煤矸石填充热塑性聚合物复合材料的制备及断裂破坏行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了利用煤矸石作为填料,对PVC,PP,PE等聚合物进行填充制备低成本复合材料的可行性,并运用基本断裂功(EWF)方法研究了部分材料的结构形态,煤矸石含量等因素对材料断裂破坏行为的影响。
     在研究乙烯-乙酸乙烯酯共聚物(EVA,VA含量28%)用量对聚氯乙烯(PVC)/EVA共混物相形态影响时,通过基本断裂功方法分析不同组成共混物断裂行为的变化趋势,发现共混物相形态的变化对材料的断裂韧性有较大的影响。在EVA用量较低(低于7phr)时,共混物中的EVA弹性体基本上都是以细小粒径的独立粒子分布的。随EVA用量增加,PVC/EVA共混物的EVA粒子数量增多,间距减小,材料的比基本断裂功w_e值逐渐增大。共混物w_e值的增大主要决定于成颈-撕裂阶段,因为屈服前的比基本断裂功w_(e,y)均有所减小,而屈服后比断裂功w_(e,n)随EVA的增加而显著增大。当EVA用量增加到9phr时,粒子间出现显著的粘连现象,材料w_e值则出现较大的下降,其中w_(e,y)和w_(e,n)同时减小。另一方面,随EVA用量增加(0-9phr),材料的比非基本断裂功βw_p均变化不明显。在对PVC/EVA共混体系的研究基础上选择适当配方添加煤矸石研究了EVA包覆的煤矸石含量对PVC/EVA/煤矸石三元复合材料力学性能的影响。结果表明,随包覆煤矸石含量的增加,复合材料的拉伸强度下降,下降幅度随添加量保持一致,复合材料的断裂伸长率也随包覆煤矸石的增加而降低。同时随包覆煤矸石含量的增加,复合材料的冲击强度出现大幅度下降,但随着包覆煤矸石粒子含量的继续增加,复合材料的冲击强度几乎保持一致。
     通过控制加工工艺,在PP中大量添加用EPDM包裹的廉价煤矸石填料,同时,通过加入EPDM改性并控制材料内部结构获得具有一定性能的廉价复合材料。试验结果表明,EPDM的包覆能有效增加煤矸石与基体间的联系,改善其在基体中的分散。添加EPDM包覆煤矸石的核—壳状母料,复合材料的冲击强度出现大幅度降低,但当煤矸石含量大于18wt-%,复合材料的冲击强度随母料含量的继续增加而维持在11KJ/m~2左右,其降低幅度小于直接添加煤矸石的煤矸石/PP二元复合材料。拉伸强度及断裂韧性(w_e)随母料的加入都有所降低,但在煤矸石含量小于18wt-%时降低幅度较小,当煤矸石含量大于18wt-%时降幅较大,与直接添加煤矸石的PP二元复合材料相比,性能降低幅度较小。
     在用煤矸石填充PE制备薄膜的研究中采用不同方法对煤矸石进行了表面处理,研究结果表明,用煤矸石填充能够吹塑出具有一定性能的PE膜,对煤矸石进行表面处理后,薄膜各方面性能均有所提高,在煤矸石填充量为20wt-%时,薄膜具有一定性能,当煤矸石填充量达到30wt-%后,薄膜拉伸强度有一定提高,但断裂伸长率及撕裂强度均有所下降,用PP-g-MA对煤矸石的处理效果最好。
The feasibility that making the cheap compositions of PVC, PP, PE and other polymers filled with coal gangue powder were investigated in this paper, and the influence of morphology, coal gangue powder content etc. on the material fracture behavior was also investigated.
     The ternary compositions of coal gangue powder encapsulated by EPDM (Ethylene Propylene Diene Monomer) filled PP were prepared to reduce the cost and control the microstructure aiming at high performance cost ratio materials. The result showed that EPDM can not only enhance the interaction between coal gangue powder and the matrix but also promote the dispersion of coal gangue powder. With the addition of coal gangue encapsulated by EPDM, the impact strength of composition dropped greatly, but it still kept about 11kJ/m2 when the content of encapsulated coal gangue powder is more than 18wt%. The tensile strength and fracture toughness (we) also dropped with the addition of encapsulated coal gangue powder, but only a small drop occurred when the content of encapsulated coal gangue powder is less than 18wt-% and great drop emerged when the content is larger than 18wt-%. Compared to coal gangue powder/PP binary composition, the ternary compositions involve higher content of coal gangue powder but present better properties.
     Poly (vinyl chloride) (PVC)/ethylene-vinyl acetate copolymer (EVA) blends were prepared. To study the effect of EVA content on the phase morphology and fracture behaviour, evaluated by means of Essential Work of Fracture method (EWF). The results clearly showed the prominent influence of phase transformation on fracture toughness of the blends. At low EVA content (<7phr), EVA was dispersed in the PVC matrix as separated small particles, and with EVA content increasing, the amount of EVA particles in PVC/EVA blends increased, resulting in diminished distance among the dispersed particles and increase of specific essential work of fracture(w_e). The enhanced w_e values were attributed to the increase of specific essential work of fracture in the necking and tearing stage (w_(e,n)), although the specific essential work of fracture before yielding (w_(e,y)) decreased. When EVA content was up to 9phr, the EVA particles were observed to adhere to each other and formed a coherent phase, which caused sharp decrease of w_e as the result of simultaneous decrease of w_(e,y) and w_(e,n). On the other hand, the specific plastic work,βw_p, was barely affected by the increase of EVA content. After these result, the mechanic performance of PVC/coal gangue powder/EVA ternary composition was investigated. The result showed that the tensile strength of compositions decreased with the increasing of encapsulated coal gangue powder and the drop extend accorded with the adding content. The break elongation also decreased with the increasing of encapsulated coal gangue powder. At the same time, with the adding of encapsulated coal gangue powder, the impact strength of composition dropt greatly, but kept to some value when the content of encapsulated coal gangue powder increasing sequentially.
     Coal gangue powder disposed by different methods and filled into PE to make film. The result showed that the PE film with great amount of coal gangue powder can be blown successfully. The film with disposed coal gangue powder had better performance than the film with undisposed coal gangue powder. When the mass ratio of coal gangue powder was reached 20%, the film exhibits the certain performance. However, when the mass ratio of coal gangue powder increased to 30%, the tensile strength increased, but both the elongation and the tear strength decreased. With great coal gangue powder, the dispose effect of PP-g-MA was the best.
引文
1.刘超,化学工业与工程技术,1998,2,44
    2.绍群,王德海,胡多朝,煤炭加工与综合利用,1997,2,25
    3.王志忠,巩志坚,煤化工,1991,54,39—43
    4.张莉,宋瑞潭,杨仁泽,山西能源与节能,2001,4,34
    5.王国平,孙传敏,中国矿业,2004,13,40
    6.李晓湘,陈志堂,李国斌,云南化工,1998,1,27
    7.赵鸣,曲剑舞,煤炭学报,1999,24,648
    8.王德海,俞永萍,中国矿业,1996,24,36
    9.王海德,煤炭科学技术,1994,24,33
    10.原沁波,赵鸣,能源环境保护,2004,18,28
    11. G. Gong, B.-Hu Xie, M.-B. Yang, W. Yang, W.-Q. Zhang, Z. Ming, Composites: Part A. 2007 in press
    12.王珂,陈华来,史贞,齐鲁石油化工,1995,1,67
    13.王贵恒,陆载梠,盛兆碧,塑料工业,1990,1,1
    14. P. Mareri, S. Bastide, N. Binda & Crespy, Compos Sci Technol, 1998, 58, 747
    15. Menendez, H, Whit, J. L., Polym. Eng. Sci., 1984, 24, 1051
    16. Ou, Yu-Chun, Guo, Ying-Tai, J. Appl. Polym. Sci., 1999, 74, 2397
    17. Premphet-Sirisinha, K., Preechachon, I., J. Appl. Polym. Sci., 2003, 89, 3557
    18. Tjong, Sic Chin, Xu, Shi-Ai, J. Appl. Polym. Sci., 2003, 88, 1384
    19.徐僖,蔡燎原,现代塑料加工应用,1995,7,1
    20.祝桂香,瞿雄伟,吴培熙,中国塑料,1997,11,43
    21.谢刚,黄强,汪成,崔丹,李霞,赵大晔,陈九顺,黑龙江大学自然科学学报,2001,18,86
    22.柏晓红,张锡薇,杨言讲,黑龙江石油化工,2001,12,18
    23.姚凌,王玉兴,王锦明,塑料,1991,20,15
    24. Z. WANG, Journal of Applied Polymer Science, 1996, 60, 2239
    25. YU-CHUN OU, TING-TAI GUO, XIAO-PING FANG, ZHONG-ZHEN YU, Journal of Applied Polymer Science, 1999, 74, 2397
    26.武利民等,ASA改性PVC力学性能研究,塑料,1992,4,14
    27.杨岭,核壳聚合物对聚氯乙烯的增韧改性,上海塑料,1997,3,12
    28. K. Premphet-Sirisinha I. Preechachon, J. Appl. Polym. Sci., 2003, 89, 3557
    29. K. Premphet, P. Hornont, J. Appl. Polym. Sci., 1999, 74, 3445
    30. Y. Long, R. A. Shanks, J. Appl. Polym. Sci., 1996, 61, 1877
    31. Y. Long, R. A. Shanks, J. Appl. Polym. Sci., 1996, 62, 639
    32. Premphet, K.; Horanont, P. J Appl Polym Sci., 2000, 76, 1929
    33. Kolarik, J, Jancar, J. Polymer, 1992, 33, 4961
    34. Dekkers, M. E. J.; Dortmans, J. P. M,Heikens, D. Polym Comm., 1985, 26, 145
    35.吕锡慈,高分子材料的强度与破坏,四川教育出版社,1990
    36.施良和,胡汉杰,高分子科学的今天与明天,化学工业出版社,1994,146
    37.颜志军,罗文波,张平,高分子材料科学与工程,2002,18,41
    38.朱锡雄,朱国瑞,高分子材料强度学,浙江大学出版社,1992,227
    39.Thomas E.L.主编,施良和,沈静姝等译,聚合物的结构与性能,科学出版社,1999,618
    40.齐芳娟,霍立兴,张玉凤等,中国塑料,2001,15,10
    41.刘厚俊,张玉风,霍立兴,中国塑料,2003,17,82
    42. Emmac. Y. Ching, Robert K. Y. Li, Polym. Eng. Sci, 2003,43, 558
    
    43. J. J. Casellas, P. M. Frontini, J. Appl. Polym. Sci., 1999,74,781
    
    44.徐振兴,断裂力学,湖南大学出版社,1987
    
    45. Broberg KB. Int J Fract, 1968,4,11
    
    46. Y-M.Mai, B.Cotterell, R.Horlyck, G.Vigna, Polym. Eng. Sci., 1987,27, 804
    
    47. Y-W Mai and B Cotterell, Int. J. Fracture, 1986,32,105
    
    48. Cotterell B, Reddel JK. Int J Fract., 1977,13,267
    
    49. J.Karger-Kocsis, T.Barany and E.J.Moskala, Polymer, 2003,44, 5691
    
    50. J.Karger-Kocsis and T.Barany, Polym. Eng. Sci., 2002,42,1410
    
    51. J.Karger-Kocsis, E.J.Moskala, Polymer, 2000,41,6301
    
    52. J.Karger-Kocsis, D.E.Mouzakis, Polym. Eng. Sci., 1999,39,1365
    
    53. Jingshen Wu, Yiu-Wing Mai, Polym. Eng. Sci., 1996,36,2275
    
    54. Y-W Mai and P Powell, J. Polym. Sci.(B), 1991,29,785
    
    55. J.Wu, Y-W.Mai, B.Cotterell, J. mater. Sci., 1993,28,3373
    
    56. E.C.Y.Ching, R.K.Y.Li and Y.W.Mai, Polym. Eng. Sci., 2000,40, 310
    
    57. S.C.Wong and Y.W.Mai, Polym. Eng. Sci., 1999,39,356
    
    58. J.S.S.Wong, D.Ferrer-Balas, R.K.Y.Li, Y.W.Mai, M.L.Maspoch and H.J.Sue, Acta Mater.2003,51,4929
    
    59. A. Arkhireyeva, S. Hashemi, Polymer, 2002,43,289
    
    60. W.Y.F.Chan, J.G.Williams, Polymer, 1994,35,1666
    
    61. J.Karger-Kocsis, Polym. Bull., 1996, 37,119
    
    62. J.Karger-Kocsis, T.Czigany, Polymer, 1996,37,2433
    
    63. J.Karger-Kocsis, T.Czigany, E.J. Moskala, Polymer, 1997,38,4587
    
    64. J.Karger-Kocsis, T.Czigany, E.J. Moskala, Polymer, 1998, 39, 3939
    
    65. Test Protocol for Essential Work of Fracture, Version 5, ESIS TC-4 Group, Les Diablerets, 1998
    
    66. Y-W Mai and B Cotterell, Int. J. Fracture, 1986,32, 105
    
    67. Jingshen Wu, Y-W. Mai and B Cotterell, J.Mater. Sci., 1993,28, 3373
    
    68. Y.Yokoyama and T.Ricco, Polymer, 1998,39,3675
    
    69. D.E.Mouzakis, F.Stricker and J.Karger-Kocsis, J. Mater. Sci., 1998,33,2551
    70. D.Arencon, J.I.Velasco, J. Mater. Sci., 2001, 36, 179
    71. Guoxin Sui, Shing-Chung Wong, J. Mater Proce Tech, 2001, 113, 167
    72.李忠明,谢邦互,杨鸣波,黄锐,中国塑料.2002,16,1
    73.谢邦互,杨鸣波,冯建民,李忠明,中国塑料.2002,16,20
    74. Maspoch Maria LLuisa, Ferrer Didac, Gordillo Antonio, J. Appl. Polym. Sci., 1999, 73, 177
    1. D. C. Mccormell, G. M. Mcnally, W. R. Murphy, J. Vinvl. Addit. Techn., 2002, 8, 194
    2. R. Hernandez, J. J. Pena, L. Irusta, A. Santamaria, Eur. Polym. J., 2000, 36, 1011
    3. C. Thaumaturgo, E. E. C. Monteiro, Compos. Sci. Technol., 1997, 57,1159
    4. R. Hemandez, J. A. Delagua, J. J. Pena, A. S Santarnaria, Polym. Eng. Sci., 1996, 36, 2570
    5. J. R. Pena, M. Hidalgo, C. Mijangos, J. Appl. Polym. Sci., 2000, 75, 1303
    6. H. Storstrom, B. Ranby, Advan. Chem. Set., 1971, 99,107
    7. Y. J. Shur, B. Ranby, J. Appl. Polym. Sci., 1975, 19, 1337
    8. S. E. Svanson, C. Elmqvist, J. Appl. Polym. Sci., 1977, 21,943
    9. T-M. Back, K-H. Chung, J. Vinyl. Techno., 1981, 3, 208
    10. KB. Broberg, J. Mec. Phy. Sol., 1975, 23,215
    11. Y. W. Mai, B. Cotterell, Int. J. Fracture., 1986, 32,105
    12. D. E. Mouzakis, F. Stricker, R. Mulhaupt, J. Karger-Kocsis, J. Mater. Sci., 1998, 33, 2551
    13. D. E. Mouzakis, N. Papke, J. S. Wu, J. Karger-Kocsis, J. Appl. Polym. Sci., 2001, 79, 842
    14. Z.-M. Li, W. Yang, Maeromol. Mater. Eng., 2004, 289, 426
    15. A. Arkhireyeva, S. Hashemai, J. Mater. Sci., 2002, 37, 3675
    16. S. Hashemi, Polym. Test., 2003, 22, 589
    17. G. Lwvita, Polym. Eng. Sci., 1996, 36,2534
    18. M. LI. Maspoeh, J. Garnez-Perez, J. Karger-Kocisi.s, Polym. Bull., 2003, 50, 297
    19. A. Arkhireyeva, S. Hashemi, Polym. Eng. Sci., 2002, 42,504
    20. Clutton E. Testing protocol for Essential Work of Fracture, ESIS TC-4, 1997
    21. M. Ll. Maspoeh, J. Gamez-Perez, A. Gordillo, M. Sanchez-Soto, J. I. Velasco, Polymer, 2002, 43,4177
    22. J. Wu, Y. W. Mai, B. Cotterell, J. Mater. Sci., 1993, 28, 3373
    23. Y. W. Mai, P. Powell, J. Polym. Sci. (B), 1991, 29,785
    24. Test Protocol for Essential Work of Fracture, Version 5, ESIS TC-4 Group, Les Diablerets, 1998
    25. Souheng Wu, J. Appl. Polym. Sci., 1988, 35, 549
    26. R. Lach, R. Weidisch, A. Janke, K. Knoll, Macromol. Rapid Commun., 2004, 25, 2019
    27. J. Karger-Kocsis, in: J. G. Williams, A. Pavan (Eds.), Fracture of Polymers, Composites and Adhesives, Elsevier, Oxford, 2000, p. 213
    28. J. Karger-Kocsis, J. Macromol. Sci. Phys. B, 1999, 38, 635
    29.张玲,黄锐,四川大学博士论文,2002
    30. C. O. Hammer, F. H. J. Maurer, S. Molnar, B. Puka. Nszky, Journal of materials science., 1999, 34, 5911
    31. Y. Long, R. A. Shanks, J. Appl. Polym. Sci., 1996, 61, 1877
    1. G. Xue, Q. Fu, J.-E Ding, S.-G. Jiang, S.-Y. Liu, Y.-X. Xi, Angewandte Makromolekulare Chemie., 1987, 153, 89
    2. G. Gong, B.-Hu Xie, M.-B. Yang, W. Yang, W.-Q. Zhang, Z. Ming, Composites: Part A. 2007, in press
    3. B. Li, G. Gong, B.-H. Xie, W. Yang, M. -B. Yang, S.-M. Lai, J. Mate. Sci., 2007, in press
    4. K. Premphet-Sirisinha I. Preechachon, J. Appl. Polym. Sci., 2003, 89, 3557
    5. K. PREMPHET, P. HORANONT, J. Appl. Polym. Sci., 1999, 74, 3445
    6. K. PREMPHET, P. HORANONT, J. Appl. Polym. Sci., 2000, 76, 1929
    7. JZ. Liang, RKY. Li, SC. Tjong, Polym Int., 1999, 48, 1068
    8. Y. LONG, R. A. SHANKS, J. Appl. Polym. Sci., 1996, 61,1877
    9. Y. LONG, R. A. SHANKS, J. Appl. Polym. Sci., 1996, 62, 639
    10. Sz. Molnar, B. Pukanszky, C.O. Hammer, F.H.J. Maurer, Polymer., 2000, 41, 1529
    11. I. L. Dubnikova, S. M. Berezina, A. V. Antonov, J. Appl. Polym. Sci., 2002, 85, 1911
    12. Z. Wang, J. Appl. Polym. Sci., 1996, 60, 2239
    13. Y.-C. Ou, T.-T. Guo, X.-P. Fang, Z.-Z. Yu, J. Appl. Polym. Sci., 1999, 74,2397
    14. B. K. Kim, M. S. Kim, K. J. Kim, J. Appl. Polym. Sci., 1993, 48, 1271
    15. J. Kolarik, J. Jancar, Polymer., 1992, 33, 4961
    16. S. C. Tjong, S.-A. Xu, R. K.-Y. Li, Y.-W. Mai, Comp. Sci. Techn., 2002, 62,831
    17. Van Krevelen D W. Properties of polymer [M] . New York: Elserier Scientific Publishing Company, 1976
    18. M.LI.Maspoch,J.Gamez-Perez,J.Karger-Kocisis, Polym.Bull., 2003, 50,297
    19. A.Arkhireyeva, S.Hashemi,Polym.Eng.Sci., 2002, 42, 504
    20. B.-H. Xie, Y. Shen, Z. Li, W. Yang, J. Feng, M. Yang, Aeta. Polymer. Sinca., 2006, 2, 335
    21. G. Gong, B.-H. Xie, W. Yang, Z.-M. Li, W.-q. Zhang, M.-B. Yang, Polym. Test., 2005, 24, 410
    22. G. Gong, B.-H. Xie, W. Yang, Z.-M. Li, S.-M. Lai, M.-B. Yang, Polym. Test., 2006, 25, 98
    1.张桂兰,陈晨曦,非金属矿粉的表面改性研究及应用,2006,22,14
    2.魏建新,葛学贵,石磊,黄少云,IM&化工矿物与加工,2006,1,13
    3.武卫莉,有机硅材料,2007,21,68
    4. G. Gong, B.-Hu Xie, M.-B. Yang, W. Yang, W.-Q. Zhang, Z. Ming, Composites: Part A., 2007 in press

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700