequency stabilization, temperature controlling for light source and cavity and weak signal detection. Every part was designed and constructed specifically. Finally, the issues in the PCB (Printed Circuit Board) layout were discussed.
     Finally, with the designed physics system and circuit system, the realization of the CPT atomic clock system was studied. Every part of the CPT atomic clock system was realized and tested. Physics system test results showed that the light source which used VCSEL (Vertical Cavity Surface Emitting Laser) could emit the 795nm beam which was corresponding to the absorption wavelength of the 87Rb atoms; the optical elements could realize the polarization conversion; the PIN photodiode could be able to detect the error signal. Circuit system test results showed that the frequency modulated microwave signal synthesizing circuit could output 3.4 GHz frequency modulation (FM) signal; the light source frequency stabilization circuit could stabilize the wavelength of the VCSEL onto 795nm; the temperature controlling circuit could stabilize the VCSEL and the Rb cavity in the range of 0.02 degree C and 0.5 degree C respectively; the weak signal detection circuit could reveale the signal as lower as 1 microvoltgae with the large noise background. With these parts, the CPT atomic clock system was realized. Output frequency stability test veryfied the systematic model and all the design could give the important guidance to the chip-scale atomic clock design and fabrication.
引文
[1]王义遒.原子钟及其进展.物理教学, 2003, 25(4): 2-4.
    [2]伊林,陈徐宗.原子钟研究及其进展.科学(上海), 2005, 57(5): 8-10.
    [3] Vian C., Rosenbusch P., Marion H., et al. BNM-SYRTE fountains: recent results. IEEE Transactions on Instrumentation and Measurement, 2005, 54(2): 833-836.
    [4] Lyons H. The Atomic Clock– A Universal Standard for Frequency and Time. Am. Scholar, 1950, 19: 159-168.
    [5] Townes C. H. Atomic clocks and frequency stabilization on microwave spectral lines. Journal of Applied Physics, 1951, 22: 1365-1372.
    [6] Quinn T. Fifty years of atomic time keeping: 1995 to 2005. Metrologia, 2005: 42.
    [7]黄秉英.新一代原子钟.武汉:武汉大学出版社,2006.
    [8] Udem T. Timekeeping: light-insensitive optical clock. Nature, 2005, 435(7040): 291.
    [9] Alzetta G.,Gozzini A., Moi L. et al. An experimental method for the observation of RF transitions and laser beat resonance in oriented Na vapour. Nuovo Cimento, 1976 36 B: 5-20
    [10] Alzetta G., Gozzini A., Moi L., et al. Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping. Nuovo Cimento B, 1976, 36: 1-5.
    [11] Brandt S., Nagel A., Wynands R. et al. Buffer gas induced linewidth reduction of coherent dark resonances to below 50 Hz. Physical review A, 1997, 56: 56-59
    [12] Vanier J., Godone A., Levi F. Coherent population trapping in cesium: dark lines and coherent microwave emission. Physics Review A, 1998, 58(3): 2345-2358.
    [13] Levi F., Micalizio S., Godone A. et al. Realization of a CPT Rb maser prototype for Galileo. 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum. Florida, USA: IEEE. 2003: 22-26.
    [14] Zanon T., Tremine S., Guerandel S. et al. Recent results on a pulsed CPT clock. Proceedings of the 2005 Joint IEEE International Frequency ControlSymposium(FCS) and Precise Time and Time Interval(PTTI) Systems and Applications Meeting. Vancouver, BC, Canada: IEEE, 2005: 774-777.
    [15] Kernco I. Kernco assembles the first coherent population trapping maser atomic clock(CPT maser). [EB/OL] (2006-09-05) [2007-05-25]. http://www.kernco.com/pdfs/Maser.pdf.
    [16] Gray H. R., Whitley R. M., Stroud Jr C. R. Coherent trapping of atomic populations. Optics Letters, 1978, 3(6): 218-220.
    [17] Lukin M. D., Imamoglu A. Controlling photons using electromagnetically induced transparency. Nature, 2001, 413(6853): 273-276.
    [18] Imamoglu A., Harris S. E. Lasers without inversion-interference of dressed lifetime-broadened states. Optics Letters, 1989, 14: 1344-1346.
    [19] Boller K. J., Imamoglu A., Harris S. E.. Observation of electromagnetically induced transparency. Physics Review Letters, 1991, 66(20): 2593-2596.
    [20] Thomas J. E., Hemmer P. R., Ezekiel S., et al. Observation of ramsey fringes using a stimulated, resonance raman transition in a sodium atomic beam. Physics Review Letters, 1982, 48: 867-870.
    [21] Godone A., Levi F., Vanier J.. Coherent microwave emission in cesium under coherent population trapping. Physics Review A, 1999, 59(1): R12-R15.
    [22] Knappe S., Shah V., Schwindt P. D. D. et al. A microfabricated atomic clock. Applied Physics Letters, 2004, 85(9): 1460-1462.
    [23] Kitching J., Hollberg L., Knappe S. et al. Compact atomic clock based on coherent population trapping. Electronic Letters, 2001, 37(24): 1449-1451.
    [24] Balabas M. V., Budker D., Kitching J. et al. Magnetometry with millimeter-scale antirelaxationcoated alkali-metal vapor cells. Journal of the Optical Society of America B, 2006, 23:1001–6.
    [25] Knappe S., Velichansky V., Robinson H. G. et al. Compact atomic vapor cells fabricated by laserinduced heating of hollow-core glass fibers. Review of Scientific Instruments, 2003, 74: 3142–5
    [26] Kitching J., Knappe S., Hollberg L. Miniature vapor-cell atomic-frequency references. Applied Physics Letters, 2002, 81: 553–5.
    [27] Knappe S., Velichansky V., Robinson H. G. et al. Atomic vapor cells for miniaturefrequency references. Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, Tampa, FL, 2003: 31–2.
    [28] Liew L. A., Knappe S., Moreland J. et al. Microfabricated alkali atom vapor cells. Applied Physics Letters, 2004, 84: 2694–6.
    [29] Wallis G., Pomerantz D. Field assisted glass–metal sealing. Journal of Applied Physics, 1969, 40: 3946–9。
    [30] Kwakernaak M. H., Lipp S., Mcbride S. et al. Components for batch-fabricated chipscale atomic clock. Technical Digest of 36th Annual Precise Time and Time Interval (PTTI) Meeting, Washington, DC, USA, 2004: 355.
    [31] Lutwak R., Vlitas P., Varghese M. et al. The MAC– A miniature atomic clock. Joint Meeting of the IEEE International Frequency Control Symposium and the Precise Time and Time Interval (PTTI) Systems and Applications Meeting, Vancouver, BC, Canada, 2005: 752–7
    [32] EspeW. Materials of High Vacuum Technology. Pergamon, Oxford, 1966.
    [33] Gerginov V., Knappe S., Shah V. et al. Long-term frequency instability of atomic frequency references based on coherent population trapping and microfabricated vapor cells. Journal of the Optical Society of America B, 2006, 23: 593–7.
    [34]杜国同.半导体激光器件物理.长春:吉林大学出版社. 2002年第1版: 5-24.
    [35] [日]栖原敏明.半导激光器基础.北京:科学出版社. 2002年第1版: 1-50.
    [36] [日]伊贺健一,小山二三夫.面发射激光器基础及应用.北京:科学出版社. 2002年第1版: 1-221.
    [37] Lutwak R., Deng J., Riley W. et al. The chip-scale atomic clock– Low-power physics package. 36th Annual Precise Time and Time Interval (PTTI) Meeting, Washington, DC, USA, 2004: 1–14.
    [38] Allard N., Kielkopf J. The effect of neutral nonresonant collisions on atomic spectral lines. Reviews of Modem Physics, 1982, 54:1103–82.
    [39] Lai S. L., Ramanath G., Allen L. H. et al. Highspeed (104_C/s) scanning microcalorimetry with monolayer sensitivity (J/m2). Applied Physics Letters, 1995, 67, 1229–31
    [40] Nguyen C. T-C., Howe R. T. Microresonator frequency control and stabilization using an integrated micro oven. 7th International Conference of Solid-State Sensors and Actuators (Transducers’93), Yokohama, Japan, 1993: 1040–3
    [41] Ruther P., Herrscher M., Paul O. A micro differential thermal analysis (/spl mu/DTA) system. 17th IEEE International Conference of Micro Electro Mechanical Systems (MEMS), Maastricht, The Netherlands, 2004: 165–8
    [42] Lutwak R., Deng J., Riley W. et al. The chip-scale atomic clock– Low-power physics package. 36th Annual Precise Time and Time Interval (PTTI) Meeting, Washington, DC, USA, 2004: 1–14.
    [43] Schwindt P. D. D., Lindseth B., Knappe S. A chip-scale atomic magnetometer with improved sensitivity using the Mx technique. Applied Physics Letters, 2006, 90, 081102.
    [44] Vanier. J. Atomic clocks based on coherent population trapping: a review. Journal of Applied Physics, 2005, B81: 421-422
    [45] Vanier. J. Coherent population trapping for the realization of a small, stable, atomic clock. IEEE International Frequency Control Symposium and PDA Exhibition, LA, USA, 2002:424-434.
    [46] Kitching J., Knappe S., et al. A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor. IEEE Transactions on Instrumentation and Measurement, 2000, 49(6): 1313-1317.
    [47] Lutwak R., Emmons D., et al. The chip-scale atomic clock-CPT vs conventional interrogation. Proceedings of the 34th Annual Precise Time and Time Interval Systems Applications Meeting, Virginia, USA, 2002: 1-12.
    [48] Lutwak R., Emmons D. et al. The chip-scale atomic clock-recent development progress. Proceedings of the 34th Annual Precise Time and Time Interval Systems Applications Meeting, California, USA, 2003: 1-11.
    [49] Darwin S. K., Gregory P. M., et al. VCSELs for atomic clocks. Proceedings of the SPIE-The International Society for Optical Engineering, CA, USA, 2006, 613208: 1-11.
    [50] (美)依根( W.F.Egan)著,张其善等译.锁相频率合成.北京:人民邮电出版社,1984年第1版.
    [51]戴逸民等.频率合成与锁相技术.合肥:中国科学技术大学出版社, 1995年第1版.
    [52] Zhang W. Q. Design and performance evaluation of the atomic hydrogen master for chinese mobile VLBI Station. ACTAMETROLOGICA SINICA, 2002, 23(1).
    [53] Camparo J. C., Frueholz R. P. Atomic phase delay in a rubidium atomic clock. IEEE Proceedings of the Annual Frequency Control Symposium, UT, USA, 1993: 114-119.
    [54]张为群,张一平等.应用氢原子频率标准的相位锁定环路.应用科学学报. 2002, 20(1): 105-108.
    [55]冯克明,王亮等.一种新型铷汽室标电路方案.宇航计测技术. 2004, 24(1): 16-19.
    [56] Felbach D., Heimbuerger D. et al. Galileo payload 10.23 MHz master clock generation with a clock monitoring and control unit (CMCU). IEEE Proceedings of the International Frequency Control Symposium and PDA Exhibition. Joint with the 17th European Frequency and Time Forum, 2003: 583-586.
    [57] Brannon A., Breitbarth J. et al. A low-power, low phase noise local oscillator for chip-scale atomic clocks. IEEE MTT-S International Microwave Symposium, 2005: 1535-1538.
    [58] Brannon A., Jankovic M. et al. A local oscillator for chip-scale atomic clocks at NIST. IEEE Proceedings of the International Frequency Control Symposium and Expostion, 2006: 443-447.
    [59] Romisch S., Lutwak R. Low-power, 4.6-GHz, stable oscillator for CSAC. IEEE Proceedings of the International Frequency Control Symposium and Expostion, 2006: 448-451
    [60]叶嘉雄等.光电系统与信号处理.北京:科学出版社. 1997年第1版.
    [61]戴逸松.微弱信号检测方法与仪器.北京:国防工业出版社. 1994年第1版.
    [62]曾庆勇.微弱信号检测.杭州:浙江大学出版社. 1994年第2版.
    [63] Knappe S., Kitching J. et al. Temperature dependence of coherent populationtrapping resonances. Applied Physics B, 2002, 74: 217-222.
    [64]谢玲,汤广发著.半导体制冷技术的发展与应用.洁净与空调技术, 2008, (01).
    [65] Alzetta G., Gozzini A., Moi M. et al. An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapor. IL Nuovo Cimento B 1976, 36(1): 5-20.
    [66] William E., Arnold L. B. Optically driven spin precession. Physics Review Letters, 1961, 6(6): 280-281.
    [67] Harris S.E. Electromagnetically induced transparency. Physics Today, 1997, 50(7): 36-42.
    [68]郭文阁,范琦,王鑫等.相干布居数囚禁原子钟技术及其进展.时间频率学报, 2007, 30(1): 46-48.
    [69] Ulm Photonics, http://www.ulm-photonics.com
    [70] Phillips D. F., Novikova I., Wang C. Y.-T. et al, Modulation-induced frequency shifts in a coherent-population-trapping-based atomic clock. Journal of Optical Society of America B, 2005, 22(2): 305.
    [71] Belcher N., Novikova I. VCSEL laser system for atomic clock. Williamsburg: College of William and Mary, 2007.
    [72]高晋占.微弱信号检测.北京:清华大学出版社. 2004年第1版: 154-196.
    [73]刘俊,张斌珍编著.微弱信号检测技术.北京:电子工业出版社. 2005年第1版: 27-120.
    [74]张肃文.高频电子线路.北京:高等教育出版社. 2004年第4版: 403-410.
    [75] King R., Wiedenmann D., Schnitzer P. et al. Single-mode and multimode 2D VCSEL arrays for parallel optical interconnects. Conference Digest– IEEE International Semiconductor Laser Conference, Nara, Japan, 1998: 103–4
    [76] Lear K. L., Mar A., Choquette K. D. et al. High-frequency modulation of oxideconfined vertical cavity surface emitting lasers. Electronics Letters, 1996, 32: 457–8
    [77] Jung C., Jager R., Grabherr M. et al. 4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes. Electronics Letters, 1997, 33: 1790–1791.
    [78] Seurin J-F. P., Chuang S. L., Chirovski L. M. F. et al. Novel VCSEL designs deliverhigh output power. Laser Focus World, 2002, 38: 119–124.
    [79] Choquette K. D., Schneider R. P. Jr., Lear K. L. et al. Low threshold voltage vertical-cavity lasers fabricated by selective oxidation. Electronics Letters, 1994, 30, 2043–2044.
    [80] Huffaker D. L., Shin J., Deppe D. G. Low threshold half-wave vertical-cavity lasers. Electronics Letters, 1994, 30: 1946–1947
    [81] Yang G. M.,Macdougal M. H., Dapkus P. D. Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation. Electronics Letters, 1995, 31: 886–888.
    [82] Fumio K., Susumu K., Kenichi I. Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser. Applied Physics Letters, 1989, 55: 221–222.
    [83] Jewell J. L., Scherer A., Mccall S. L. et al. Low-threshold electrically pumped vertical-cavity surface-emitting microlasers. Electronics Letters, 1989, 25: 1123–1124.
    [84] Avalon Photonics, Avalon Photonics Datacom VCSELs, http://www.avap.ch
    [85] Honeywell, http://www.honeywell.com
    [86] Vixar, http://www.vixarinc.com
    [87] Mukoyama N., Otama H., Kuwata Y. et al. 850 nm Single mode oxide-confined VCSEL. NICT Workshop on Chip Scale Atomic Clock Status and Potentiality, NICT Headquarters, Koganei, Tokyo, Japan, 2006
    [88] Larsson A., Carlsson C., Gustavsson J. et al. Direct high-frequency modulation of VCSELs and applications in fibre optic RF and microwave links. New Journal of Physics, 2004, 6: 176.
    [89] Di Sopra F. M., Zappe H. P., Moser M. et al. Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth. IEEE Photonics Technology Letters, 1999, 11: 1533–1535.
    [90] Dalton B. J., Knight P. L. The effects of laser field fluctuations on coherent population trapping. Journal of Physics B, 1982, 15: 3997–4015
    [91] Kitching J., Robinson H. G., Hollberg L. et al. Optical-pumping noise in laser-pumped, all-optical microwave frequency references. Journal of OpticalSociety of America B, 2003, 18: 1676–83.
    [92] Camparo J. C. Conversion of laser phase noise to amplitude noise in an optically thick vapor. Journal of Optical Society of America B, 1998, 15: 1177–1186.
    [93] Serkland D. K., Geib K. M., Peake G. M. et al. VCSELs for atomic sensors. Proceedings of the SPIE- The International Society for Optical Engineering, CA, USA, 2007: 648406-1-10.
    [94]郁道银,谈恒英主编.工程光学.北京:机械工业出版社. 2002年第1版: 337-340.
    [95]范伟政,马炳和.微机械与微细加工技术.西安:西北工业大学出版社. 2001年第1版: 1-120.
    [96] Rosa M. A., Dimitrijev S., Harrison H. B. KOH wet etching techniques for the micromachining of (100) SOI wafers. Proceedings of The Conference on Optoelectronic and Microelectronic Materials and Devices, NY, USA, 1996: 454-457
    [97] Nair E. V., Ghosh A. A fundamental approach to the study of the mechanics of ultrasonic machining. International Journal of Production Research, 1985, 23: 731-753.
    [98] Wang Z. Y., Rajurkar K. P. Dynamic analysis of the ultrasonic machining process. Journal of Manufacturing Science and Engineering, 1996, 118: 376-381.
    [99] Sun X. Q., Masuzawa T., Fujino M. Micro ultrasonic machining and its applications in MEMS. Sensors and Actuators A: Physical, 1996, 57: 159-164.
    [100] Thoe T. B., Aspinwall D. K., Wise M. L. H. Review on ultrasonic machining. International Journal of Machine Tools and Manufacturing, 1998, 38: 239-255.
    [101] Miller G. E. Special theory of ultrasonic machining. Journal of Applied Physics, 1957, 28: 149-156
    [102] Tai-Ran Hsu主编,姚军译.微机电系统封装.北京:清华大学出版社,2006
    [103] Blackwell G. R. Editor. The electronic packaging handbook. USA: CRC Press, 2000.
    [104] Anthony T. R. Anodic bonding of imperfect surfaces. Journal of Applied Physics, 1983, 54: 2419-2428.
    [105] Albaugh K. B., Cade P. E. Mechanisms of anodic bonding of silicon to pyrex glass.IEEE Solid-state Sensor and Actuator Workshop, SC, USA, 1988: 109-110
    [106]包振远,张文标.静电封接技术概述.仪表技术与传感器. 1992, 2: 21-23.
    [107]孟庆森,俞萍,张丽娜等.金属与硼硅玻璃场致扩散连接形成机理.焊接学报,2001, 22: 63-65
    [108]张丽娜,俞萍,周彤等.钠硼硅酸玻璃与铝的阳极焊工艺及结合机理.中国有色金属学报, 2001, 11: 160-163.
    [109]杨频,高孝恢.结构-性能-化学键.北京:高等教育出版社, 1987年第1版.
    [110] Wei J., Wang Z.P., Xie H. et al. Role of bonding temperature and voltage in silicon to glass anodic bonding. Proceedings of the 4th Electronics Packaging Technology Conference, Singapore, 2002: 85-90
    [111] Go J. S., Cho Y. H. Experimental evaluation of anodic bonding process based on the taguchi analysis of interfacial fracture toughness. Sensors and Actuators A: Physical, 1999, 73: 52-57.
    [112] Lee M. H., Hsing I. M. Liaw C. Y. N. An improved anodic bonding process using pulsed voltage technique. Journal of Microelectromechanical Systems, 2000, 9: 469-473.
    [113] Blasquez G., Favaro P. Silicon pyrex electrostatic bonding: applicability to industrial microdevices production. The 11th International Conference on Solid State Sensors and Actuators, Munich, Germany, 2001: 234-237.
    [114] Richard A., Kohler J., Jonsson K. Weibull fracture probability for characterization of the anodicn bond process. Sensors and Actuators A: Physical, 2002, 99: 304-311.
    [115] Zhang Tingkai, Zhang Honghai, Xu Jian et al Study on triple-stack anodic bonding using two electrodes. Sensors and Actuators A: Physical, 2010, 157(1): 170.
    [116]马颖,张方辉,牟强. ITO膜透明导电玻璃的特性、制备和应用.陕西科技大学学报. 2003, 21: 106-109.
    [117]王刚,刘宏宇,赵超.低阻高透过率ITO薄膜的制备与性能.液晶与显示. 1999, 14: 23-28.
    [118]曾光宇,张志伟,张存林.光电检测技术.北京:清华大学出版社,北京交通大学出版社, 2005年9月第1版: 83.
    [119]江文杰,曾学文,施建华编著.光电技术.北京:科学出版社, 2009年1月第1版: 72-171.
    [120] John G. Optical Communication Systems, 2 ed. Prentice-Hall, Hempstead UK, 1993
    [121]张有正,陈尚勤,周正中.频率合成技术.北京:人民邮电出版社, 1984年第1版: 1-20.
    [122]庄卉,黄苏华,袁国春.锁相与频率合成技术.北京:气象出版社. 1996年第1版: 65-84.
    [123]刘铁新,高俊法.一种单片DDS构成的新型频率合成器.宇航计测技术, 1999, 19(4):6-10
    [124]李明斌.直接数字频率合成的原理及频谱特征分析.电讯技术, 1995, 35(4): 16-23
    [125]张厥盛,郑继禹,万心平.锁相技术.西安:西安电子科技大学出版社, 1994年第1版: 126-178.
    [126]郑继禹,万心平,张厥盛.锁相环原理与应用.北京:人民邮电出版社, 1984年第2版: 232-269.
    [127] Franco S. Design with Operational Amplifiers and Analog Integrated Circuits. 3rd ed. McGraw-Hill, New York, 2002.
    [128] [美] Shlomo Ovadia等;韩煜国等译.宽带有线电视接入网从技术到应用.北京:人民邮电出版社, 2002: 67-68.
    [129] TEC Illustration. http://www.rmtltd.ru/tec_app_tips.htm
    [130] Thermoelectric cooler (TEC) control [OL]. http://pdfserv.maxim-ic.com/en/
    [131] Ludwing R., Bretchko P. RF circuit design: theory and application. Person Eduation Press, USA, 2000: 1-42.
    [132] Jung W. Op amp application handbook. Elsevier (Singapore) Pte.Ltd., Singapore,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700