液相合成低维纳米结构材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料因其特殊的功能和效应,在科学发展和应用上有重要的意义,它为新材料的发展开辟了一个崭新的研究领域。纳米粒子的调控合成是纳米科技发展的重要组成部分,是探索纳米结构性能及其应用的基础。大量文献调研表明低维纳米材料的形貌、尺寸和结构直接影响着它们的性能。因此,探索新型的制备纳米材料并调控其形貌与尺寸的方法,能够揭示纳米材料的微观结构、尺寸大小和形貌生长的规律,对指导进一步的实验和进行应用开发研究具有重要的意义。本论文采用水热法和溶剂热的方法成功地合成了多种纳米材料,并实现了合成过程中对产物形貌与尺寸的调控。
     1.)采用水热表面活性剂辅助的方法,我们成功地合成了海胆状的镍分级超结构和多种形貌的羟基氧铝纳米晶,并且详细地探讨了反应物的浓度,反应时间,表面活性剂的浓度和温度等反应参数对产物形貌与尺寸的影响,研究了海胆状的单质镍的磁学性质。探索了不同的表面活性剂对羟基氧铝形貌的影响。该方法实验装置简单、操作容易,无需高能耗和易损的复杂设备。
     2.)运用简单的配位体辅助自组装合成方法制备了四氧化三钴和氢氧化钴纳米结构,通过调控水合肼的量从而制得不同的产物,并且在PVP的辅助下合成了四氧化三钴的球状纳米晶和花形的氢氧化钴纳米晶。该方法简单,易于操作,重现性好,并且产物分散性好,尺寸均一。
     3.)利用溶剂热的方法成功的合成了单质铜和氧化亚铜。探讨了反应参数对产物形貌与尺寸的影响。该方法实验装置简单、操作容易,无需高能耗和易损的复杂设备;且粒子分散均匀;原料用量少,可回收利用;易于实现连续化生产运作,为工业化生产提供可能。
Controlled synthesis of nanoparticles is one of the most important sections of nanoscience and nanotechnology, and it is also the base to investigate the distinctive properties and applications of nanostructures. The unique properties of nanomaterials have significant meaning not only in the development of science, but also in the application fields. It has provided an amplitude research field for new materials. It has been proved that the shape, size, and structure of low-dimensional nanomaterials affect their properties directly. So, the purpose of this article is, on the one hand, to explore novel methods to synthesize nanomaterials with controllable shapes and sizes, and on the other hand, to disclose the rule of nanomaterial microstructure, size change, and shape evolution, in order to make further lab research and applications. We synthesized different kinds of nanomaterials using hydrothermal/solvethermal methods and explored a new low temperature synthesis technique to realize the shape and size control during the synthesis process.
     1) sea urchin-shaped nickel structures and AlOOH nanostructures with different morphologies have been successfully synthesized via a simple surfactant-assisted hydrothermal method. The influence of the concentration of reactants, the reaction time, the concentration of the surfactant, and the reaction temperature on the morphology of the resulting products and the properties of nickel nanostructures were discussed in detail. By using different surfactants, we obtained diverse morphologies of AlOOH. This method has several features: simple experiment setting, easy operation, and low energy assumption.
     2) Using simple ligand-assisted method, Co3O4 nanospheres and flower-likeβ-Co(OH)2 nanostructures have been obtained. By changing the concentration of N2H4, we have obtained diverse productions, namely, Co3O4 andβ-Co(OH)2. The morphologies of Co3O4 nanospheres and flower-likeβ-Co(OH)2 nanostructures could be controlled by adjusting concentration of polyvinyl pyrrolidone (PVP). This way is simple and has good repeatability.
     3) Copper nanoparticles and cuprous oxide cubes have been synthesized by solvethermal method. We have discussed the influence of the reaction parameters on the shapes and sizes of the production. In summary, the virtues of this method are easy to operate, and easy to realize industrialization.
引文
[1] John I brauman, Room at the Bottom[J].Science, 1991, 254:1277-1279.
    [2] 严东生,冯瑞主编. 纳米新星[M].湖南科学技术出版社,1998,57-62.
    [3] Wang Z L.Nanowires and Nanobelts, Materials, Properties and Device [M]. Beijing:Tsing Hua University Press, 2004.356-363.
    [4] 李晓俊, 刘丰, 刘小兰主编. 纳米材料的制备及应用研究[M]. 济南: 山东大学出版社, 2006, 2-5.
    [5] 朱静.纳米材料与器件[M], 北京:清华大学出版社,2003.89-90.
    [6] Somorjai G A. Proceedings of the Robert A. Welch Foundation Conferences on Chemical Research[C].Houston, Texas, 1981, 11:9-11.
    [7] Lieber C M. One-Dimensional Nanostructures: Chemistry, Physics & Applications. Solid State Comm[C].1998, 107:607-616.
    [8] E1-Sayed M A. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes [J]. Acc Chem Res, 2001, 34:257-264.
    [9] Templiton A C, Wuelfing W P, Murrav R W. Monolaver-Protected Cluster Molecules [J].Acc Chem Res, 2000, 33:27-36.
    [10] Uenura T, Ohba M, Kitagawa S. Size and Surface Effects of Prussian Blue Nanoparticles Protected by Organic Polymers [J]. Inorg Chem, 2004, 43(23): 7339-7345.
    [11] Kubo R, Electronic Properties of Metallic Fine Particles [J]. J Phys Soc., 1962, 17, 975-978.
    [12] 赵于文,超细粉的性能、制备及应用[J].现代化工,1991 (5):52-56.
    [13] Barbara B, Wernsdorfer W. Quantum tunneling effect in magnetic particles [J]. Curr Opin Solid State Mater Sci.1997, 2 (2):220-225.
    [14] Wang Y, Mahler W, Opt. Degenerate four-wave mixing of CdS/polymer composite[J] Opt, Commun. 1987, 61:233-235.
    [15] 王焕英,纳米材料的制备及应用研究[J].衡水师专学报2002,2,44-47.
    [16] 王占国.纳米半导体材料制备技术[J].微纳电子技术,2002,1,9-14.
    [17] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001,3-9.
    [18] 王尔德,于振兴,刘祖岩. 纳米晶复合物 Mg - Ni - V2 O5 储氢性能研究[J].功能材料,2002,33:280 - 282.
    [19] 于振兴,王尔德,刘祖岩等. 纳米晶复合 Mg - Ni - Cr2O3 的吸放氢性能[J].中国有色金属学报,2002,12:743 - 748.
    [20] 胡季帆,隋振贵,陆宏良等.TiO2 纳米微粉及生物染料的光催化降解[J].功能材料,2003,34(3):336 - 337.
    [21] Tsuzukit,Nakashimapnh,Mccormickp G.Conf Optoelectron Microelectron Mater Devices Proc[C].Meeting Date, 1998,3:403 - 406.
    [22] Chen M Z,Xin M Z,Zhengping Qiao,et al. Preparation and Characterization of Nanocrystal V2O5[J].Journal of Solid State Chemistry, 2001,159:181 -185.
    [23] 王世敏,许祖勋,傅晶. 纳米材料制备技术[M]. 北京:化学工业出版社,2002,9:46-58.
    [24] 严海标,陈名华,郦华兴. 聚合物/ 无机纳米复合材料的进展[J].石化技术与应用,1999,17:118 - 120.
    [25] Liu Z W, Bando Y.A novel method for preparing copper nanorods and nanowires [J].Adv Mater .2003, 15:303-305.
    [26] (a)董均,杨宏昀,李春忠,等. 气相燃烧合成纳米 SiO2 颗粒的工艺条件研究[J]. 化学世界,2003 ,3:119 - 121. (b)魏少红,牛新书,蒋凯. WO3纳米材料的 NO2气敏特性[J]传感技术,2002,21:11-17.
    [27] Bakkers Erik P A M, Verheijen M A. Synthesis of INP nanotubes [J]. J Am Chem Soc, 2003, 125:3440-3441.
    [28] Yang Y H, Wu S J, Chiu H S, et al. Catalytic Growth of Silicon Nanowires Assisted by Laser Ablation [J]. J Phys Chem B, 2004, 108:846-852.
    [29] Wen J G, Lao J Y, Wang D Z, et al. Self-assembly of semiconducting oxide nanowires, nanorods, and nanoribbons [J]. Chemical Physics Letters, 2003, 372:717-722.
    [30] Lee H G, Jeon H C, Kang T W, et al. Gallium arsenide crystalline nanorods grown by molecular-beam epitaxy [J]. Appl Phys Lett, 2001, 78:3319-3321.
    [31] Zheng W P, Zu R D, Zhong L W. Nanobelts of Semiconducting Oxides [J]. Science, 2001, 291:1947-1949.
    [32] Yu D, Yam V W. Hydrothermal-Induced Assembly of Colloidal Silver Spheres into Various Nanoparticles on the Basis of HTAB-Modified Silver Mirror Reaction [J]. J Phys Chem B, 2005, 109:5497-5503.
    [33] Liu B, Zeng H C. Mesoscale organization of CuO nanoribbons: formation of "dandelions" [J]. J Am Chem Soc, 2004, 126: 8124-8125.
    [34] Liu B, Zeng H C. Fabrication of ZnO "dandelions" via a modified Kirkendall process [J]. J Am Chem Soc, 2004, 126:16744-16746.
    [35] Peng Q, Dong Y, Li Y D, et al. ZnSe semiconductor hollow microspheres [J]. Angew Chem Int Ed, 2003, 42:3027-3030.
    [36] Wang X J, Xie Y, Guo Q X. Synthesis of high quality inorganic fullerene-like BN hollow spheres via a simple chemical route [J]. Chem Commun, 2003, 15:2688-2689.
    [37] Li Y D, Li X L, He R R, et al. Artificial lamellar mesostructures to WS2 nanotubes [J]. J Am Chem Soc, 2002, 124:1411-1416.
    [38] Wang J W, Li Y D. Rational synthesis of metal nanotubes and nanowires from lamellar structures [J]. Adv Mater, 2003, 15:445-447.
    [39] Zhang F, Zhou Z H, Yang S P, et al. Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer[J]. Mater Lett, 2005, 59:1422-1425.
    [40] Zhang H, Yang D R, Li S Z, et al. Controllable growth of ZnO nanostructures by citric acid assisted hydrothermal process [J]. Mater Lett, 2005, 59:1696-1700.
    [41] Cao M H, Hu C W, Wang E B. The first fluoride one-dimensional nanostructures: microemulsion-mediated hydrothermal synthesis of BaF2 whiskers [J].J Am Chem Soc, 2003, 125:11196-11197.
    [42] Wang X, Li Y D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires [J].Angew Chem Int Ed, 2002, 41: 4790-4793.
    [43] Gao S, Xie Y, Lu J, et al. Mild benzene-thermal route to GaP nanorods and nanospheres [J]. Inorg Chem, 2002, 41:1850-1854.
    [44] Cao M H, Hu C W, Peng G, et al. Selected-Control Synthesis of PbO2 and Pb3O4, Single-Crystalline Nanorods[J].J Am Chem Soc, 2003, 125:4982-4983.
    [45] Zheng R, Tian J, Voigt A, et al. Large Oriented Arrays and Continuous Films of TiO2Based Nanotuhes [J]. J Am Chem Soc, 2003, 125:12384-12385.
    [46] Wang X, Sun X M, Yu D P, Li Y D. Rare earth compound nanotubes [J]. Adv Mater, 2003, 15:1442-1445.
    [47] Liu B, Zeng H C. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm [J]. J Am Chem Soc, 2003, 125:4430-4431.
    [48] Lu J, Qi P F, Peng Y Y, et al. Metastable MnS Crystallites through Solvothermal Synthesis [J]. Chem Mater, 2001, 13:2169-2172.
    [49] Yu D B, Wang D B, Meng Z Y, et al. Synthesis of closed PbS nanowires with regular geometric morphologies [J]. Mater Chem, 2002, 12:403-405.
    [50] Sen D, Deb P, Mazumder S, et al. Microstructural investigations of ferrite nanoparticles prepared by nonaqueous precipitation route[J]. Mater Res Bull, 2000, 35:1243-1250.
    [51] 李文翠, 郭树才. 溶胶-凝胶技术在新型纳米气凝胶合成中的应用[J]. 化工进展, 2001, 2: 34-36.
    [52] Jinsub C, Guido S, Kornelius N, et al. Hexagonally Arranged Monodispcrsc Silvcr Nanowires with Adjustable Diameter and High Aspect Ratio [J]. Chem Mater, 2003, 15:776-779.
    [53] 褚道葆. 电合成法制备纳米材料及纳米材料电极上的电催化合成[J]. 精细化工, 2000, 1: 10-12.
    [54] Holmes D, Keith P J, Christopher D R, et al. Control of Thickness and Orientation of Solution-Grown Silicon Nanowires [J]. Science, 2000, 287:1471?1473.
    [55] Nicholas R B, Coleman M, Morris A. et al. The Formation of Dimensional Ordered Silicon Nanowires within Mesoporous Silica [J]. J Am Chem Soc, 2001, 123:187-188.
    [56] Lu X M, Tobias H, Keith P. et al. Growth of Single Cystal Silicon Nanowires m Supercntical Solution from Tethered Gold Particles on a Silicon Substrate [J]. Inorg Chem, 2004, 23:146-148.
    [57] Tobias H, Brian A K. Nucleation and Growth of Germanium Nanowires Seeded by Organic Monolayer-Coated Gold Nanocrystals [J]. J Am Chem Soc, 2002,124:1424-1429.
    [58] Tobias H, Brian A K. Supercritical Fluid-Liquid-Solid Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals [J]. Adv Mater, 2003, 15:437-440.
    [59] Yu H, William E. Buhro. Solution-Liquid-Solid Growth of Soluble GaAs Nanowires [J]. Adv Mater, 2003, 15:416-419.
    [60] Ahrenkiel S P, Micaica O I, Miedaner A, et al. Synthesis and Characterization of Colloidal InP Quantum Rods [J]. Nano Lett, 2003, 3:833-83.
    [61] Trentler T J, Hickman K M, Goel S C, et al. Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth[J].Science,1995, 270:1791-1794.
    [62] Trentler T J, Goel S C, Hickman K M, et al. Solution-Liquid-Solid Growth of Indium Phosphide Fibers from Organometallic Precursors: Elucidation of Molecular and Nonmolecular Components of the Pathway[J]. J Am Chem Soc, 1997, 119:2172-2181.
    [63] Markowitz P D, Zach M P, Gibbons P C, et al. Phase Separation in AlxGa1-xAs Nanowhiskers Grown by the Solution-Liquid-Solid Mechanism[J]. J Am Chem Soc, 2001, 123:4502-4511.
    [64] Niu H, Zhang L, Gao M, et al. Amphiphilic ABC Triblock Copolymer-Assisted Synthesis of Core/Shell Structured CdTe Nanowires [J]. Langmuir, 2005, 21:4205-4210.
    [65] Xu D, Shi X, Guo G, et al. Electrochemical preparation of CdSe nanowire arrays [J]. J Phys Chem B, 2000, 104:5061-5063.
    [66] Dai H, Wong E W, Lu Y Z, et al. Synthesis and characterization of carbide nanorods [J]. Nature.1995, 375,769-772. Liu Z W,Bando Y.A novel method for preparing copper nanorods and nanowires[J].Adv Mater,2003,15:303-305
    [67] Han W Q, Fan S S, Li Q Q, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction.[J]. Science.1997, 277: 1287-1289.
    [68] Fullam S, Cottell D, Rensmo H, et al. Carbon nanotube templated self-assembly and thermal processing of gold nanowires[J]. Adv Mater, 2000, 12:1430-1432.
    [69] Matsui K, Pradhan B K, Kyotani T, et al. Formation of nickel oxide nanoribbons in the cavity of carbon nanotubes [J]. J Phys Chem B, 2001, 105:5682-5688.
    [70] Zhang Y J, Zhu J, Zhang Q, et al. Synthesis of GeO2 nanorods by carbon nanotubes template [J]. Chem Phys Lett, 2000, 317:504-509.
    [71] Deng Z, Mao C. DNA-Templated Fabrication of 1D Parallel and 2D Crossed Metallic Nanowire Arrays[J]. Nano Lett, 2003, 3:1545-1548.
    [72] Braun E, Elchen Y, Sivan U, et al. DNA-templated assembly and electrode attachment of a conducting silver wire [J]. Nature, 1998, 391:775-778.
    [73] Richter J, Seidel R, Kirsch R, et al. Nanoscale Palladium Metallization of DNA [J]. Adv Mater, 2000, 12:507-510.
    [74] Sastry M, Kumar A, Datar S, et al. DNA-mediated electrostatic assembly of gold nanoparticles into linear arrays by a simple drop-coating procedure[J]. Appl Phys Lett, 2001, 78:2943-2945.
    [75] Mao C, Solis D J, Reiss B D, et al. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires[J]. Science, 2004, 303:213-217.
    [76] Huang L, Wang H, Wang Z, et al. Nanowire arrays electrodeposited from liquid crystalline phases [J].Adv Mater, 2002, 14:61-64.
    [77] Cao M H, Hu C W, Peng G, et al. Selected-control synthesis of PbO2 and Pb3O4 single-crystalline nanorods[J]. J Am Chem Soc, 2003, 125:4982-4983.
    [78] Wu Y, Livneh T, Zhang Y X, et al. Templated Synthesis of Highly Ordered Mesostructured Nanowires and Nanowire Arrays [J]. Nano Lett, 2004, 4:2337-2342.
    [79] Valdes Solis T, Marban G, Fuertes A B. Preparation of Nanosized Perovskites and Spinels through a Silica Xerogel Template Route [J]. Chem Mater, 2005, 17:1919-1922.
    [80] Zheng N W, Wu Q S, Ding Y P, et al. Synthesis of BaCO3 Nanowires and Nanorods in the Presence of Different Nonionic W/O Microemulsions[J]. Chem Lett, 2000, 29:638-639.
    [81] Cao M H, Hu C W, Wang Y H, et al. A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods[J].Chem Comm,2003, 1884-1885.
    [82] Hu W C, Gong D W, Chen Z, et al. Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate [J]. Appl Phys Lett, 2001, 79:3083-3085.
    [83] Bao J C, Tie C Y, Xu Z, et al. Template synthesis of an array of nickel nanotubules and its magnetic behavior [J]. Adv Mater, 2001, 13:1631-1633.
    [84] Cao M H, Guo C X, Qi Y J, et al. Shape and size control of ZnO nanostructures via a simple solution route [J]. J Nanosci Nanotech, 2004, 4:829-832.
    [85] Zhao Y W, Zhang Y, Zhu H, et al. Low-Temperature Synthesis of Hexagonal (Wurtzite) ZnS Nanocrystals [J]. J Am Chem Soc, 2004, 126:6874-6875.
    [86] Cao M H, Wang Y H, Qi Y J, et al. Synthesis and characterization of MgF2 and KMgF3 nanorods [J]. J Solid State Chem, 2004, 177:2205-2207..
    [87] Cao M H, Wang Y H, Guo C X, et al. Preparation of Ultrahigh-Aspect-Ratio Hydroxyapatite Nanofibers in Reverse Micelles under Hydrothermal Conditions [J]. Langmuir, 2004, 20:4784-4786.
    [88] Xiang J H, Yu S H, Geng X,et al. Growth of PbSO4 Single-Crystal Nanorods and Optical Properties by a Microemulsion Approach [J]. Cryst Growth Des, 2005, 5:1157-1159.
    [89] Christopher L, Kitchens M, Chandler M, et al. Chloride ion effects on synthesis and directed assembly of copper nanoparticles in liquid and compressed alkane microemulsions [J]. Langmuir, 2005, 21:5166-5168.
    [90] Deiphine G, Mario Y, Anna R, et al. Mechanical and structural properties of BaCrO4 nanorod films under confinement and shear [J]. Adv Funct Mater, 2004, 14:238-242.
    [91] Hu J Q, Bando Y, Liu Z W, et al. Synthesis of crystalline silicon tubular nanostructures with ZnS nanowires as removable templates [J]. Angew Chem Int Ed, 2004, 43:63-66.
    [92] Fan R, Wu Y, Li D, et al. Fabrication of silica nanotube arrays from vertical silicon nanowire templates [J]. J Am Chem Soc, 2003, 125:5254-5255.
    [93] Steinhart M, Wendorff J H, Greiner A, et al. Polymer nanotubes by wetting of ordered porous templates [J]. Science, 2002, 296:1997-1997.
    [94] Byron G, Brian M, Andrew G, et al. A Sonochemical Approach to the Synthesis of Crystalline Selenium Nanowires in Solutions and on Solid Supports [J]. Adv Mater, 2002, 14:1749-1752.
    [95] Wu G S, Yuan X Y, Xie T, et al. A simple synthesis route to CdS nanomaterials with different morphologies by sonochemical reduction [J]. Materials Letters, 2004, 58:794-797.
    [96] Wang H, Zhu J J, Zhu J M. Sonochemical method for the preparation of bismuth sulfide nanorods [J]. J Phy Chem B, 2002,106:3848-3854.
    [97] Chen L, Horinchi T, Mori T Man T,Maeda k,et al. Postsynthesis Hydrothermal Restructuring of M41S Mesoporous Molecular Sieves in Water[J].J Phys Chem B,1999,103:1216-1222
    [98] Liu B, Zeng H C. Mesoscale organization of CuO nanoribbons: formation of "dandelions" [J]. J Am Chem Soc, 2004, 126:8124-8125.
    [99] Liu B, Zeng H C. Fabrication of ZnO "dandelions" via a modified Kirkendall process [J]. J Am Chem Soc, 2004, 126:16744-16746.
    [100] Peng Q, Dong Y, Li Y D, et al. ZnSe semiconductor hollow microspheres [J]. Angew Chem Int Ed, 2003, 42:3027-3030.
    [101] Wang X, Li Y D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires [J].Angew Chem Int Ed, 2002, 41:4790-4793.
    [102] Li Y D, Li X L, He R R, et al. Artificial lamellar mesostructures to WS2 nanotubes [J]. J Am Chem Soc, 2002, 124:1411-1416.
    [103] Wang J W, Li Y D. Rational synthesis of metal nanotubes and nanowires from lamellar structures [J]. Adv Mater, 2003, 15:445-447.
    [104] Zhang H G, Zhu Q S, Zhang Y, Wang Y, Zhao L, and Yu B.One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishelland Their Gas-Sensing Properties[J].Adv Funct Mater,2007, 17:2766–2771.
    [105] ZhangW X, Q ianY T, etal .Low temperature synthesis of nanocrystalline Mn3O4 by a solvothermal method [J].Solid State Ionics, 1999, 117:331-335.
    [106] Zhang J T, Liu J F, Peng Q , Wang X , and Li Y D. Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors[J].Chem. Mater,2006, 18:867-871.
    [107] Jeyagowry T. Sampanthar and Zeng H C,Arresting Butterfly-Like Intermediate Nanocrystals of β-Co (OH)2 via Ethylenediamine-Mediated Synthesis[J].J Am Chem Soc,2002,124: 6668-6675.
    [108] XieY, QianY T, etal. A Benzene-Thermal Synthetic Route to Nanocrystalline GaN,; A Benzene-Thermal Synthetic Route to Nanocrystalline GaN [J].Science,1996,272:1926-1927.
    [109] 吕强,曹传宝,朱鹤孙. 碳氮晶体的溶剂热制备 [J].科学通报,2003,48:229-232
    [110] Cao M H , Hu C W, Peng G, et al. Selected-Control Synthesis of PbO2 and Pb3O4, Single-Crystalline Nanorods[J]. J Am Chem Soc, 2003, 125:4982-4983.
    [111] Cao M H. Hu C W. et al.The First Fluoride One-Dimensional Nanostructures: Microemulsion-Mediated Hydrothermal Synthesis of BaF2 Whiskers [J].J Am Chem Soc. 2003, 125:11196-11197.
    [112] Cao M H. Wu X. He X. Y.Hu C W. Microemulsion-Mediated Solvothermal Synthesis of SrCO3 Nanostructures [J].Langmuir, 2005, 21:6093-6096.
    [113] Buchold, D,Feldmann, C. Synthesis of Nanoscale Co3[Co(CN)6]2 in Reverse Microemulsions[J]. Chem Mater, 2007, 19:3376-3380.
    [114] Yang J, Lin C, Wang Z, Lin, J.In (OH) 3 and In2O3 Nanorod Bundles and Spheres: Microemulsion-Mediated Hydrothermal Synthesis and Luminescence Properties [J]. Inorg Chem. 2006, 45:8973-8979.
    [115] 滕江峰,等.氮化稼微晶晶须及纳米线制备及研究[J].材料科学与工艺,2002,1 0(1):11-13.
    [116] 谢毅.特殊纳米结构的化学自组装[J].无机化学学报.2002, 18:1-6.
    [117] Trentler T J, Hickman K M, Goel S C, et al. Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth[J].Science,1995,270:1791-1794.
    [118] Holmes D, Keith P J, Christopher D R, etal. Control of Thickness and Orientation of Solution-Grown Silicon Nanowires [J]. Science,2000, 287:1471 一 1473.
    [119] Tobias H, Brian A K. Nucleation and Growth of Germanium Nanowires Seeded by Organic Monolayer-Coated Gold Nanocrystals [J]. J Am Chem Soc.2002, 124:1424-1429.
    [120] Lin C H,Chen S H,Chao J C,et al. The Synthesis of Sulfated Titanium Oxide Nanotubes [J]. Catal Lett,2002,80:153-159
    [121] Chatterjee A,Chakravorty D. Electrical conductivity of sol-gel derived metal nanoparticles [J]. J Mater Sci, 1992, 27: 4115-4118.
    [122] Feiffer L P,Stormer H L,Baldwin K W,et al.An Easy Way to Construct an Ordered Array of Nickel Nanotubes: The Triblock-Copolymer-Assisted Hard-Template [J]. Cryst Growth,1993,127:849-853.
    [123] Wu S D,Zhu Z Z,Tan J Y. Preparation of CdS Semiconductor Nanowire by a Convenient Ultraviolet Irradiation Technique [J].Chem Lett, 2001, 20:396-397.
    [124] Li Y G, Tan B, and Wu Y Y.Freestanding Mesoporous Quasi-Single-Crystalline Co3O4 Nanowire Arrays[J].J Am Chem Soc,2006,128(44):14258-14259.
    [125] Yu T,Zhu Y W, Xu J X, Shen Z. X, et al.Controlled Growth and Field-Emission Properties of Cobalt Oxide Nanowalls[J].Adv Mater, 2005, 17 : 1595-1599.
    [126] Han W Q, Fan S S, Li Q Q, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction[J]. Science, 1997, 277:1287-1289.
    [127] Dai H, Wong E W, Lu Y Z, et al. Synthesis and characterization of carbide nanorods [J]. Nature, 1995, 375:769-772.
    [128] Mao C, Solis D J, Reiss B D, et al. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires[J].Science,2004, 303:213-217.
    [129] Deng Z, Mao C. DNA-Templated Fabrication of 1D Parallel and 2D Crossed Metallic Nanowire Arrays[J]. Nano Lett, 2003, 3:1545-1548.
    [130] Guzman J, Carrettin S, Corma A. Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2[J]. J Am Chem Soc.2005, 127:3286-3287.
    [131] Davies H A, Liu Z W. The influence of processing, composition and temperature on the magnetic characteristics of nanophase Re–Fe–B alloys [J].J Mag and Mag Mater, 2005, 294:213-225.
    [132] Xiong Y, Xie Y, Yang J, et al. In situ micelle-template-interface reaction route to CdS nanotubes and nanowires [J].J Mater Chem. 2002, 12:3712-3716.
    [133] Fu L, Liu Z M, Liu Y Q, et al. Coating Carbon Nanotubes with Rare Earth Oxide Multiwalled Nanotubes [J]. Adv Mater, 2004, 16:350-352.
    [134] Wang X, huang J A, Peng Q, et al. A general strategy for nanocrystal synthesis [J]. Nature, 2005, 437:121-124.
    [135] Shi H T, Qi L M, Ma J M, etal. Polymer-Directed Synthesis of Penniform BaWO4, Nanostructures in Keverse Micelles [J]. J Am Chem Soc, 2003, 125:3450-3451.
    [136] Shi L T, Qi L M, Ma J M, et al. Synthesis of single crystal BaWO4 nanmires in catanionic reverses micelles [J]. Chem Commun, 2002, 18:1704-1705.
    [137] Liberato M, Erik C S. Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals [J]. J Am Chem Soc, 2000, 122:12700-12706.
    [138] Busbee B D, Obare S O, Murphy C J. An Improved Synthesis of High-Aspect-Ratio Gold Nanorods [J]. Adv Mater, 2003, 15:414-416.
    [139] Zhang D B, Qi L M, Yang J H, et al. Wet Chemical Synthesis of Silver Nanowire Thin Films at Ambient Temperature [J]. Chem Mater, 2004, 16:872-876.
    [140] Zhang W X, Wen X G, Yang S H, et al. Single-cystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature [J]. Adv Mater, 2003, 15:822-825.
    [141] Tang Z Y, Nicholas A K, Michael G. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires [J]. Science, 2002, 297:237-240.
    [142] Wang W H, Lan C, Li Y Z, et al. A simple wet chemical route for large-scale synthesis of Cu (OH) 2 nanowires [J]. Chemical Physics Letters, 2002, 366: 220-223.
    [143] Wen X G, Zhang W H, Yang S H. Synthesis of Cu(OH)2 and CuO Nanoribbon Arrays on a Copper Surtace[J]. Langmuir, 2003, 19:5898-5990.
    [1] Yu S H., Antonietti M. Colfen H, Hartmann J. Growth and Self-Assembly of BaCrO4 and BaSO4 Nanofibers toward Hierarchical and Repetitive Superstructures by Polymer-Controlled Mineralization Reactions [J]. Nano Lett. 2003, 3:379-382.
    [2] Wang Z L. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies [J]. J Phys Chem B,2000, 104:1153-1158.
    [3] Lao J Y. Wen J G. Ren Z F. Hierarchical ZnO Nanostructures [J]. Nano Lett. 2002, 2:1287-1288.
    [4] Morales A M. Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science, 1998, 279:208-212. b) Mann S G. Ozin A. Synthesis of inorganic materials with complex form [J].Nature, 1996, 382:313-315.
    [5] Liang H. P., Zhang H. M., Hu J. S., Guo Y. G., . Wan L. J, Bai C. L., Pt Hollow Nanospheres: Facile Synthesis and Enhanced Electrocatalysts [J] .Angew Chem Int Ed,2004, 43:1540-1542.
    [6] Guo L. Huang Q. Li X Y. Yang S [J]. Chem Phys. 2001, 3:1661-1663.
    [7] Teng X W. Yang H. Synthesis of Face-Centered Tetragonal FePt Nanoparticles and Granular Films from Pt@Fe2O3 Core-Shell Nanoparticles [J].J Am Chem Soc.2003, 125:14559-14561.
    [8] Liu Z P. Li S Yang Y. Peng S. Hu Z K. Qian Y T. Complex-Surfactant-Assisted Hydrothermal Route to Ferromagnetic Nickel Nanobelts [J]. Adv Mater,2003, 15:1946-1948.
    [9] Duan G T. Cai W P. Y. Luo Y. Li Z G. Lei Y. Hierarchical Structured Ni Nanoring and Hollow Sphere Arrays by Morphology Inheritance Based on Ordered Through-Pore Template and Electrodeposition [J]. J Phys Chem B,2006, 110:15729-15731.
    [10] Niu H L. Chen Q W. Ning M Y. Jia S. Wang X J Synthesis and One-Dimensional Self-Assembly of Acicular Nickel Nanocrystallites under Magnetic Fields [J]. J Phys Chem. B, 2004, 108:3996-4001.
    [11] Li J G., Qin Y. Kou X L .Huang J. The microstructure and magnetic properties of Ni nanoplatelets [J]. Nanotechnology 2004, 15: 982-985.
    [12] Leng Y. H. Zhang Y H. Liu T. Suzuki M. X. Li G. Synthesis of single crystalline triangular and hexagonal Ni nanosheets with enhanced magnetic properties [J]. Nanotechnology 2006, 17:1797-1782.
    [13] Cordente N. Respaud M. Senocq F. Casanove M J. Amiens C. Chaudret B. Synthesis and Magnetic Properties of Nickel Nanorods [J]. Nano Lett. 2001, 1:565-568.
    [14] Ni X M. Zhao Q B. Zheng H G. Li B B. Song J M. D. G. Zhang, X. J. Zhang, A Novel Chemical Reduction Route towards the Synthesis of Crystalline Nickel Nanoflowers from a Mixed Source[J]. Eur J Inorg Chem. 2005, 6:4788-4790.
    [15] Liu Q,Liu H. J,Han M,Zhu J. M,Liang Y Y ,Xu Z,SongY. Nanometer-Sized Nickel Hollow Spheres [J].Adv Mater, 2005, 17:1995-1999.
    [16] Wang J W, Li Y D.Rational synthesis of metal nanotubes and nanowires from lamellar structures [J].Adv Mater, 2003, 15:445-447.
    [17] Yang Q .et al. Acta Petroleisnica [J].1998, 14:24-26.
    [18] Xia Y. Yang P. Sun Y. Wu Y. Mayers B. Gates B. Yin Y. Kim, F. and Yan H. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications [J].Adv. Mater. 2003, 15:353-389.
    [19] Si R, Zhang Y W, You L P and Yan C H. Rare-Earth Oxide Nanopolyhedra, Nanoplates, and Nanodisks[J]. Angew Chem, 2005, 6:3256-3260.
    [20] Randall W Hicks et al. Nanoparticle Assembly of Mesoporous AlOOH (Boehmite) [J].Chem Mater, 2003, 15:78-82.
    [21] Lee H C, Kim H J, Chung S H, et al. Synthesis of Unidirectional Alumina Nanostructureswithout Added Organic Solvents [J].J Am Chem Soc, 2003, 125:2882-2883.
    [22] Kuang D B, Fang Y P, Liu H Q, et al. J. Fabrication of boehmite AlOOH and c-Al2O3 nanotubes via a soft solution route [J]. Mater Chem,2003, 13:660-662
    [23] Qu L H, He C Q, Yang Y, et al. Hydrothermal synthesis of alumina nanotubes templated by anionic surfactant[J].Mater Lett,2005,59:4034-4037
    [24] Zhu H Y et al. Growth of Boehmite Nanofibers by Assembling Nanoparticles with Surfactant Micelles [J].J Phys Chem B, 2004, 108:4245-4247.
    [25] An C H,Tang B,Yang Q,Qian Y T. Formation of Crystalline Stibnite Bundles of Rods by Thermolysis of an Antimony (III) Diethyldithiocarbamate Complex in Ethylene Glycol[J].Inorg Chem,2003,42:8081-8086
    [26] Sun Y G, Xia Y N Shape-Controlled Synthesis of Gold and Silver Nanoparticles [J].Science. 2002,13:298-299.
    [1] KoinumaM, HiraeT, MatsumotoY. Preparation of Co3O4 nanowire by electrochemical deposition [J].J Mater Res,1998,13:837-841
    [2] Jansson J, PalmqvistA E C, Fridell E. Photoluminescence Property of Co3O4 Nanowires Photoluminescence Property of Co3O4 Nanowires[J].J Catal, 2002, 211:387-390
    [3] 陶栋梁,黄毅,魏飞, Co3O4的制备和表征,2001, 77:330-332.
    [4] MakhloufSA.J. Investigation of Decomposition Process of Precursor of Nano-sized Co3O4 [J].Magn.Mater, 2002, 246:184-186.
    [5] Watanabe K, Kikuoka T, Kumagai N. Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries [J]. J Appl Electrochem, 1995, 25:219-224.
    [6] Li W Y, Zhang S Y, Chen J. Synthesis, Characterization, and Electrochemical Application of Ca (OH)2-,Co(OH)2-,andY(OH)3-Coated Ni(OH)2 Tubes [J].J Phys Chem B, 2005, 109:14025–14032.
    [7] Ismail J, Ahmed M F, Kamath P V. Cyclic voltammetric studies of electrodeposited solid solution and composite oxide/hydroxide electrodes in 1 M KOH: the Co(OH)2-Ni(OH)2-MnO2 system[J]. J Power Sources, 1993, 41:223–230.
    [8] Elumalai P, Vasan H N, Munichandraiah N. Electrochemical studies of cobalt hydroxide-an additive for nickel electrodes [J]. J Power Sources, 2001, 93:201-208.
    [9] Dinamani M, Kamath P V. Electrocatalysis of oxygen evolution at stainless steel anodes by electrosynthesized cobalt hydroxide coatings [J]. J Appl Electrochem, 2000, 305:1157-1162.
    [10] Jozer N, Chen D G, Buyuklimanli T. Electrochromic characterization of Co(OH)2 thin film prepared by sol–gel process[J]. Sol Energy Mater Sol Cells, 1998, 52(3-4):223-230.
    [11] Cao L, Xu F, Liang Y Y, et al. Preparation of the Novel Nanocomposite Co(OH)2/ Ultra-Stable Y Zeolite and Its Application as a Supercapacitor with High Energy Density[J]. Adv Mater, 2004, 16:1853–1857.
    [12] Kurmoo M. Hard Magnets Based on Layered Cobalt Hydroxide: The Importance of Dipolar Interaction for Long-Range Magnetic Ordering [J]. Chem Mater, 1999, 11:3370-3375.
    [13] Shi X Y, Han S B, Raymond J. Sanedrin, Zhou F M. Matthias Selke Synthesis of Cobalt Oxide Nanotubes from Colloidal Particles Modified with a Co (III)-Cysteinato Precursor[J].Chem. Mater,2002,14:1897-1902.
    [14] Feng J and Zeng H C, Size-Controlled Growth of Co3O4 Nanocubes Chem. Mater [J].2003, 15:2829-2835.
    [15] Jeyagowry T, Sampanthar, Zeng H C. Arresting Butterfly-Like Intermediate Nanocrystals of β-Co(OH)2 via Ethylenediamine-Mediated Synthesis[J]. J Am Chem Soc, 2002, 124: 6668-6675.
    [16] Li Y G, Tan B, and Wu Y Y, Freestanding Mesoporous Quasi-Single-Crystalline Co3O4 Nanowire Arrays [J]. J Am Chem Soc. 2006,128:14258-14259.
    [17] Wang X, Chen X Y, Gao L S, Zheng H G, Zhang Z D, and Qian Y T . One-Dimensional Arrays of Co3O4 Nanoparticles: Synthesis, Characterization, and Optical and Electrochemical Properties J. Phys. Chem. B [J].2004, 108:16401-16404.
    [18] Hou Y L, Hiroshi Kondoh, Masatsugu Shimojo, et al, High-Yield Preparation of Uniform Cobalt Hydroxide and Oxide Nanoplatelets and Their Characterization [J].J Phys Chem. B, 2005,109:19094-19098.
    [19] Cao A M, Hu J S, Liang H P, Song W G, Wan L J, He X L, Gao X G, and Xia S H, Hierarchically Structured Cobalt Oxide: The Morphology Control and Its Potential in Sensors[J]. J Phys Chem B.2006, 110:15858-15863.
    [20] He T, Chen D R, Jiao X L, Xu Y Y, and Gu Y X .Surfactant-Assisted Solvothermal Synthesis of Co3O4 Hollow Spheres with Oriented-Aggregation Nanostructures and Tunable Particle Size[J].Langmuir,2004,20:8404-8408.
    [21] Yang J A, Yue W , Bo X , Yi X , Qian Y T, Moderate temperature synthesis of nanocrystalline Co3O4 via gel hydrothermal oxidation Materials Chemistry and Physics [J]. J Phys Chem B, 2002, 26:234–237.
    [22] Wang J W,Wang X ,Li Y D. Synthesis and Characterization of Bismuth Single-Crystalline Nanowires and Nanospheres [J].Inorg Chem,2004, 43:7552-7554.
    [23] Umar A, Oyama M.Formation of Gold Nanoplates on Indium Tin Oxide Surface: Two-Dimensional Crystal Growth from Gold Nanoseed Particles in the Presence of Poly(vinylpyrrolidone) [J]. Cryst Growth Des,2006, 6:818-820.
    [24] Huang J H,Gao L.Formation of Gold Nanoplates on Indium Tin Oxide Surface: Two-Dimensional Crystal Growth from Gold Nanoseed Particles in the Presence of Poly(vinylpyrrolidone) [J].Cryst Growth Des,2006,6:1528-1531.
    [1] Lewis L N. Chem ical catalysis by colloids and clusters [J]. Chemical Reviews, 1993, 93 :2 693 - 2 730.
    [2] 王彦妮,张志琨,崔作林.纳米粒子在乙炔聚合反应中的催化作用[J].催化学报,1995, 16 (4) : 304 - 307.
    [3] Tarasov S, Kolubaev A , Belyaev S, et al. Study of friction reduction by nanocopper additives to motor oil [ J ].Wear, 2002, 252: 63 - 69.
    [4] 黄钧声,任山 ,谢成文. 化学还原法制备纳米铜粉的研究[ J ].材料科学与工程, 2003, 21:57- 59.
    [5] 刘华蓉,张志成 ,钱逸泰等. γ- 射线辐照法制备纳米Cu - Pd合金粉末的影响因素[ J ]. 无机化学学报.1999, 15: 488 - 492.
    [6] 王世敏 ,许祖勋 ,傅晶.纳米材料制备技术 [M ].北京:化学工业出版社.2002, 12 -17.
    [7] 张虹,白书欣,赵恂,等. 化学还原法制备纳米铜粉[ J ].机械工程材料.1998, 22:33 - 34.
    [8] 肖寒,王瑞,余磊,等. 还原法制备纳米级铜粉[ J ]. 贵州师范大学学报.2003, 21:4 - 6.
    [9] 张志梅,韩喜江,孙森鑫. 纳米级铜粉的制备[J]. 精细化工.2000, 18: 69 - 71.
    [10] 赵斌,刘志杰,蔡梦军,等. 超细铜粉的水合肼还原法制备及其稳定性研究 [J].华东理工大学学报, 1997,23 (3):372 - 376.
    [11] 林荣会,方亮,郗英欣等. 化学还原法制备纳米铜[J].化学学报, 2004, 62:2365 - 2368.
    [12] Liu Z W,Yoshio Bando, A Novel Method For Preparing Copper nanorods and nanowores [J]. Adv.Mater, 2003, 15:1546-1548.
    [13] Liu Z P, Yang Y, Liang J B, Hu Z K, QianY T,Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process[J].J Phys Chem B,2003, 107:12658-12661.
    [14] Chang Y, Li M L, Zeng H C Large-Scale Synthesis of High-Quality Ultralong Copper Nanowires[J].Langmuir,2005, 21:3746-3748.
    [15] Wang Z L,Kong X Y.In Situ Structure Evolution from Cu(OH)2 Nanobelts to Copper Nanowires[J].J Phys Chem B.2003, 107:8275-8280.
    [16] Zhou K B, Wang R P, Xu B Q ,Li Y D.Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes[J].Nanotechnology,2006, 17:3939–3943.
    [17] Zorica C O, Alojz A, Goran D, Majda Z,Cuprous Oxide Nanowires Prepared by an Additive-Free Polyol Process [J].Cryst Growth Des,2007, 7:453-458.
    [18] Lu C H, Qi L M, Yang J H, Wang X Y, Zhang DY, et al.One-Pot Synthesis of Octahedral Cu2ONanocages via a Catalytic Solution Route[J].Adv. Mater,2005, 17: 2562–2567.
    [19] Zhu H T, Zhang C Y and Yan S Y, Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size Nanotechnology [J].Nanotechnology, 2005, 16:3079–30832.
    [20] Wang J H, Yang T , Chen L J, Chen C H et al.Synthesis and growth mechanism of pentagonal Cu nanobats with field emission characteristics Nanotechnology[J].2006,17:719–722.
    [21] Liu Z W, Bando Y.A novel method for preparing copper nanorods and nanowires [J].Adv Mater, 2003, 15:303-305.
    [22] Wang W Z, Zhan Y J, Wang G H.One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant[J].Chem Commun, 2001, 8:727-728
    [23] Zhang H R, Shen C M, Chen S T, et al.Morphologies and microstructures of nano-sized Cu2O particles using a cetyltrimethylammonium template Nanotechnology[J].Adv Mater,2005,16:267–270.
    [24] Cao M H, Hu C W, Wang Y H, et al;A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods[J].Chem Commun,2003, 1884–1885.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700