红柱石耐火材料的研制及一氧化碳对其侵蚀机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过试验探索了优质红柱石制品的生产中红柱石精矿的用量范围,其他应用的高铝原料种类及用量范围;着重研究了烧成温度、保温时间等工艺参数和锆英石、碳化硅两种添加剂对红柱石制品性能的影响;采用XRD和SEM手段分析了部分典型试样的物相组成和显微结构,探讨了矿物组成和显微结构对红柱石制品性能影响。另外,针对研制品的拟用工作条件,研究了红柱石制品受强还原气氛侵蚀的机理,以及氧化铁在该侵蚀过程中的作用。试验结果表明:(1)采用红柱石原料生产优质红柱石耐火材料时,其中红柱石精矿用量可达80%~90%,氧化铝原料用量宜在10%~16%之间。另外,引入部分预合成莫来石有利于改善制品的抗蠕变性能,并减小制品的烧成膨胀。(2)红柱石制品的性能取决于其中红柱石的莫来石化程度和制品的烧结程度,而烧成温度和保温时间对此均有较大影响。使红柱石制品在较高温度下,适当延长保温时间烧成,对其取得优良性能是必要的。(3)加入适量的锆英石细粉或碳化硅细粉,不但可以起到促进红柱石制品烧结的作用,还可在一定程度上改善其抗热震性。
     红柱石制品在强还原气氛中被侵蚀损坏的机理主要表现为:
     (1)在700℃以下,首先发生了Boudouard反应,在制品表面和内部造成了沉碳。继而(当T>614℃时)莫来石在碳的还原作用下产生分解,其中SiO_2被还原成SiO气体;同时,生成的SiO又与CO反应生成SiO_2和C,但该反应随着温度升高越来越困难。
     (2)在1300℃埋碳保温处理时,对于高纯红柱石制品而言,发生的侵蚀反应主要是莫来石和玻璃相中的SiO_2被还原成SiO气相;而对于高铁含量红柱石制品而言,发生的侵蚀反应除了SiO_2被还原成SiO之外,还包括Fe_2O_3被还原成FeO和Fe_3O_4,进而FeO与Al_2O_3反应形成铁铝尖晶石(FeAl_2O_4),Fe_3O_4继续被还原成金属铁。
     (3)上述侵蚀反应将造成红柱石制品在化学、矿物组成及显微结构方面的明显变化。主要表现为化学组成上的SiO_2含量减少,Al_2O_3含量增多;矿物组成上的莫宋石和玻璃相含量减少,高纯红柱石制品中的刚玉相和高铁含量红柱石制品中的铁铝尖晶石含量增多,以及显微结构方面呈现空洞化倾向。
     (4)氧化铁对红柱石制品经受氧化还原过程的作用,还表现为其反复的固溶和脱
    
    西安建筑科技大学硕士学位论文
    熔会造成制品的结构受损,产生宏观裂纹,强度下降明显。而高纯红柱石制品虽然侵
    蚀之后结构空洞化现象较明显,但无宏观裂纹,且其强度降低的程度不大。
The andalusite based refractory(hereinafter shorten toABR)with excellent properties is a kind of high-temperature material which needs developing father in China. Aiming at the production of high-quality ABR , this thesis has probed the use amount ranges of andalusite concentrates and other applied alumina raw materials. In addition, in this thesis, the influences of some technological factors, such as sintering temperature and soaking time at this temperature , and two additives, zircon and silica carbide, on the properties of ABR are studied.The mineral compositions and microstructares of some typical samples are analysed by means of XRD and SEM, and, the influences of them on the properties of ABR have been discussed. Besides, the corrosion mechanism of carbon monoxide on ABR, and the effect of iron oxide on this corrosion course have also been studied in this thesis. The results show that: (1) The use amount of andalusite concentrates should be 80%~90%, the use amount of alumina powder should be 10% to 1
    6%. (2)The properties of ABR depend on mullitization extend of andalusiiite concentrates and its sintering extend, Whereas sintering temperature and soaking time at this temperature have remarkable influences on them. (3)Adding appropreciate amount of fine zircon power or fine silica carbide power can not only play a promotive part in sintering of ABR, but can improve its thermal shock resistance.
    As concerns the corrosion mechanism of carbon monoxide on ABR, it could be summed as follows: (1) At lower temperature (<700 ),the bounduard reaction (2CO-C+CO2) occurs firstly, which results in carbon deposition inside ABR and on its surface. Then mullite in the material is reduced into A12O3, SiO and CO2 by Carbon. (2) When temperature is at 1300 steadily, as far as the high-purity ABR is concerned, the corrosion reaction occurred in the material is chiefly that SiO2 in mullite and glass is reduced into SiO; as far as the ABR with high iron content is concerned, in addition to the reactions dissertated above, the corrosion reactions occurred in the material include that Fe2O3 is reduced into FeO and Fe3O4, that FeO reacts with Al2O3 to form FeAl2O4 and Fe3O4 is reduced into metallic iron subsequently. (3) The corrosion reactions discussed above will cause remarkable changes in chemical
    
    
    composition, mineral composition and microstructure of ABR. (4) In addition, when ABR is oxidized and reduced over and again, the effects of iron oxide on the corrosion course include that it will result in the disruption of structure of ABR, the formation of macroscopic cracks, and the descent of strength of ABR.
引文
[1] 杨直夫译,红柱石——生产优质耐火材料用最有前途的材料,国外耐火材料,2001,(3):32~37
    [2] 桂明玺,红柱石耐火材料及其在钢铁工业中的应用,耐火材料,1998,(2):47~50,
    [3] 吕峻 译,红柱石作为炼钢材料的最新发展,国外耐火材料,1989,(5):1~7
    [4] 莫自鸣译,红柱石用作炼钢耐火材料,国外耐火材料,1985,(10):11~18
    [5] 石干等,硅线石、红柱石及蓝晶石在材料中的莫来石化行为,耐火材料,1992,26(6):311~314
    [6] 谢建林等,红柱石类矿物对耐火材料相组成及其热震稳定性的影响,耐火材料,1993,27(2):80~83
    [7] 李博文等,河南西峡红柱石的高温性状和莫来石化行为,矿物岩石,1993,13(3):36~41
    [8] 林彬荫等,红柱石精矿与粗晶体烧结性能的研究,耐火材料,1990,(1):28~32
    [9] 朱黎明等,红柱石热风炉砖的研制与生产,耐火材料,1991,25(3):166~167
    [10] 李书才等,红柱石砖的试制及在鱼雷式铁水罐上的应用,耐火材料,1991,26(5):302~303
    [11] 李博文等,用红柱石制备莫来石纤维增强材料的实验研究,耐火材料,1996,30(6):305~307,313
    [12] 田秀洲,红柱石电炉顶砖的研制与生产,耐火材料,1995,(4):244
    [13] 李兆龙等,红柱石基堇青石窑具材料,耐火材料,1995,(5):301
    [14] 李博文等,红柱石微粉的烧结性能,耐火材料,1999,33(3):130~132
    [15] 李博文等,红柱石微粉对高铝矾土熟料制品的补强作用,矿物岩石地球化学通报,1999,18(4)217~220
    [16] 文洪杰等,红柱石的莫来石化动力学,耐火材料,1995,29(3):140~141,148
    [17] 潘宝明,烧结红柱石的X射线分析,耐火材料,1997,31(6):351~355
    [18] 田熙等,高铝耐火材料,耐火材料,1983,(5):2~7
    [19] 文洪杰等,红柱石粉精矿及合成莫来石的烧结性能,耐火材料,1995,29(5):247~250
    [20] 刘守宽等,硅线石砖的研制与生产,耐火材料,1994,28(4):218~221,215
    [21] 卢一国译,混铁车用Al_2O_3-SiC-C砖,国外耐火材料,1985,(12):8~15
    [22] 蒋鹏等,添加Al_2O_3对硅线石烧结体高温力学性能的影响,耐火材料,1993,27(3):159~162
    [23] 燔宝明,蓝晶石精矿烧结样品中的SiO_2成分的存在形式,耐火材料,1998,32(5):
    
    269~272
    [24] 沈继耀,硅线石与莫来石及其制品性能的对比与评价,耐火材料,1998,(5):28~31
    [25] 李九鸣等,硅线石合成莫来石研究,非金属矿,1999,100(4):38~41,59
    [26] 倪文 等,蓝晶石在不同环境中分解行为,北京科技大学学报,2000,22(1):4~7
    [27] 李博文等,蓝晶石微粉的烧结性能及其机理,耐火材料,1999,33(6):320~322
    [28] 陆永强等,低蠕变浇结莫来石砖的烧结性能,耐火材料,1992,26(5):273~274
    [29] 刘新或等,高铝电炉砖的使用效果及分析,耐火材料,1996,30(3):154~157
    [30] 沈毅,高温烧结条件下硅线石的莫来石化,耐火材料,1999,33(2):74~75
    [31] 李楠等,低蠕变莫来石—刚玉制品的研制,耐火材料,1990,(5):15~18
    [32] 李庭寿等,莫来石—刚玉系材料的高温蠕变性能研究,耐火材料,1986,(3):1~8
    [33] R.R.Lister等,不烧红柱石耐火材料,国外耐火材料,1985,(7):23~24
    [34] 董遂振等,低蠕变莫来石质制品的生产,耐火材料,1990,(4):34,51
    [35] 叶叔方等,低蠕变莫来石—刚玉质组合砖的试制,耐火材料,1994,28(1):57~58
    [36] Zhang Sheng et al, Development and Application of Muillite Brick with High Refractoriness under Load and Low Creep ,China's Refractories, 2000, Vol.9 (4): 31~32
    [37] Michael D.Sacks et al, Eeffect of Seeding on Phase Development, Densitification, Behaviour, and Microstructure Evolution in Mullite Fabricated from Microcomposite Particles, J. Am. Ceram. Soc., 1995, Vol.78(11). 2897~2906
    [38] SHI Gan et al, Mullitization Control of Low Creep High Alumina Bricks, China's Refractories, 2000, Vol.9 (2): 11~14
    [39] SHAO Shuying, Development of Low—Creep Bricks for Hot Blast Stoves of BFs, China's Refractories, 1998, Vol.7(1): 16~18
    [40] SHEN Yang-yun et al, Development Research on High Performance Sillimanite Refractory, China's Refractories, 1994, Vol.3(2): 19~22
    [41] HE Jin-zhou et al, The Study on Al_2O_3—SiO_2 Based Castables Containing Andalu-site, China's Refractories, 1994, Vol.3(2): 14~18
    [42] William H.McCracken et al, Annual Minerals Review—Andalusite, Am. Ceram. Soc. Bull. 1997, Vol.77(6): 85~86
    [43] 林彬荫等,蓝晶石 红柱石 硅线石,冶金工业出版社,1998.8
    [44] Jean-Pierre Ildefonse et al , Mullitization of Andalusite in Bricks and Castables, UNITECR' 97. Proc. Unified Int. Tech. Conf. on Refractories, Vol.2:899~908
    
    
    [45] Manfred Koltermann, Andalusite Bricks for Torpedo Ladles, Steelmaking Conference Proceedings, 1979, Vol.62. 241~245
    [46] Dubreuil P. et al, Use of Andalusite Refractories in Ferrous Metallurgy, Refra. Ind. Ceram. 1999, Vol.40 (6): 252~259
    [47] R.B. Bartelink et al, Andalusite—25 years on. (A Report of the Rhino Andalusite Mines Company), 1996.9
    [48] F. T Niemeijer et al, New Refractories for Torpedo Ladles, Steel Times International, 1999, Vol.14 (6): 38
    [49] Lionel Rebouillat et al , Andalusite-Based High-Alumina Castables, J. Am. Ceram. Soc. 2002, Vol.85(2): 373~378
    [50] Pannhorst W. et al, the High-Temperature Transformation of Andalusite into 3/2-Mullite and Vitreous Silica, Mineral.Magazine, 1978,Vol.42(322): 195~199
    [51] 李红央等,高抗蠕变热风炉砖,耐火材料,1991,25(5):121
    [52] 林彬荫等,蓝晶石烧结性能的研究,耐火材料,1991,25(4):203~205
    [53] 林彬荫等,硅线石基本性能与莫来石化行为,耐火材料,1989,23(1):20~24
    [54] 袁启明,关于ASZ材料的抗热震性、断裂韧性以及其中ZrO_2相变增韧机制的讨论,耐火材料,1983,(6):53~57
    [55] 蒋明学,李勇等.陈肇友论文选,北京:冶金工业出版社,1998.
    [56] 任国兵等,Al_2O_3—SiO_2系实用而伙材料,北京:冶金工业出版社,1995.
    [57] 郭海珠等,实用耐火原料手册,北京:中国建材工业出版社,2000.
    [58] 冯改山等,耐火材料技术手册,北京:冶金工业出版社,2000.
    [59] Ming-wei Paul Xu and Jesse J.Brown, Mechanisim of Iron Catalysis of Carbon Monoxide Deposition in Refractory, J.AM.Ceram. Soc., 1989,72(1): 110~15.
    [60] Perrtz et al, Andalusite-Derived Mullite-Matrix Refractories, 1990, (6): 613~633
    [61]李晓明,耐火材料应用热力学计算,武汉:武汉工业大学出版社,1991
    [62] 梁英教、车荫昌主编,无机物热力学手册,沈阳:东北大学出版社,1993
    [63] 崔素芬译,氧化还原气氛下氧化铁对莫来石刚玉耐火材料的作用,国外耐火材料,1996,(2):56~58
    [64] Cyrtis Martin and JESSEj.brown,Jr., CO Disintegration of Stainless SteelFiber-Reinforced Refractory astables,Jm. Ceram. Soc. Bull., 1986,65(7): 1047~51
    [65]T.M.Ca H a等(苏联),还原介质对刚玉隔热耐火材料的影响,国外耐火材料,1991,(1):59~61
    [66] 王泽田、严行健编,钟香崇耐火材料论文选,北京:冶金工业出版社,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700