湿化学法合成纳米材料及其在电化学器件中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于具有体材料所不具备的独特的物理化学性质,在电化学器件中有着广泛的应用前景,如锂离子电池和电化学传感器。将纳米材料作为电极材料可以有效地提高锂离子电池的比容量和循环性能,为下一代锂离子电池的开发提供理论基础。基于纳米材料构建的新型电化学传感器具有高的灵敏度和快的响应时间,为生物医学检测和环境监测提供了更加高效的方法。本论文采用湿化学法合成了几种特殊结构的纳米材料,并研究了其在锂离子电池和电化学传感器中的应用前景。具体研究内容如下:
     1.过渡金属氧化物作为锂离子电池的负极材料,在充放电过程中,会发生体积膨胀导致电池的循环性能下降。通过制备由纳米小颗粒自组装而成的过渡金属氧化物纳米球,充分发挥纳米构建单元和三维空间结构的协同作用,可以实现较高的放电容量和良好的循环性能。在第2章,以乙酸镍和乙二醇为原料,制备了这种三维结构的NiO纳米球。采用恒电流充放电和循环伏安法技术研究了NiO纳米球的电化学性能。在电流密度为100mA/g时,50个充放电循环后,NiO纳米球的放电比容量为573mAh/g,相当于其理论比容量的80%。NiO纳米球具有如此好的电化学性能是来自于它的三维自组装结构。这种结构的NiO纳米球不仅可以缓冲充放电过程中的体积变化以维持材料结构的完整性,而且还缩短了锂离子的扩散路径。
     2.Sn02作为锂离子电池的负极材料具有很大的吸引力,比容量是石墨材料的2倍。然而当Sn02和锂反应时会发生巨大的体积膨胀,导致电极材料逐渐粉化,循环性能下降。针对Sn02的这个缺陷,将Sn02和碳材料复合起来可以提高它的循环性能。在第3章,选用了石墨烯这一新型的碳材料与Sn02复合,制备了SnO2/graphene纳米复合物,有效地提高了Sn02的循环性能。在电流密度为50mA/g时,50个充放电循环后,SnO2/graphene纳米复合物的放电比容量为665mAh/g,相当于其理论比容量的86%。SnO2/graphene纳米复合物表现出这么好的性能是由于电极材料中复合了石墨烯。石墨烯纳米片可以抑制Sn02纳米颗粒的团聚,提高电极材料的电导率,增强充放电循环过程中材料结构的稳定性。
     3.聚苯胺具有良好的生物相容性和高的电导率,是固定酶分子的理想载体。然而传统的聚苯胺材料在溶液中的分散性很差,不利于材料的加工处理。通过合成纳米结构的聚苯胺可以有效地解决这个问题。在第4章,采用界面聚合法合成了对甲苯磺酸掺杂的聚苯胺纳米纤维,并采用滴涂的方法将聚苯胺纳米纤维和辣根过氧化物酶的混合分散液修饰到玻碳电极上,构建了过氧化氢电化学传感器。包裹在聚苯胺纳米纤维/壳聚糖薄膜中的辣根过氧化物酶较好地保持了生物活性,能有效地催化还原过氧化氢。同时,聚苯胺纳米纤维又具有大的比表面积和高的电导率,可以固定更多的酶分子和加速酶活性中心和电极之间的电子传递。
     4.金属纳米颗粒的稳定性、颗粒大小和分散性与它的电催化性能密切相关。石墨烯具有电导率高和化学稳定性好等优点,将它用来固定金属纳米颗粒会起到非常好的效果。在第5章,采用了一种简便的原位合成方法把镍纳米颗粒负载在石墨烯的表面,制备了Ni/graphene纳米复合物(NiGN)。采用滴涂的方法将NiGN和壳聚糖的混合分散液固定到玻碳电极上,构建了非酶葡萄糖电化学传感器。电化学测试结果表明:对于葡萄糖的电催化氧化,NiGN修饰的玻碳电极展现了非常高的电催化活性。葡萄糖传感器的响应电流非常灵敏和稳定,这得益于沉积的镍纳米颗粒具有良好的电催化性能和石墨烯载体拥有快速的电子传递能力。更重要的是,几种干扰物(例如抗坏血酸和尿酸)的存在也不会影响葡萄糖传感器的性能。
Nanomaterials have been extensively applied in electrochemical devices such as lithium ion battery and electrochemical sensor, which are attributed to their novel physical and chemical properties different from their corresponding bulk materials. Nanomaterials as electrode materials can improve the capacity and cycle performance effectively, which provide theoretical basis for exploiting the next generation lithium ion batteries. The novel electrochemical sensors based on nanomaterials have high sensitivity and fast response time, which provide efficient approach for biomedicine detection and environmental monitoring. This dissertation deals primary with the wet chemical synthesis of a few unique structured nanomaterials and investigate their application prospects in lithium ion batteries and electrochemical sensors. The detailed contents are summarized as follows:
     1. Transition metal oxides as anode materias for lithium ion battery, show volume expansion in charge/discharge process, leading to cycle performance drop. Based on the synergy effects in both nanostructure unit and three dimensional configurations, preparation of transition metal oxide nanosphere by self-assembly of small nanoparticles could realize high discharge capacity and good cycle performance. In chapter2, three dimensional structured NiO nanospheres were synthesized by using Ni(CH3COO)2·4H2O and ethylene glycol. Electrochemical performance of NiO nanospheres were evaluated by galvanostatic cycling and cyclic voltammetery. At the current density of100mA/g, the NiO nanospheres showed discharge capacity of573mAh/g after50cycles, corresponding80%theoretical capacity. The NiO nanospheres have so good electrochemical performance as anode materials for lithium ion battery, which is attributed to its three dimensional self-assemble structures. The unique structures within NiO nanospheres not only accommodate the volume change of charge/discharge process to maintain the structure integrity of materials, but also shorten Li+diffusion pathways.
     2. As anode material for lithium ion battery, SnO2has attracted much attention due to its twice capacity of graphite. However, when SnO2reacts with Li, there is a huge volume expansion, leading to electrode material pulverization and poor cyclability. Aim at this deficiency, hybridizing SnO2with carbon is an effective method to enhance the cyclability of the SnO2anode. In chapter3, a new kind of carbon material, graphene, is chosen to hybridize with SnO2to synthesize SnO2/graphene nanocomposite and improve cycle performance. At the current density of50mA/g, the SnO2/graphene nanocomposite could keep discharge capacity of665mAh/g after50cycles, corresponding86%theoretical capacity. SnO2/graphene nanocomposite showed an excellent cycling performance for lithium ion battery, which was ascribed to the presence of graphene. Graphene nanosheets can suppress the aggregation of active SnO2nanoparticles, enhance the conductivity of electrode material, and increase their structural stability during discharge/charge cycling.
     3. Polyaniline is an ideal immobilizing enzyme molecule matrix, due to its good biocompatibility and high electrical conductivity. However, the dispersion of conventional polyaniline in solution is very bad, which is adverse for material processability. Synthesis of nanostructured polyaniline is a feasible method to solve this problem. In Chapter4, polyaniline nanofibers (4-toluenesulfonic acid as dopant) were synthesized by interface polymerization. The mixed dispersion of polyaniline nanofibers and horseradish peroxidase was cast onto the glassy carbon electrode by a drop-coating method, and an electrochemical sensor for hydrogen peroxide was constructed. Horseradish peroxidase entrapped in the polyaniline nanofibers/chitosan film could preferable keep its native bioactivity and effectively catalyze the reduction of hydrogen peroxide. Polyaniline nanofibers modified electrode could lead to more enzyme molecules loading and rapid electron transfer rate between the active centers of enzyme and electrode, because they have large surface area and high electrical conductivity.
     4. The electrochemical activities of metal nanoparticles depend heavily on their stability, particle size and distribution. Graphene with high electrical conductivity and good chemical inertia is a wonderful supporting material for immobilizing metal nanoparticles. In chapter5, we employed a facile in situ synthesis approach to load nickel nanoparticles on the graphene surface, prepared Ni/graphene nanocomposite (NiGN). Nonenzymatic glucose sensors were constructed by dropcasting the mixed dispersion of NiGN and chitosan on the glass carbon electrode. The electrochemical measure results showed that NiGN modified electrode exhibited high electrochemical activity for electrocatalytic oxidation of glucose in alkaline medium. The current response of the glucose sensor was highly sensitive and stable, which is attributed to the good electrocatalytic performance of the firmly deposited Ni nanoparticles as well as the efficient electron transfer of graphene matrix. What's more important, the presence of several interferences (such as ascorbic acid and uric acid) cannot affect the performance of the glucose sensor.
引文
[1]沈海军.纳米科技概论.北京:国防工业出版社,2007,4-10
    [2]肖国强.纳米科技——当代科技交叉综合的新领域.今日科技,2002,7:26-28
    [3]张立德,牟季美.纳米材料与纳米结构.北京:科学出版社,2001,59-65
    [4]邱磊.纳米材料的应用研究.化学工程与装备,2009,4:110-111
    [5]Kwon S G, Hyeon T. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Accounts of Chemical Research, 2008,41(12):1696-1709
    [6]Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures:synthesis, characterization, and applications. Advanced Materials,2003,15(5):353-389
    [7]Lijima S, Ichihashi T. Single-shell nanotubes of 1-nm diameter. Nature,1993,363(6430): 603-605
    [8]Katsnelson M I. Graphene:carbon in two dimensions. Materials Today,2007,10(1-2): 20-27
    [9]Cavicchi R E, Silsbee R H. Coulomb suppression of tunneling rate from small metal particles. Physical Review Letters,1984,52(16):1453-1456
    [10]Philip B, Laura G. Science at the atomic scale. Nature,1992,355(6363):761-766
    [11]Satoh N, Nakashima T, Kamikura, et al. Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nature Nanotechnology,2008,3(2):106-111
    [12]李群.纳米材料的制备与应用技术.北京:化学工业出版社,2008,67-88
    [13]Shingu P H, Huang B, Nisitani S R, et al. Nanometer order crystalline structures of Al-Fe alloys produced by mechanical alloying. The Japan Institute of Metals,1988,29:3-5
    [14]Gleiter H. Nanostructured materials. Advanced Materials,1992,4(7-8):474-481
    [15]Wang J M, Gao L. Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties. Journal of Materials Chemistry,2003,13(10):2551-2554
    [16]Aoi Y, Kambayashi H, Deguchi T, et al. Synthesis of nanostructured metal oxide by liquid-phase deposition. Electrochimica Acta,2007,53(1):175-178
    [17]Djurisic A B, Xi Y Y, Hsu Y F, et al. Hydrothermal synthesis of nanostructures. Recent Patents on Nanotechnology,2007,1(2):121-128
    [18]Quintela M A. Synthesis of nanomaterials in microemulsions:formation mechanisms and growth control. Current Opinion in Colloid and Interface Science,2003,8(2):137-144
    [19]Hwang N M, Lee D K. Charged nanoparticles in thin film and nanostructure growth by chemical vapour deposition. Journal of Physics D:Applied Physics,2010,43(48): 483001
    [20]黄可龙,王兆翔,刘素琴.化学电源技术丛书——锂离子电池原理与关键技术.北京:化学工业出版社,2008,1-5
    [21]Jiang C H, Hosono E, Zhou H S. Nanomaterials for lithium ion batteries. Nano Today, 2006,1(4):28-33
    [22]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature,2001,414:359-367
    [23]Zhou H S, Li D L, Hibino M, et al. A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities. Angewandte Chemie International Edition,2005,44(5):797-802
    [24]Morgan D, Van A, Ceder G. Li Conductivity in LixMPO4(M=Mn, Fe, Co, Ni) olivine materials. Electrochemical and Solid-State Letters,2004,7(2):A30-A32
    [25]Jiang C H. Dou S X. Liu H K, et al. Synthesis of nanocrystalline LI4TI5O12 by chemical lithiation of anatase nanocrystals and postannealing. Journal of The Electrochemistry Society,2008,155(8):A553-A556
    [26]Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices. Advanced Materials,2008,20(15):2878-2887
    [27]Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature,2000,407:496-499
    [28]Dominko R, Arcon D, Mrzel A, et al. Dichalcogenide nanotube electrodes for li-ion batteries. Advanced Materials,2002,14(21):1531-1534
    [29]Kayma M, Hasegawa M, Tsutsumi S, et al. Nitride anode for lithium ion battery. Matsushita Technical Journal,2002,48(4):284-288
    [30]Souza D, Pralong V, Jacobson A J, et al. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science,2002,296(5575):2012-2015
    [31]Jamnik J, Maier J. Nanocrystallinity effects in lithium battery materials Aspects of nano-ionics. Part IV. Physical Chemistry Chemical Physics,2003,5(23):5215-5220
    [32]Ohzuku T, Takehara Z, Yoshizawa S. Nonaqueous lithium/titanium dioxide cell. Electrochimica Acta,1979,24(2):219-222
    [33]Kavan J H, Fattakhova D, Krtil Petr. Lithium insertion into mesoscopic and single-crystal TiO2 (rutile) electrodes. Journal of The Electrochemistry Society,1999,146(4): 1375-1379
    [34]Jiang C H, Honma I, KUdo T, et al. Nanocrystalline rutile electrode for high-capacity and high-rate lithium storage. Electrochemical and Solid-State Letters,2007,10(5): A127-A129
    [35]Jiang C H, Wei M D, Qi Z M, et al. Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. Journal of Power Sources,2007,166(1):239-243
    [36]Wu X D, Jiang L Y, Cao F F, et al. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix:superior cathode material for electrochemical energy-storage devices. Advanced Materials,2009,21(25-26):2710-2714
    [37]Shaju K M, Bruce P G.A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chemistry of Materials,2008,20(17):5557-5562
    [38]Hosono E, Kudo T, Honma I, et al. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Letters,2009,9(3): 1045-1051
    [39]Jiang C H, Dou S X, Liu H K, et al. Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction. Journal of Power Sources,2007,172(1):410-415
    [40]Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of The Electrochemistry Society,1997,144(4):1188-1194
    [41]Yonemura M, Yamada A, Takei Y, et al. Comparative kinetic study of olivine LixMPO4 (M=Fe, Mn). Journal of The Electrochemistry Society,2004,151(9):A1352-A1356
    [42]Srinivasan Venkat, Newman J. Discharge model for the lithium iron-phosphate electrode. Journal of The Electrochemistry Society,2004,151(10):A1517-A1529
    [43]Hu Y S, Guo Y G, Dominko R, et al. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Advanced Materials,2007,19(15): 1963-1966
    [44]Odani A, Ganpat V, Vilas S, et al. Testing Carbon-coated VOx prepared via reaction under autogenic pressure at elevated temperature as Li-insertion materials. Advanced Materials, 2006,18(11):1431-1436
    [45]Wang Y, Wu M D, Jiao Z, et al. Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chemistry of Materials,2009,21(14):3210-3215
    [46]Ng S H, Wang J Z, Wexier D, et al. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angewandte Chemie International Edition,2006,45(41):6896-6899
    [47]Liang G C, Wang L, Qu X Q, et al. Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution. Journal of Power Sources, 2008,184(2):538-542
    [48]Saravanan K, Balaya P, Reddy M V, et al. Morphology controlled synthesis of LiFePO4/C nanoplates for Li-ion batteries. Energy and Environmental Science,2010,3(4):457-464
    [49]Dominko R, Bele M, Goupil J M, et al. Wired porous cathode materials:a novel concept for synthesis of LiFePO4. Chemistry of Materials,2007,19(12):2960-2969
    [50]Wang Y G, Wang Y R, Hosono E, et al. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angewandte Chemie International Edition,2008,47(39):7461-7465
    [51]Green M, fielder E, Scrosati B, et al. Structured silicon anodes for lithium battery application. Electrochemical and Solid-State Letters,2003,6(5):A75-A79
    [52]Eki R, Datta M K, Krishnan R, et al. Nanostructured silicon anodes for lithium ion rechargeable batteries. Small,2009,5(20):2236-2242
    [53]Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology,2008,3(1):31-35
    [54]Courtney I A, Dahn J R. Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. Journal of The Electrochemical Society, 1997,144(6):2045-2052
    [55]Wang T, Ma Z N, Xu F, et al. The one-step preparation and electrochemical characteristics of tin dioxide nanocrystalline materials. Electrochemical Communication, 2003,5(7):599-602
    [56]Li N, Martin C R, Scrosati B. A high-rate, high-capacity, nanostructured tin oxide electrode for lithium-ion battery applications. Electrochemical and Solid-State Letter, 2000,3:316-318
    [57]Wang Z, Luan D, Lou X W. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. Journal of The American Chemistry Society,2011,133(13): 4738-4741
    [58]Wang Y, Zeng H C, Lee J Y. Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Advanced Materials,2006,18(5): 645-649
    [59]Lou X W, Deng D, Lee J Y, et al. Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties. Chemistry of Materials,2008,20(20):6562-6566
    [60]Lian P, Zhu X, Liang S, et al. High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochimica Acta,2011,56(12): 4532-4539
    [61]Uchiyanma H, Hosono E, Honma I, et al. A nanoscale meshed electrode of single-crystalline SnO for lithium-ion rechargeable batteries. Electrochemistry Communications,2008,10(1):52-55
    [62]Taberna P L, Mitra S. Poizot, et al. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Materials,2006, 5:567-573
    [63]Varghese B, Reddy M V, Yanwu Z, et al. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chemistry of Materials,2008 20(10):3360-3367
    [64]Needham S A, Wang G X, Liu H K. Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. Journal of Power sources,2006,159(1):254-257
    [65]Yuan L, Guo Z P, Konstantinov K, et al. Spherical clusters of NiO nanoshafts for lithium ion battery. Electrochemical and Solid-State Letters,2006,9(11):A524-A528
    [66]Liu L, Li Y, Yuan S, et al. Nanosheet-based NiO microspheres:controlled solvothermal synthesis and lithium storage performances. Journal of Physical Chemistry C,2010, 114(1):251-255
    [67]Cheng M Y, Hwang B J. Mesoporous carbon-encapsulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery. Journal of Power Sources,2010,195(15): 4977-4983
    [68]Sudant G, Baudrin E, Dunn B, et al. Synthesis and electrochemical properties of vanadium oxide aerogels prepared by a freeze-drying process. Journal of The Electrochemistry Society,2004,151(5):A666-A671
    [69]Bakker E, Qin Y Electrochemical sensors. Analytical Chemistry,2006,78(12): 3965-3983
    [70]Luo X L, Morrin A, Killard A J, et al. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis,2006,18(4):319-326
    [71]Clark L C, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Science,1962,102:29-45
    [72]Updike S J, Hicks G P. The enzyme electrode. Nature,1967,214(5092):986-988
    [73]Tatsu Y, Yamashita K, Yamaguchi M, et al. Entrapment of glucose oxidase in silica gel by the sol-gel method and its application to glucose sensor. Chemistry Letters,1992,21(8): 1615-1619
    [74]Arica M Y, Hasirci V. Immobilization of glucose oxidase:A comparison of entrapment and covalent bonding. Journal of Chemical Technology and Biotechnology,1993,58(3): 287-292
    [75]Gregg B A, Heller A. Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications. Analytical Chemistry,1990,62(3):258-263
    [76]Fortier G, Brassard E, Belanger D. Optimization of a polypyrrole glucose oxidase biosensor. Biosensors and Bioelectronics,1990,5(6):473-490
    [77]Crumbliss A L, Perine S C, Stonehuerner J, et al. Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnology and Bioengineering,1992,40(4):483-490
    [78]Xiao Y, Ju H X, Chen H Y. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer. Analytica Chimica Acta,1999,391(1):73-82
    [79]Patolsky F, Gabriel T, Willner I. Controlled electrocatalysis by microperoxidase-11 and Au-nanoparticle superstructures on conductive supports. Journal of Electroanalytical Chemistry,1999,479(1):69-73
    [80]Liu Z M, Wang H, Yang Y, et al. Amperometric tyrosinase biosensor using enzyme-labeled au colloids immobilized on cystamine/chitosan modified gold surface. Analytical Letters,2004,37(6):1079-1091
    [81]Gu H Y, Yu A M, Chen H Y. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode. Journal of Electroanalytical Chemistry,2001,516(1-2):119-126
    [82]Bahshi L, Frasconi M, Vered R T, et al. Following the biocatalytic activities of glucose oxidase by electrochemically cross-linked enzyme-Pt nanoparticles composite electrodes. Analytical Chemistry,2008,80(21):8253-8259
    [83]Ren X, Meng X, Chen D, et al. Using silver nanoparticle to enhance current response of biosensor. Biosensors and Bioelectronics,2004,21(3):433-437
    [84]Lim S H, Wei J, Lin J, et al. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Biosensors and Bioelectronics,2005,20(11):2341-2346
    [85]Xiao Y, Patolsky F, Katz E, et al. "Plugging into enzymes":nanowiring of redox enzymes by a gold nanoparticle. Science,2003,299(5614):1877-1881
    [86]Wang L, Wang E K. Direct electron transfer between cytochrome c and gold nanoparticles modified electrode. Electrochemistry Communications,2004,6(1):49-54
    [87]Liu T, Zhong J, Fan C H, et al. Wiring electrons of cytochrome c with silver nanoparticles in layered films. ChemPhysChem,2003,4(12):1364-1366
    [88]Goldberg I B, Crowe H R, Newman P R, et al. Electron spin resonance of polyacetylene and AsF5-doped polyacetylene. Journal of Chemical Physics,1979,70(3):1132-1136
    [89]Wallace G G, Innis P C. Inherently conducting polymeric nanostructures. Journal of Nanoscience and Nanotechnology,2002,2(5):441-451
    [90]Foulds N C, Lowe C R. Enzyme entrapment in electrically conducting polymers. Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases,1986,82(4):1259-1264
    [91]Foulds N C, Lowe C R. Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers. Analytical Chemistry,1988,60(22):2473-2478
    [92]Tamiya E, Karube I, Hattori S, et al. Micro glucose sensors using electron mediators immobilized on a polypyrrole-modified electrode. Sensors and Actuators,1989,18(3-4): 297-307
    [93]Cooper J C, Hall E A H. Electrochemical response of an enzyme-loaded polyaniline film. Biosensors,1992,7(7):473-485
    [94]Shinohara H, Chiba T, Aizawa M. Enzyme microsensor for glucose with an electrocyhemically synthesized enzyme-polyaniline film. Sensors and Actuators,1988, 13(1):79-86
    [95]Garjonyte R, Malinauskas A. Amperomertric glucose biosensors based on Prussian Blue and polyaniline-glucose oxidase modified electrodes. Biosensor and Bioelectronics,2000, 15(9-10):445-451
    [96]Fernandes K F, Lima C S, Pinho H, et al. Immobilization of horseradish peroxidase onto polyaniline polymers. Process Biochemistry,2003,38(9):1379-1384
    [97]Moulton S E, Innis P C, Kane L A, et al. Polymerisation and characterisation of conducting polyaniline nanoparticle dispersions. Current Applied Physics,2004,4(2-4): 402-406
    [98]Liu Y, Wang M, Zhao F, et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosensor and Bioelectronics, 2005,21 (6):984-988
    [99]Shan C, Yang H, Song J, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Analytical Chemistry,2009,81(6):2378-2382
    [100]Wilson R, Turner A P E. Glucose oxidase:an ideal enzyme. Biosensor and Bioelectronics,1992,7(3):165-185
    [101]Mizuho Sakamoto, Klyoko T. Catalytic oxidation of biological components on platinum electrodes modified by adsorbed metals:anodic oxidation of glucose. Bioelectrochemistry and Bioenergetics,1982,9(5):571-582
    [102]Kokkinidis G, Xonoglou N. Comparative study of the electrocatalytic influence of underpotential heavy metal adatoms on the anodic oxidation of monosaccharides on Pt in acid solutions. Bioelectrochemistry and Bioenergetics,1985,14(4-6):375-387
    [103]Gunther W, Axel S, Rudiger S, et al. Glucose oxidation at bismuth-modified platinum electrodes. Journal of Electroanalytical Chemistry,1998,444(1):61-73
    [104]Zhang X, Chan K Y, You J K, et al. Partial oxidation of glucose by a PtWO3 electrode. Journal of Electroanalytical Chemistry,1997,430(1-2):147-153
    [105]Ernst S, Heitbaum J, Hamann C H. The electrooxidation of glucose in phosphate buffer solutions:Part Ⅰ. Reactivity and kinetics below 350 mV/RHE. Journal of Electroanalytical Chemistry,1979,100(1-2):173-178
    [106]Chen X M, Lin Z J, Chen D J, et al. Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Bisoensors and Bioelectronics,2010,24(12):1803-1808
    [107]Qiu R, Cha H G, Noh H B, et al. Preparation of dendritic copper nanostructures and their characterization for electroreduction. The Journal of Physical Chemical C,2009, 113(36):15891-15896
    [108]Bo X, Chrysostome N, Bai J, et al. Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles ordered mesoporous carbon nanocomposite. Talanta,2010,82(1):85-91
    [109]Quan H, Park S U, Park J. Electrochemical oxidation of glucose on silver nanoparticle-modified composite electrodes. Electrochimica Acta,2010,55(7): 2232-2237
    [110]Xia Y, Huang W, Zheng J, et al. Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosensors and Bioelectronics,2011,26(8):3555-3661
    [111]Meng L, Jin J, Yang G X, et al. Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Analytical Chemistry,2009,81(17):7271-7280
    [112]Wu H X, Cao W M, Li Y, et al. In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochimica Acta,2010,55(11):3734-3740
    [113]You T, Niwa M, Hirono T S, et al. Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Analytical Chemistry, 2003,75(9):2080-2085
    [114]You T, Niwa O, Chen Z, et al. An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Analytical Chemistry,2003,79(19):5191-5196
    [115]Zen J M, Hsu C T, Kumar A S, et al. Amino acid analysis using disposable copper nanoparticle plated electrodes. Analyst,2004,129(9):841-845
    [116]Xu J Z, Zhu J J, Wang H, et al. Nano-sized copper oxide modified carbon paste electrodes as an amperometric sensor for amikacin. Analytical Letters,2003,36(13): 2723-2733
    [117]Wang W, Zhang L, Tong S, et al. Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination. Bisoensors and Bioelectronics,2009, 25(4):708-714
    [118]Fiorito P A, Goncales V R, Ponzio E A, et al. Synthesis, characterization and immobilization of Prussian blue nanoparticles:A potential tool for biosensing devices. Chemical Communication,2005,3(3):366-368
    [119]Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature,2000,407:496-499
    [120]Badway F, Plitz, Grugeon S, et al. Metal oxides as negative electrode materials in Li-ion cells. Electrochemical and Solid-State Letters,2002,5(6):A115-A118
    [121]Hibino M, Terashima J, Yao T. Reversible and rapid discharge-charge performance of y-FeO prepared by aqueous solution method as the cathode for lithium-ion battery. Journal of The Electrochemical Society,2007,154(12):A1107-A1111
    [122]Do J S, Weng C H. Preparation and characterization of CoO used as anodic material of lithium battery. Journal of Power Sources,2005,146(1-2):482-486
    [123]Varghese B, Reddy M V, Yanwu Z, et al. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chemistry of Materials,2008,20(10):3360-3367
    [124]Fu L J, Gao J, Zhang T, et al. Preparation of Cu2O particles with different morphologies and their application in lithium ion batteries. Journal of Power Sources,2007,174(2): 1197-1200
    [125]Pan Q, Huang K, Ni S, et al. Synthesis of a-Fe2O3 dendrites by a hydrothermal approach and their application in lithium-ion batteries. Journal of Physical D:Applied Physics,2009,42(1):015417
    [126]Mitra S, Poizot P, Finke A, et al. Growth and Electrochemical Characterization versus Lithium of Fe3O4 Electrodes Made by Electrodeposition. Advanced Materials,2006, 16(17):2281-2287
    [127]Liu Y, Mi C, Su L, et al. Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries. Electrochimica Acta,2008,53(5):2507-2513
    [128]Xiang J Y, Tu J P, Zhang L, et al. Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. Journal of Power Sources,2010,195(1):313-319
    [129]Zhang D, Zhang X, Ni X, et al. Low-temperature fabrication of MnFe2O4 octahedrons: Magnetic and electrochemical properties. Chemical Physics Letters,2006,426(1-3): 120-123
    [130]Li Z H, Zhao T P, Zhan X Y, et al. High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries. Electrochimica Acta, 2010,55(15):4594-4598
    [131]Bomio M, Lavela P Tirado J L. Electrochemical evaluation of CuFe2O4 samples obtained by sol-gel methods used as anodes in lithium batteries. Journal of Solid State Electrochemistry,2008,12(6):729-737
    [132]Sharma Y, Sharma N, Subba G V et al. Nanophase ZnCo2O4 as a High Performance Anode Material for Li-Ion Batteries. Advanced Functional Materials,2007,17(15): 2855-2861
    [133]Huang X H, Tu J P, Xia X H, et al. Morphology effect on the electrochemical performance of NiO films as anodes for lithium ion batteries. Journal of Power Sources, 2009,188(2):588-591
    [134]Li X, Dhanabalan A, Bechtold K, et al. Binder-free porous core-shell structured Ni/NiO configuration for application of high performance lithium ion batteries. Electrochemistry Communications,2010,12(9):1222-1225
    [135]Wang C, Wang D, Wang Q, et al. Fabrication and lithium storage performance of three-dimensional porous NiO as anode for lithium-ion battery. Journal of Power Sources,2010,195(21):7342-7437
    [136]Wang Y, Jiang X, Xia Y. A solution-phase, precursor route to polycrystalline SnO2 nanowires. Journal of the American Chemical Society,2003,125(52):16176-16177
    [137]Zhong L S, Hu J S, Liang H P et al. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Advanced Materials,2006, 18(18):2426-2431
    [138]Poizot P, Laruelle S, Grugeon S, et al. Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li. Journal of the Electrochemical Society, 2002,149(9):A1212-A1217
    [139]吴宇平.锂离子二次电池.北京:化学工业出版社,2004,5-12
    [140]Machill S, Shodai T, Sakurai Y, et al. Electrochemical and structural investigations of the reaction of lithium with tin-based composite oxide glasses. Journal of Solid State Electrochemistry,1999,3(2):97-103
    [141]Zhang Y, Liu Y, Liu M. Nanostructured columnar tin oxide thin film electrode for lithium ion batteries. Chemistry of Materials,2006,18(19):4643-4646
    [142]Park M S, Wang G X, Kang Y M, et al. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angewandte Chemie International Edition,2006,46:750-753
    [143]Lou X W, Wang Y, Yuan C, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Advanced Materials,2006,18(17): 2325-2329
    [144]Wang C, Zhou Y, Ge M, et al. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. Journal of the American Chemical Society,2010,132(1): 46-47
    [145]Yin X M, Li C C, Zhang M, et al. One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. Journal of Physical Chemistry C,2010,114(17):8084-8088
    [146]Kaskhedikar N A, Maier J. Lithium storage in carbon nanostructures. Advanced Materials,2009,21:2664-2680
    [147]Wang Y, Zeng H C, Lee J Y. Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Advanced Materials,2006,18(5): 645-649
    [148]Chen J S, Cheah Y L, Chen Y T, et al. SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. Journal of Physical Chemistry C,2009,113(47):20504-20508
    [149]Lou X W, Chen J S, Chen P, et al. One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties. Chemistry of Materials,2009,21(13):2868-2874
    [150]Zhang H X, Feng C, Zhai Y C, et al. Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles a novel binder-free and high-capacity anode material for lithium-ion batteries. Advanced Materials,2009,21(22):2299-2304
    [151]Yang R, Zhao W, Zheng J, et al. One-step synthesis of carbon-coated tin dioxide nanoparticles for high lithium storage. Journal of Physical Chemistry C,2010,114(47): 20272-20276
    [152]Wang D, Choi D, Li J, et al. Self-assembled TiO-graphene hybrid nanostructures for enhanced li-ion insertion. ACS Nano,2009,3(4):907-914
    [153]Wang G, Wang B, Wang X, et al. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. Journal of Materials Chemistry,2009,19(44):8378-8384
    [154]Zhang L S, Jiang L Y, Yan H J, et al. Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. Journal of Materials Chemistry,2010,20(26):5462-5467
    [155]Paek, S M, Yoo E, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2_graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Letter,2009,9(1):72-75
    [156]Yao J, Shen X, Wang B, et al. In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochemical Communications,2009,11(10):1849-1852
    [157]Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society,1958,80(6):1339
    [158]Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials,1999,11(3):771-778
    [159]Wang Y, Li Y M, Tang L H, et al. Application of graphene-modified electrode for selective detection of dopamine. Electrochemical Communications,2009,11(4): 889-892
    [160]Jiang X, Wang Y, Herricks T et al. Ethylene glycol-mediated synthesis of metal oxide nanowires. Journal of Materials Chemistry,2004,14(4),695-703
    [161]Xu C, Wang X, Zhu J. Graphene-metal particle nanocomposites. Journal of Physical Chemistry C,112(50):19841-19845
    [162]Veal E A, Day A M, Morgan B A. Hydrogen peroxide sensing and signaling. Molecular Cell,2007,26(1):1-14
    [163]Hurdis E C, Romeyn H. Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Analytical Chemistry,1958,26(2):320-325
    [164]Matsubara C, Kawamoto N, Takamura K. Oxo[5,10,15,20-tetra(4-pyridyl) porphyrinato]titanium(IV):an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst,1992,117(11):1781-1784
    [165]Nakashima K, Hayashida N, Kawaguchi S, et al. Peroxyoxalate chemiluminescence assay of hydrogen peroxide and glucose using 2,4,6,8-tetrathio-morpholinopyrimido[5,4-d]pyrimidine as a fluorescent component. Analytical Science, 1991,7(5):715-718
    [166]Zong S Z, Cao Y, Zhou Y M, et al. Zirconia nanoparticles enhanced grafted collagen tri-helix scaffold for unmediated biosensing of hydrogen peroxide. Langmuir,2006, 22(21):8915-8919
    [167]Wang G H, Zhang L M. Using Novel Polysaccharide-silica hybrid material to construct an amperometric biosensor for hydrogen peroxide. Journal of Physical Chemistry B, 2006,110(49):24864-24868
    [168]Yao H, Hu N F. pH-Switchable Bioelectrocatalysis of hydrogen peroxide on layer-by-layer films assembled by concanavalin a and horseradish peroxidase with electroactive mediator in solution. Journal of Physical Chemistry B,2006,114(9): 3380-3386
    [169]Veitch N C. Horseradish peroxidase:a modern view of a classic enzyme. Phytochemistry,2004,65(3):249-259
    [170]Gerard M, Chaubey A, Malhotra B D. Application of conducting polymers to biosensors. Biosensor and Bioelectronics,2002,17(5):345-359
    [171]Malhotra B D, Chaubey A, Singh S P. Prospects of conducting polymers in biosensors. Analytica Chimica Acta,2006,578(1):59-74
    [172]MacDiarmid A G. "Synthetic Metals":A novel role for organic polymers (Nobel Lecture). Angewandte Chemie International Edition,2001,40:2581-2590
    [173]Garjonyte R, Malinauskas. Amperometric glucose biosensors based on Prussian Blue-and polyaniline-glucose oxidase modified electrodes. Biosensor and Bioelectronics, 2000,15(9-10):445-451
    [174]Mu S L, Yang Y F. Bioelectrochemical responses of the polyaniline horseradish peroxidase electrodes. Journal of Electroanalytical Chemistry,1997,432(1-2):71-78
    [175]Kan J Q, Pan X H, Cheng C. Polyaniline-uricase biosensor prepared with template process. Biosensor and Bioelectronics,2004,19(12):1635-1640
    [176]Dhand C, Singh S P, Arya S K, et al. Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension. Analytica Chimica Acta,2007,602(2):244-251
    [177]Suman, Singhal R, Sharma A L, et al. Development of a lactate biosensor based on conducting copolymer bound lactate oxidase. Sensor and Actuators B:Chemical,2005, 107(2):768-772
    [178]Kazimierska E, Muchindu M, Morrin A, et al. The fabrication of structurally multiordered polyaniline films and their application in electrochemical sensing and biosensing. Electroanalysis,2009,21(4):595-603
    [179]Arora K, Sumana G, Saxena V, et al. Improved performance of polyaniline-uricase biosensor. Analytica Chimica Acta,2007,594(1):17-23
    [180]Singh S, Solanki P R, Pandey M K, et al. Covalent immobilization of cholesterol esterase and cholesterol oxidase on polyaniline films for application to cholesterol biosensor. Analytica Chimica Acta,2006,568(1-2):126-132
    [181]Wang P, Li S Q, Kan J Q. A hydrogen peroxide biosensor based on polyaniline/FTO. Sensor and Actuators B:Chemical,2009,137(2):662-668
    [182]Li X W, Zhao Y P, Zhuang T, et al. Self-dispersible conducting polyaniline nanofibres synthesized in the presence of β-cyclodextrin. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,295(1-3):146-151
    [183]Morrin A, Ngamna O, Killard A J, et al. An amperometric enzyme biosensor fabricated from polyaniline nanoparticles. Electroanalysis,2005,17(5):423-430
    [184]Huang J, Kaner R B. A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society,2004,126(3):851-855
    [185]Li D, Kaner R B. Processable stabilizer-free polyaniline nanofiber aqueous colloids. Chemical Communications,2005,26:3286-3288
    [186]Krajewska B. Application of chitin-and chitosan-based materials for enzyme immobilizations:a review. Enzyme and Microbial Technology,2004,35(2-3):126-139
    [187]Xue M H, Xu Q, Zhou M, et al. In situ immobilization of glucose oxidase in chitosan-gold nanoparticle hybrid film on Prussian Blue modified electrode for high-sensitivity glucose detection. Electrochemistry Communications,2006,8(9): 1468-1474
    [188]Tangkuaram T, Ponchio C, Kangkasomboon T, et al. Design and development of a highly stable hydrogen peroxide biosensor on screen printed carbon electrode based on horseradish peroxidase bound with gold nanoparticles in the matrix of chitosan. Biosensor and Bioelectronics,2007,22(9-10):2071-2078
    [189]Li X G, Li A, Huang M R. Facile high-yield synthesis of polyaniline nanosticks with intrinsic stability and electrical conductivity. Chemistry-A Europe Journal,2008,14(33): 10309-10317
    [190]Virji S, Huang J, Kaner R B, et al. Polyaniline nanofiber gas sensors:examination of response mechanisms. Nano Letters,2008,4(3):491-496
    [191]Saha, S K, Su Y K, Lin C L. Current-voltage characteristics of conducting polypyrrole nanotubes using atomic force microscopy. Nanotechnology,2004,15:66-70
    [192]Huang J X, Kaner R B. Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angewandte Chemie International Edition,2004,116(43): 5941-5945
    [193]Lei C X, Hu S Q, Shen G L, et al. Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide. Talanta,2003,59(5):981-988
    [194]Wang Li, Wang E. A novel hydrogen peroxide next term sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochemical Communications,2004,6(2):225-229
    [195]Elkaoutit M, Rodriguez I N, Dominguez M, et al. A third-generation hydrogen peroxide biosensor based on Horseradish Peroxidase (HRP) enzyme immobilized in a Nafion-Sonogel-Carbon composite. Electrochimica Acta,2008,53(24):7131-7137
    [196]Wang G, Xu J J, Chen H Y, et al. Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix. Biosensor and Bioelectronics,2003,18(4):335-343
    [197]Wang J. Electrochemical glucose biosensors. Chemical Reviews,2008,108(2):814-825
    [198]Clark L C, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. NY Acad. Sci,1962,102:29-45
    [199]Kumar J, Souza S F. Preparation of PVA membrane for immobilization of GOD for glucose biosensor. Talanta,2008,75(1):183-188
    [200]Baby T T, Ramaprabhu S. SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta,2010, 80(5):2016-2022
    [201]Wilson R, Turner A P E. Glucose oxidase:an ideal enzyme. Biosensor and Bioelectronics,1992,7(3):165-185
    [202]Gregg B A, Heller A. Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications. Analytical Chemistry,1990,62(3):258-263
    [203]Hrapovic S, Luong J. Picoamperometric detection of glucose at ultrasmall platinum-based biosensors:preparation and characterization. Analytical Chemistry, 2003,75(14):3308-3315
    [204]Park S, Boo H, Chung T D. Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta,2006,556(1):46-57
    [205]Park S, Chung T D, Kim H C. Nonenzymatic glucose detection using mesoporous platinum. Analytical Chemistry,2003,75(13):3046-3049
    [206]Li Y, Song Y Y, Yang C, et al. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochemical Communications,2007,9(5):981-988
    [207]Sun Y P, Buck H, Mallouk T E. Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors. Analytical Chemistry,2001,73(7):1599-1604
    [208]Ye J S, Wen Y, Zhang W D, et al. Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochemical Communications,2004,6(1):66-70
    [209]Matveeva V, Bykov A, Doluda V; et al. Direct D-glucose oxidation over noble metal nanoparticles introduced on polymer and inorganic supports. Topics Catalysis,2009,52: 387-393
    [210]Feng D, Wang F, Chen Z. Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sensors and Actuators B, 2009,138(2):539-544
    [211]Rong L Q, Yang C, Qian Q Y, et al. Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta,2007,72(2): 819-824
    [212]You T Y, Niwa O, Chen Z L, et al. An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Analytical Chemistry,2003,75(19):5191-5196
    [213]Liu Y, Teng H, Hou H Q, et al. Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosensors and Bioelectronics,2009,24(11):3329-3334
    [214]Meng L, Jin J, Yang G X, et al. Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Analytical Chemistry,2009,81(17):7271-7280
    [215]Lu J, Do I, Drzal L T, et al. Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano,2(9):1825-1832
    [216]Chen D, Tang L H, Li J H. Graphene-based materials in electrochemistry. Chemical Society Reviews,2010,39(8):3157-3180
    [217]Yoo E, Okata T, Akita T, et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Letters,2009,9(6):2255-2259
    [218]Guo S J, Dong S J, Wang E K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet:facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano,2010,4(1):547-555
    [219]Kou R, Shao Y, Wang D, et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemical Communications,2009,11(5):954-957
    [220]Li F H, Yang H F, Shan C S, et al. The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. Journal of Materials Chemistry,2009,19(23):4022-4025
    [221]Si Y, Samulski E T. Exfoliated graphene separated by platinum nanoparticles. Chemistry of Materials,2008,20(21):6792-6797
    [222]Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide. Chemical Society Reviews,2010,39(1):228-240
    [223]Zhao C, Shao C, Li M, et al. Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode. Talanta,2007,71(4): 1769-1773
    [224]Wang C, Yin L, Zhang L, et al. Ti/TiO2 nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. Journal of Physical Chemistry C,2010, 114(10):4408-4413
    [225]Sue J W, Hung C J, Chen W C, et al. Amperometric determination of sugars at activated barrel plating nickel electrodes. Electro analysis,2008,20(15):1647-1654
    [226]Zhuang Z, Su X, Yuan H, et al. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst,2008,133(1):126-132
    [227]Lu L M, Zhang L, Qu F L, et al. A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose:Enhancing sensitivity through a nanowire array strategy. Biosensors and Bioelectronics,2009,25(1):218-223
    [228]Kang X H, Mai Z B, Zou X Y, et al. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster multiwall carbon nanotube-modified glassy carbon electrode. Analytical Biochemistry,2007,363(1):143-150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700